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About This Book
This user’s manual provides the architectural overview, programming model, and detailed information about the 
registers, the instruction set, and operations of the AMCC™ PowerPC™ 440 (PPC440™) 32-bit RISC processor 
core.

The PPC440 RISC processor features:

• Book-E Enhanced PowerPC Architecture™

• JTAG support for board level testing

• Extensive development tool support

Who Should Use This Book

This book is for system hardware and software developers, and for application developers who need to understand 
the PPC440. The audience should understand embedded processor design, embedded system design, operating 
systems, RISC processing, and design for testability.

How to Use This Book

This book describes the PPC440 device architecture (including instructions and registers), processor core 
functions, and system operations. The book is organized as follows:

• Overview on page 21
• Programming Model on page 29
• Instruction and Data Caches on page 71
• Memory Management on page 103 
• Interrupts and Exceptions on page 127
• Timer Facilities on page 173
• Debug Facilities on page 181
• Instruction Set on page 209
• Register Summary on page 403

This book also contains the following appendixes:
• Instruction Summary on page 411
• PPC440 Compiler Optimizations on page 455

To help readers find material in these sections, the book contains:
• Contents on page 3
• Figures on page 11
• Tables on page 13
• Index on page 457
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Conventions

The following is a list of notational conventions frequently used in this manual.  

ActiveLow An overbar indicates an active-low signal.

n A decimal number

0xn A hexadecimal number

0bn A binary number

= Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Twos complement addition

– Twos complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division; (33 % 32) = 1.

|| Concatenation

=, ≠ Equal, not equal relations

<, > Signed comparison relations

,  Unsigned comparison relations

if...then...else... Conditional execution; if condition then a else b, where a and b represent one or 
more pseudocode statements. Indenting indicates the ranges of a and b. If b is 
null, the else does not appear.

do Do loop. “to” and “by” clauses specify incrementing an iteration variable; “while” 
and “until” clauses specify terminating conditions. Indenting indicates the scope of 
a loop.

leave Leave innermost do loop or do loop specified in a leave statement.

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

FLDb,b, . . . A list of bits, by number or name, in a named instruction or register field

REGb A bit in a named register

REGb:b A range of bits in a named register

REGb,b, . . . A list of bits, by number or name, in a named register

REG[FLD] A field in a named register

REG[FLD, FLD . . .] A list of fields in a named register

REG[FLD:FLD] A range of fields in a named register

GPR(r) General Purpose Register (GPR) r, where 0 ≤ r ≤ 31.

(GPR(r)) The contents of GPR r, where 0 ≤ r ≤ 31.

<
u >

u
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DCR(DCRN) A Device Control Register (DCR) specified by the DCRF field in an mfdcr or 
mtdcr instruction

SPR(SPRN) An SPR specified by the SPRF field in an mfspr or mtspr instruction

TBR(TBRN) A Time Base Register (TBR) specified by the TBRF field in an mftb instruction

GPRs RA, RB, . . .
(Rx) The contents of a GPR, where x is A, B, S, or T

(RA|0) The contents of the register RA or 0, if the RA field is 0.

CRFLD The field in the condition register pointed to by a field of an instruction.

c0:3 A 4-bit object used to store condition results in compare instructions.
nb The bit or bit value b is replicated n times.

xx Bit positions which are don’t-cares.

CEIL(x) Least integer ≥ x.

EXTS(x) The result of extending x on the left with sign bits.

PC Program counter.

RESERVE Reserve bit; indicates whether a process has reserved a block of storage.

CIA Current instruction address; the 32-bit address of the instruction being described 
by a sequence of pseudocode. This address is used to set the next instruction 
address (NIA). Does not correspond to any architected register.

NIA Next instruction address; the 32-bit address of the next instruction to be executed. 
In pseudocode, a successful branch is indicated by assigning a value to NIA. For 
instructions that do not branch, the NIA is CIA +4.

MS(addr, n) The number of bytes represented by n at the location in main storage represented 
by addr.

EA Effective address; the 32-bit address, derived by applying indexing or indirect 
addressing rules to the specified operand, that specifies a location in main 
storage.

EAb A bit in an effective address.

EAb:b A range of bits in an effective address.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits specified by n.

