
LVM Snapshots

Martin Kennedy

May 24, 2021

Background

DeviceMapper

� LVM2 relies on the DeviceMapper driver

� At its core: just a bunch of kernel modules

lsmod | awk '{print $1}' | grep ^dm_ | xargs -I{} modinfo '{}'

dm mapping targets

� DeviceMapper gives you �exibility when working with block devices through
its 'mapping targets'

� dm-linear for e.g. treating sections of one-or-more Physical Volumes
(PVs) in a Volume Group (VG) as one Logical Volume (LV)

� dm-crypt for On-the-�y-encryption (OTFE)

� dm-snapshot for Copy-on-Write (CoW) snapshots

* allows a writable copy of a block device to be created atomically

* coexists with original

* works by tracking changes (metadata and data) in 'snapshot
space'

PCC already uses LVM heavily

� Mostly for 'protecting' �lesystems from one another, but . . .

� most of the data on most �PCC Server� environments we administer
is in LVs . . .

* . . . except for the boot partition, and . . .

* . . . except for Proxmox lxc containers (�vz-*�)

� We already use dm-crypt for LUKS

� I use LVM snapshots for data conversions when rolling back unwanted
data changes

1

https://en.wikipedia.org/wiki/Device_mapper
https://mediawiki.pcc.com/mediawiki/index.php/Data_conversion_tools/LVM


Snapshots

� Turn one LVM logical volume into two without unmounting

� A snapshot needs space to record changes at block level

� A snapshot shows up as a normal block device

� Upon creation, the snapshot blockdev is immediately writable

� Writing to the snapshot or the original LV consumes snapshot space

Quick demonstration

Plan

� Snapshot /pccehr and /dat

� Do some harmful things

� Merge snapshots into their parents

Snapshot creation

# As root

lvcreate --size 10G --snapshot --name pccehr_snap vg00/pccehr

lvcreate -L 30G -s -n dat_snap vg00/dat

Destroy data

touch /cvt/data/DO_RESTORE.trigger;

make /cvt/data/FULL_RESTORE.sentinel;

Merge the snapshots into their parents

date; psql -d dat -c "select count(*) from patient";

RE systemctl stop partner pccehr mcservice postgresql-9.5;

RE lvconvert --merge vg00/pccehr_snap

RE lvconvert --merge vg00/dat_snap

RE umount /pccehr /dat;

RE lvchange -an vg00/{dat,pccehr};

RE lvchange -ay vg00/{dat,pccehr};

RE mount /dat; RE mount /pccehr

RE systemctl start partner pccehr mcservice postgresql-9.5;

date; psql -d dat -c "select count(*) from patient";

Further details

Under the hood

� LVM snapshots rely on blocks from the original disk (Copy on Write)

2



� writes to the snapshot: move those blocks to the snapshot area

� writes to the original LV: copy those blocks to the snapshot area

� �True� CoW, as opposed to ZFS / btrfs snapshots, which are RoW

� Reduced performance on snapshot creation (particularly with HDDs
and fsync)

� . . . but: no fragmentation, and dropping snapshot is instantaneous

COW area

lvcreate -L 10G -s -n ${lv}_snap ${vg}/${lv}

Reducing COW size 10.00 GiB down to maximum usable size 4.03 GiB.

Logical volume "pcc_snap" created.

� If you go over the amount of snapshot space allocated, you just make the
snapshot un-usable.

Mounting

mkdir -p /pccehr_snap /dat_snap

# nouuid: XFS FSs have UUIDs that cannot collide

# Mounting with nouuid ignores those

mount -o nouuid /dev/vg00/pccehr_snap /pccehr_snap

mount -o nouuid /dev/vg00/dat_snap /dat_snap

# ... now check `lvs` ...

# As you might expect: The filesystem is *really* mounted and has all

# of the usual properties of a mounted filesystem

find /dat_snap

# ... now check `lvs` again ...

# Mounting with noatime prevents unneeded writes back to snapshot space

mount -o remount,noatime,nouuid /dev/vg00/pccehr_snap /pccehr_snap

mount -o remount,noatime,nouuid /dev/vg00/dat_snap /dat_snap

Discarding or merging

� As mentioned, we can drop snapshots instantaneously

� We can also merge them into the parent LV to roll it back

� This requires momentarily de-activating the volume . . .

