LVM Snapshots

Martin Kennedy
May 24, 2021

Background

DeviceMapper
e LVM2 relies on the DeviceMapper driver

— At its core: just a bunch of kernel modules

lsmod | awk ’{print $1}’ | grep ~dm_ | xargs -I{} modinfo ’{}’

dm mapping targets
e DeviceMapper gives you flexibility when working with block devices through
its 'mapping targets’
— dm-1linear for e.g. treating sections of one-or-more Physical Volumes
(PVs) in a Volume Group (VG) as one Logical Volume (LV)
— dm-crypt for On-the-fly-encryption (OTFE)
— dm-snapshot for Copy-on-Write (CoW) snapshots

* allows a writable copy of a block device to be created atomically
* coexists with original

* works by tracking changes (metadata and data) in ’snapshot
space’

PCC already uses LVM heavily
e Mostly for 'protecting’ filesystems from one another, but ...

— most of the data on most “PCC Server” environments we administer

isin LVs ...
x ... except for the boot partition, and ...
% ... except for Proxmox lxc containers (“vz-*”)

— We already use dm-crypt for LUKS

— Tuse LVM snapshots for data conversions when rolling back unwanted
data changes

https://en.wikipedia.org/wiki/Device_mapper
https://mediawiki.pcc.com/mediawiki/index.php/Data_conversion_tools/LVM

Snapshots

e Turn one LVM logical volume into two without unmounting

— A snapshot needs space to record changes at block level
— A snapshot shows up as a normal block device
— Upon creation, the snapshot blockdev is immediately writable

— Writing to the snapshot or the original LV consumes snapshot space

Quick demonstration

Plan
e Snapshot /pccehr and /dat
e Do some harmful things

e Merge snapshots into their parents

Snapshot creation

As root
lvcreate --size 10G --snapshot --name pccehr_snap vg00/pccehr
lvcreate -L 30G -s -n dat_snap vg00/dat

Destroy data

touch /cvt/data/DO_RESTORE.trigger;
make /cvt/data/FULL_RESTORE.sentinel;

Merge the snapshots into their parents

date; psql -d dat -c "select count(*) from patient";

RE systemctl stop partner pccehr mcservice postgresql-9.5;
RE lvconvert --merge vg00/pccehr_snap

RE lvconvert --merge vg00O/dat_snap

RE umount /pccehr /dat;

RE lvchange -an vg00/{dat,pccehr};

RE lvchange -ay vg00/{dat,pccehr};

RE mount /dat; RE mount /pccehr

RE systemctl start partner pccehr mcservice postgresql-9.5;

date; psql -d dat -c "select count(*) from patient";

Further details

Under the hood
e LVM snapshots rely on blocks from the original disk (Copy on Write)

— writes to the snapshot: move those blocks to the snapshot area
— writes to the original LV: copy those blocks to the snapshot area
e “True” CoW, as opposed to ZFS / btrfs snapshots, which are RoW
— Reduced performance on snapshot creation (particularly with HDDs

and fsync)

— ... but: no fragmentation, and dropping snapshot is instantaneous

COW area

lvcreate -L 10G -s -n ${1lv}_snap ${vg}/${1v}
Reducing COW size 10.00 GiB down to maximum usable size 4.03 GiB.
Logical volume "pcc_snap" created.

e If you go over the amount of snapshot space allocated, you just make the
snapshot un-usable.

Mounting
mkdir -p /pccehr_snap /dat_snap

nouuid: XFS FSs have UUIDs that cannot collide

Mounting with nouuid ignores those

mount -o nouuid /dev/vg00/pccehr_snap /pccehr_snap
mount -o nouuid /dev/vg00/dat_snap /dat_snap

... now check ‘lvs®

As you might expect: The filesystem is *really* mounted and has all
of the usual properties of a mounted filesystem

find /dat_snap

... now check ‘lvs‘ again ...