MASK(MB,ME) Mask having 1s in positions MB through ME (wrapping if MB > ME) and 0s 
elsewhere.

instruction(EA) An instruction operating on a data or instruction cache block associated with an 
EA.
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1. Overview
The PowerPC™ 440 32-bit processor core, referred to as the PPC440 core, implements the Book-E Enhanced 
PowerPC Architecture.

This section describes:
• PPC440 core features
• The PPC440 core as an implementation of the Book-E Enhanced PowerPC Architecture
• The organization of the PPC440 core, including a block diagram and descriptions of the functional units
•  PPC440 core interfaces

1.1 PPC440 Processor Core Features

The PPC440 core is a high-performance, low-power consumption engine that implements the flexible and powerful 
Book-E Enhanced PowerPC Architecture.

The PPC440 contains a dual-issue, superscalar, pipelined processing unit, along with other functional elements 
required by embedded ASIC product specifications. These other functions include memory management, cache 
control, timers, and debug facilities. Interfaces for custom co-processors and floating point functions are provided, 
along with separate instruction and data cache array interfaces which can be configured to various sizes 
(optimized for 32KB). The processor local bus (PLB) system interface has been extended to 128 bits and is fully 
compatible with the IBM® CoreConnect on-chip system architecture, providing the framework to efficiently support 
system-on-a-chip (SOC) designs.

In addition, the PPC440 core is a member of the PowerPC 400 Series of advanced embedded processors cores, 
which is supported by the PowerPC Embedded Tools Program. In this program, AMCC and many third party 
vendors offer a full range of robust development tools for embedded applications. Among these are compilers, 
debuggers, real-time operating systems, and logic analyzers.

• High performance, dual-issue, superscalar 32-bit RISC CPU

• Superscalar implementation of the Book-E Enhanced PowerPC Architecture

• Seven stage, highly-pipelined micro-architecture

• Dual instruction fetch, decode, and out-of-order issue

• Out-of-order execution and completion

• High-accuracy dynamic branch prediction utilizing a Branch History Table (BHT)

• Reduced branch latency using Branch Target Address Cache (BTAC)

• Four independent pipelines

• Combined complex integer, system, and branch pipeline

• Simple integer pipeline

• Load/store pipeline

• Floating point unit which is connected in parallel with the other pipelines via the APU.

• Single-cycle multiply

• Single-cycle multiply-accumulate (new DSP instruction set extensions)

• Two replicated 6-port (3 read, 3 write) 32x32-bit general purpose register (GPR) files

• Hardware support for all CPU misaligned accesses

• Full support for both big- and little-endian byte order
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• Extensive power management designed into core for maximum performance/power efficiency

• Primary caches

• 32KB configurable instruction and data cache arrays

• Single-cycle access

• 32-byte (eight word) line size

• Highly associative (64-way for 32KB)

• Write-back and write-through operation

• Control over whether stores will allocate or write-through on cache miss

• Extensive load/store queues and multiple line fill/flush buffers

• Non-blocking with up to four outstanding load misses

• Cache line locking supported

• Caches can be partitioned to provide separate regions for “transient” instructions and data

• High associativity permits efficient allocation of cache memory

• Critical word-first data access and forwarding

• Instruction cache parity

• Word-wide (32-bit) parity on instruction data

• Instruction tag address parity

• Always recoverable

• Ability to force I-cache parity exceptions through software, for testing interrupt handlers

• Data cache parity

• Byte-wide parity on data

• Data tag address parity

• Dirty bit and user bit parity

• Parity detection on cast outs in write-back mode

• Recoverable and semi-recoverable operation modes

• Ability to force D-cache parity exceptions through software, for testing interrupt handlers

• D-cache full-line flush capability

• Whole-line castouts, as opposed to sublines, depending on the memory slave design

• Memory management unit

• Separate 4KB instruction and 8KB data micro-TLBs

• Sixty-four entry, fully associative unified TLB array

• Variable page sizes (1KB–256MB), simultaneously resident in TLB

• Four-bit extended real address for 36-bit (64GB) addressability

• Flexible TLB management with software page table search

• Storage attribute controls for write-through, caching inhibited, guarded, and byte order (endianness)

• Four user-definable storage attribute controls

• UTLB parity

• Word-wide (41-bit and 15-bit) parity on data
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• Tag address parity

• Ability to force UTLB parity exceptions through software, for testing interrupt handlers

• Debug facilities

• Extensive hardware debug facilities incorporated into the IEEE 1149.1 JTAG port