� . . . but we can re-activate immediately after and begin using it again
even if it isn't done merging:

While the merge is in progress, reads or writes to the origin
appear as they were directed to the snapshot being merged.
When the merge �nishes, the merged snapshot is removed.

3

http://www.infotinks.com/zfs-btrfs-are-row-not-cow-redirect-on-write-not-copy-on-write/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/logical_volume_manager_administration/snapshot_merge


A full demonstration

Plan

� Snapshot /pccehr and /dat

� Mount, backup, unmount and lvremove both snapshots

� Do some harmful things

� Restore the backups to new snapshots, then merge those snapshots into
their parents

Snapshot

RE lvcreate -L 10G -s -n pccehr_snap vg00/pccehr;

RE lvcreate -L 10G -s -n dat_snap vg00/dat;

Backup

RE mount -o noatime,nouuid /dev/vg00/dat_snap /dat_snap

RE mount -o noatime,nouuid /dev/vg00/pccehr_snap /pccehr_snap

. /cvt/tk/bak/bak_vars.sh

RE restic backup /dat_snap /pccehr_snap

RE umount /{pccehr,dat}_snap

RE lvremove vg00/{pccehr,dat}_snap

Destroy

touch /cvt/data/DO_RESTORE.trigger;

make /cvt/data/FULL_RESTORE.sentinel;

The restore process

Create snapshots

RE lvcreate -L 10G -s -n pccehr_snap vg00/pccehr;

RE lvcreate -L 10G -s -n dat_snap vg00/dat;

RE mount -o noatime,nouuid /dev/vg00/dat_snap /dat_snap

RE mount -o noatime,nouuid /dev/vg00/pccehr_snap /pccehr_snap

Restore each snapshot from backup

# As root

. /cvt/mk/mkennedy.profile

. /cvt/tk/bak/bak_vars.sh

mkdir -p /restic; restic mount /restic;

# In a second terminal

rsync -avP --delete /restic/snapshots/latest/pccehr_snap/ /pccehr_snap/

rsync -avP --delete /restic/snapshots/latest/dat_snap/ /dat_snap/

umount /{pccehr,dat}_snap;

4



Final step: merge the snapshots into their parents

date; psql -d dat -c "select count(*) from patient";

RE systemctl stop partner pccehr mcservice postgresql-9.5;

RE lvconvert --merge vg00/pccehr_snap

RE lvconvert --merge vg00/dat_snap

RE umount /pccehr /dat;

RE lvchange -an vg00/{dat,pccehr};

RE lvchange -ay vg00/{dat,pccehr};

RE mount /dat; RE mount /pccehr

RE systemctl start partner pccehr mcservice postgresql-9.5;

date; psql -d dat -c "select count(*) from patient";

Integrating into PCC's backup solution

PCCbackup

� rear runs as per usual before any backups

� We can do away with locking /dat during the backup . . .

� . . . what we are doing is essentially the same as an xfs_freeze

� More di�cult: dealing with Postgres.

� Logical backups are possible but not smart here.

Dealing with Postgres

In summmary:

� As-is: use pgdumpall, but we really want to speed it up.

� Idea: Start pg_dumpall at the same time a snapshot of /dat is made

� Caveat: Only solves /dat <-> /pccehr consistency issue

� Idea: Start pg_dump -j at the same time a snapshot of /dat made

� Caveat: Must begin one on each database to maintain consistency

� Idea: Start a second server on the snapshot, and do logical backup

� Horrible idea: poor performance (especially so on spinning media)

� Idea: Physical (base) backup

� Much faster backup process

5



As-is: PCCbackup for Postgres

Log "pg_dumpall: Started"

set -o pipefail

if ! su postgres -c "pg_dumpall --clean" 2>>$logtmp |

gzip --rsyncable >/backup/pgbackup.tmp.sql.gz 2>>$logtmp ; then

SoftFail 2 "pg_dumpall"

Physical backups

� For our database, use block-based backups instead

� pgBackRest delta backup / restore

� restic

� rsync

6