Mounting with noatime prevents unneeded writes back to snapshot space
mount -o remount,noatime,nouuid /dev/vg00/pccehr_snap /pccehr_snap
mount -o remount,noatime,nouuid /dev/vg00/dat_snap /dat_snap

Discarding or merging
e As mentioned, we can drop snapshots instantaneously
e We can also merge them into the parent LV to roll it back

— This requires momentarily de-activating the volume ...
— ... but we can re-activate immediately after and begin using it again
even if it isn’t done merging:

While the merge is in progress, reads or writes to the origin
appear as they were directed to the snapshot being merged.
When the merge finishes, the merged snapshot is removed.

http://www.infotinks.com/zfs-btrfs-are-row-not-cow-redirect-on-write-not-copy-on-write/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/logical_volume_manager_administration/snapshot_merge

A full demonstration

Plan
e Snapshot /pccehr and /dat
e Mount, backup, unmount and lvremove both snapshots
e Do some harmful things

e Restore the backups to new snapshots, then merge those snapshots into
their parents

Snapshot

RE lvcreate -L 10G -s -n pccehr_snap vg00/pccehr;
RE lvcreate -L 10G -s -n dat_snap vg00/dat;

Backup

RE mount -o noatime,nouuid /dev/vg00/dat_snap /dat_snap

RE mount -o noatime,nouuid /dev/vg00/pccehr_snap /pccehr_snap
. /cvt/tk/bak/bak_vars.sh

RE restic backup /dat_snap /pccehr_snap

RE umount /{pccehr,dat}_snap

RE lvremove vg0O/{pccehr,dat}_snap

Destroy

touch /cvt/data/DO_RESTORE.trigger;
make /cvt/data/FULL_RESTORE.sentinel;

The restore process

Create snapshots

RE lvcreate -L 10G -s -n pccehr_snap vg00/pccehr;

RE lvcreate -L 10G -s -n dat_snap vg0O/dat;

RE mount -o noatime,nouuid /dev/vg00/dat_snap /dat_snap

RE mount -o noatime,nouuid /dev/vg00/pccehr_snap /pccehr_snap

Restore each snapshot from backup

As root

. /cvt/mk/mkennedy.profile

. /cvt/tk/bak/bak_vars.sh

mkdir -p /restic; restic mount /restic;

In a second terminal

rsync -avP --delete /restic/snapshots/latest/pccehr_snap/ /pccehr_snap/
rsync -avP --delete /restic/snapshots/latest/dat_snap/ /dat_snap/
umount /{pccehr,dat}_snap;

Final step: merge the snapshots into their parents

date; psql -d dat -c "select count(*) from patient";

RE
RE
RE
RE
RE
RE
RE
RE

systemctl stop partner pccehr mcservice postgresql-9.5;
lvconvert --merge vgOO/pccehr_snap

lvconvert --merge vg00/dat_snap

umount /pccehr /dat;

lvchange -an vg00/{dat,pccehr};

lvchange -ay vg00/{dat,pccehr};

mount /dat; RE mount /pccehr

systemctl start partner pccehr mcservice postgresql-9.5;

date; psql -d dat -c "select count(*) from patient";

Integrating into PCC’s backup solution

PCCbackup

e rear runs as per usual before any backups
e We can do away with locking /dat during the backup ...

— ... what we are doing is essentially the same as an xfs_freeze
e More difficult: dealing with Postgres.

— Logical backups are possible but not smart here.

Dealing with Postgres

In summmary:

o As-is: use pgqumpai, but we really want to speed it up.
o Idea: Start pg_dumpall at the same time a snapshot of /dat is made

— Caveat: Only solves /dat <-> /pccehr consistency issue

Idea: Start pg_dump -j at the same time a snapshot of /dat made

— Caveat: Must begin one on each database to maintain consistency

Idea: Start a second server on the snapshot, and do logical backup

— Horrible idea: poor performance (especially so on spinning media)

Idea: Physical (base) backup

— Much faster backup process

As-is: PCCbackup for Postgres

Log "pg_dumpall: Started"
set -o pipefail
if ! su postgres -c "pg_dumpall --clean" 2>>$logtmp |
gzip --rsyncable >/backup/pgbackup.tmp.sql.gz 2>>$logtmp ; then
SoftFail 2 "pg_dumpall"

Physical backups
e For our database, use block-based backups instead
— pgBackRest delta backup / restore

— restic

— rsync