• Multiple instruction and data address break points (including range)

• Data value compare

• Single-step, branch, trap, and other debug events

• Non-invasive real-time software trace interface

• Timer facilities

• 64-bit time base

• Decrementer with auto-reload capability

• Fixed interval timer (FIT)

• Watchdog timer with critical interrupt and/or auto-reset

1.2 The PPC440 Processor as a PowerPC Implementation

The PPC440 implements the full, 32-bit fixed-point subset of the Book-E Enhanced PowerPC Architecture. 
Although it fully complies with these architectural specifications, the 64-bit operations of the architecture are not 
supported, nor the floating point operations. Within the RISC core, the 64-bit operations and the floating point 
operations are trapped, and the floating point operations can be emulated using software.The PPC440 RISC 
processor core is a high-performance, low-cost, low-power engine that implements the flexible and powerful Book-
E Enhanced PowerPC Architecture.

See Appendix A of the Book-E Enhanced PowerPC Architecture specification for more information on 32-bit subset 
implementations of the architecture. 

The PPC440 also provides a number of optimizations and extensions to the lower layers of the Book-E Enhanced 
PowerPC Architecture. Some of the specific implementation features of the PPC440 are simply extensions of the 
Book-E Enhanced PowerPC Architecture. These features are included to enhance performance, integrate 
functionality, and reduce system complexity in embedded control applications.

Note:  This document differs from the Book-E architecture specification in the use of bit numbering for architected 
registers. Specifically, Book-E defines the full, 64-bit instruction set architecture, and thus all registers are shown 
as having bit numbers from 0 to 63, with bit 63 being the least significant. On the other hand, this document 
describes the PPC440, which is a 32-bit subset implementation of the architecture. Accordingly, all architected 
registers are described as being 32 bits in length, with the bits numbered from 0 to 31, and with bit 31 being the 
least significant. Therefore, when this document makes reference to register bit numbers from 0 to 31, they actually 
correspond to bits 32 to 63 of the same register in the Book-E architecture specification.

1.3 PPC440 Organization

The PPC440 includes a seven-stage pipelined PowerPC processor, which consists of a three-stage, dual-issue 
instruction fetch and decode unit with attached branch unit, together with three independent, four-stage pipelines 
for complex integer, simple integer, and load/store operations, respectively. It also includes a memory manage-
ment unit (MMU), separate instruction and data cache units, JTAG, debug, trace logic, and timer facilities. 
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1.3.1 Superscalar Instruction Unit

The instruction unit of the PPC440 fetches, decodes, and issues two instructions per cycle to any combination of 
the three execution pipelines and/or the APU interface. The instruction unit includes a branch unit which provides 
dynamic branch prediction using a branch history table (BHT), as well as a branch target address cache (BTAC). 
These mechanisms greatly improve the branch prediction accuracy and reduce the latency of taken branches, 
such that the target of a branch can usually be executed immediately after the branch itself, with no penalty.

1.3.2 Execution Pipelines

The PPC440 contains three execution pipelines: complex integer, simple integer, and load/store. Each pipeline 
consists of four stages and can access the nine-ported (six read, three write) GPR file. In order to improve 
performance and avoid contention for the GPR file, there are two identical copies of it. One is dedicated to the 
complex integer pipeline, while the other is shared by the simple integer and the load/store pipelines. 

The complex integer pipeline handles all arithmetic, logical, branch, and system management instructions (such as 
interrupt and TLB management, move to/from system registers, and so on). This pipeline also handles multiply and 
divide operations, and 24 instructions that perform a variety of multiply-accumulate operations. The complex 
integer pipeline multiply unit can perform 32-bit × 32-bit multiply operations with single-cycle throughput and three-
cycle latency;16-bit × 32-bit multiply operations have only two-cycle latency. Divide operations take 33 cycles.

The simple integer pipeline can handle most arithmetic and logical operations which do not update the Condition 
Register (CR).

Figure 1-1. PPC440 Core Block Diagram 
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The load/store pipeline handles all load, store, and cache management instructions. All misaligned operations are 
handled in hardware, with no penalty on any operation which is contained within an aligned 16-byte region. The 
load/store pipeline supports all operations to both Big Endian and Little Endian data regions.

See PPC440 Compiler Optimizations on page 455 .

1.3.3 Instruction and Data Cache Controllers

The PPC440 provides separate instruction and data cache controllers and arrays, which allow concurrent access 
and minimize pipeline stalls. The storage capacity of the cache arrays, which can range from 8KB to 32KB each, 
depends upon the implementation. Both cache controllers have 32-byte lines, and both are highly-associative, with 
64-way set-associativity for 32KB and 16KB sizes, and 32-way set-associativity for the 8KB size. Both caches 
support parity checking on the tags and data in the memory arrays, to protect against soft errors. If a parity error is 
detected, the CPU will cause a machine check exception. 

The PowerPC instruction set provides a rich set of cache management instructions for software-enforced 
coherency. The PPC440 core implementation also provides special debug instructions that can directly read the 
tag and data arrays. 

The cache controllers connect through the PLB to the IBM CoreConnect system-on-a-chip environment.

See Instruction and Data Caches on page 71.

1.3.4 Memory Management Unit (MMU)

The  PPC440 supports a flat, 36-bit (64GB) real (physical) address space. This 36-bit real address is generated by 
the MMU, as part of the translation process from the 32-bit effective address, which is calculated by the processor 
core as an instruction fetch or load/store address.

The MMU provides address translation, access protection, and storage attribute control for embedded 
applications. The MMU supports demand paged virtual memory and other management schemes that require 
precise control of logical to physical address mapping and flexible memory protection. Working with appropriate 
system level software, the MMU provides the following functions:

• Translation of the 32-bit effective address space into the 36-bit real address space

• Page level read, write, and execute access control

• Storage attributes for cache policy, byte order (endianness), and speculative memory access

• Software control of page replacement strategy 

See Memory Management on page 103.

1.3.5 Interrupts and Exceptions

An interrupt is the action in which the processor saves its old context (Machine State Register (MSR) and next 
instruction address) and begins execution at a pre-determined interrupt-handler address, with a modified MSR. 
Exceptions are the events that may cause the processor to take an interrupt, if the corresponding interrupt type is 
enabled.

Exceptions may be generated by the execution of instructions, or by signals from devices external to the PPC440, 
the internal timer facilities, debug events, or error conditions.

See Interrupts and Exceptions on page 127.
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1.3.6 Timers

The PPC440 contains a Time Base and three timers: a Decrementer (DEC), a Fixed Interval Timer (FIT), and a 
Watchdog Timer. The Time Base is a 64-bit counter which is incremented at a frequency either equal to the 
processor core clock rate or as controlled by a separate, asynchronous timer clock input to the core. No interrupt is 
generated as a result of the Time Base wrapping back to zero.

The DEC is a 32-bit register that is decremented at the same rate at which the Time Base is incremented. The user 
loads the DEC register with a value to create the desired interval. When the register is decremented to zero, a 
number of actions occur: The DEC stops decrementing, a status bit is set in the Timer Status Register (TSR), and 
a Decrementer exception is reported to the interrupt mechanism of the PPC440. Optionally, the DEC can be 
programmed to reload automatically the value contained in the Decrementer Auto-Reload register (DECAR), after 
which the DEC resumes decrementing. The Timer Control Register (TCR) contains the interrupt enable for the 
Decrementer interrupt.

The FIT generates periodic interrupts based on the transition of a selected bit from the Time Base. Users can 
select one of four intervals for the FIT period by setting a control field in the TCR to select the appropriate bit from 
the Time Base. When the selected Time Base bit changes from 0 to 1, a status bit is set in the TSR and a FIT 
exception is reported to the interrupt mechanism of the PPC440. The FIT interrupt enable is contained in the TCR.

In a manner similar to the FIT, the Watchdog Timer also generates a periodic interrupt based on the transition of a 
selected bit from the Time Base. Users can select one of four intervals for the watchdog period, again by setting a 
control field in the TCR to select the appropriate bit from the Time Base. Upon the first change from 0 to 1 of the 
selected Time Base bit, a status bit is set in the TSR and a Watchdog Timer exception is reported to the interrupt 
mechanism of the PPC440. The Watchdog Timer can also be configured to initiate a hardware reset if a second 
transition of the selected Time Base bit occurs prior to the first Watchdog exception being serviced. This capability 
provides an extra measure of recoverability from potential system lock-ups.

See Timer Facilities on page 173..

1.3.7 Debug Facilities

The debug facilities of the PPC440 include support for several debug modes for debugging during hardware and 
software development, as well as debug events that allow developers to control the debug process. Debug 
registers control the modes and events. The debug registers may be accessed either through software running on 
the processor or through the JTAG debug port of the PPC440. Access to the debug facilities through the JTAG 
debug port is typically provided by a debug tool such as the RISCWatch™ development tool. A trace port, which 
enables the tracing of code running in real time, is also provided.

See Debug Facilities on page 181

1.4 Core Interfaces

Several interfaces to the PPC440x5 core support the IBM CoreConnect on-chip system architecture, which 
simplifies the attachment of on-chip devices. These interfaces include:

• Processor local bus (PLB)
• Device configuration register (DCR) interface
• Auxiliary processor unit (APU) port
• JTAG, debug, and trace ports
• Interrupt interface
• Clock and power management interface

Several of these interfaces are described briefly in the following sections.
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1.4.1 Processor Local Bus (PLB)

There are three independent 128-bit PLB interfaces to the PPC440x5 core. Each of these interfaces includes a 36-
bit address bus and a 128-bit data bus. One PLB interface supports instruction cache reads, while the other two 
support data cache reads and writes, respectively. The frequency of each PLB interface can be independently 
specified, allowing an IBM CoreConnect system in which the interfaces are not all connected as part of the same 
PLB and in which each PLB subsystem operates at its own frequency. Each PLB interface frequency can be 
configured to any value such that the ratio of the processor core frequency to the PLB (core:PLB) is n:1, n:2, or n:3, 
where n is any integer greater than or equal to the denominator of the ratio.

Each of the PLB interfaces supports connection to a PLB subsystem of either 32, 64, or 128 bits. The instruction 
and data cache controllers handle any dynamic data bus resizing which is required when the subsystem data width 
is less than the 128 bits of the PPC440x5 core PLB interfaces.

The data cache PLB interfaces make requests for 32-byte lines, as well as for 1 – 15 bytes within a 16-byte 
(quadword) aligned region. A 16-byte line request is used for quadword APU load operations to caching inhibited 
pages, and for quadword APU store operations to caching inhibited, write-through, or “without allocate” pages.

The instruction cache controller makes 32-byte line read requests, and also presents quadword burst read 
requests for up to three 32-byte lines (six quadwords), as part of its speculative line fill mechanism.

Each of the PLB interfaces fully supports the address pipelining capabilities of the PLB, and in fact can go beyond 
the pipeline depth and minimum latency which the PLB supports. Specifically, each interface supports up to three 
pipelined request/acknowledge sequences prior to performing the data transfers associated with the first request. 
For the data cache, if each of the requests must themselves be broken into three separate transactions (for 
example, for a misaligned doubleword request to a 32-bit PLB slave), then the interface actually supports up to 
nine outstanding request/acknowledge sequences prior to the first data transfer. Furthermore, each PLB interface 
tolerates a zero-cycle latency between the request and the address and data acknowledge (that is, the request, 
address acknowledge, and data acknowledge may all occur in the same cycle).

1.4.2 Device Control Register (DCR) Interface

The DCR interface provides a mechanism for the PPC440 core to setup other on-chip facilities. For example, 
programmable resources in an external bus interface unit may be configured for usage with various memory 
devices according to their transfer characteristics and address assignments. DCRs are accessed through the use 
of the PowerPC mfdcr and mtdcr instructions.

The interface is interlocked with control signals such that it may be connected to peripheral units that may be 
clocked at different frequencies from the processor core. The design allows for future expansion of the non-core 
facilities without changing the I/O on either the PPC440 core or the ASIC peripherals.

The DCR interface also allows the PPC440 core to communicate with peripheral devices without using the PLB 
interface, thereby avoiding the impact to the primary system bus bandwidth, and without additional segmentation of 
the useable address map.

1.4.3 Auxiliary Processor Unit (APU) Interface

The APU interface provides the PPC440 processor with the flexibility for attaching a tightly-coupled coprocessor-
type macro incorporating instructions which go beyond those provided within the processor core itself. The APU 
port provides sufficient functionality for attachment of various coprocessor functions such as a fully-compliant 
PowerPC floating point unit (single or double precision), multimedia engine, DSP, or other custom function 
implementing algorithms appropriate for specific system applications. The APU interface supports dual-issue 
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pipeline designs, and can be used with macros that contain their own register files, or with simpler macros which 
use the CPU GPR file for source and target operands. APU load and store instructions can directly access the 
PPC440 data cache, with operands of up to a quadword (16B) in length.

The APU interface provides the capability for a coprocessor to execute concurrently with the PPC440 core 
instructions that are not part of the PowerPC instruction set. Accordingly, areas have been reserved within the 
architected instruction space to allow for these customer-specific or application-specific APU instruction set 
extensions.

1.4.4 JTAG Port

The PPC440 JTAG port is enhanced to support the attachment of a debug tool such as the RISCWatch product. 
Through the JTAG port, and using the debug facilities designed into the PPC440 core, a debug workstation can 
single-step the processor and interrogate the internal processor state to facilitate hardware and software 
debugging. The enhancements comply with the IEEE 1149.1 specification for vendor-specific extensions, and are  
compatible with standard JTAG hardware for boundaryscan system testing.
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2. Programming Model
The programming model describes how the following features and operations of the processor core appear to 
programmers: 

• Storage addressing (including data types and byte ordering), starting on page 29

• Registers, starting on page 36

• Instruction classes, starting on page 41

• Instruction set, starting on page 44

• Branch processing, starting on page 51

• Integer processing, starting on page 57

• Processor control, starting on page 60

• User and supervisor state, starting on page 65

• Speculative access, starting on page 66

• Synchronization, starting on page 67 

2.1 Storage Addressing
As a 32-bit implementation of the Book-E Enhanced PowerPC Architecture, the PPC440 implements a uniform 32-
bit effective address (EA) space. Effective addresses are expanded into virtual addresses and then translated to 
36-bit (64GB) real addresses by the memory management unit (see Memory Management on page 103 for more 
information on the translation process).

The PPC440 generates an effective address whenever it executes a storage access, branch, cache management, 
or translation look aside buffer (TLB) management instruction, or when it fetches the next sequential instruction.

2.1.1 Storage Operands

Bytes in storage are numbered consecutively starting with 0. Each number is the address of the corresponding 
byte.

Data storage operands accessed by the integer load/store instructions may be bytes, halfwords, words, or—for 
load/store multiple and string instructions—a sequence of words or bytes, respectively. The address of a storage 
operand is the address of its first byte (that is, of its lowest-numbered byte). Byte ordering can be either big endian 
or little endian, as controlled by the endian storage attribute (see Byte Ordering on page 32; also see Endian (E) on 
page 116 for more information on the endian storage attribute).

Operand length is implicit for each scalar storage access instruction type (that is, each storage access instruction 
type other than the load/store multiple and string instructions). The operand of such a scalar storage access 
instruction has a “natural” alignment boundary equal to the operand length. In other words, the ‘natural’ address of 
an operand is an integral multiple of the operand length. A storage operand is said to be aligned if it is aligned at its 
natural boundary: otherwise it is said to be unaligned.
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Data storage operands for storage access instructions have the following characteristics.

The alignment of the operand effective address of some storage access instructions may affect performance, and 
in some cases may cause an Alignment exception to occur. For such storage access instructions, the best 
performance is obtained when the storage operands are aligned. Table 2-2 summarizes the effects of alignment on 
those storage access instruction types for which such effects exist. If an instruction type is not shown in the table, 
then there are no alignment effects for that instruction type. 

Cache management instructions access cache block operands, and for the PPC440 the cache block size is 32 
bytes. However, the effective addresses calculated by cache management instructions are not required to be 
aligned on cache block boundaries. Instead, the architecture specifies that the associated low-order effective 
address bits (bits 27:31 for PPC440) are ignored during the execution of these instructions.

Table 2-1. Data Operand Definitions 

Storage Access Instruction Type Operand Length Addr[28:31] if aligned

Byte (or String)  8 bits 0bxxxx 

Halfword  2 bytes 0bxxx0 

Word (or Multiple)  4 bytes 0bxx00 

Double word (AP only)  8 bytes 0bx000 

Quad word (AP only)  16 bytes 0b0000 

Note:  An “x” in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

Table 2-2. Alignment Effects for Storage Access Instructions  

Storage Access
Instruction Type Alignment Effects

Integer load/store halfword Broken into two byte accesses if crosses 16-byte boundary (EA[28:31] = 0b1111); otherwise no 
effect

Integer load/store word Broken into two accesses if crosses 16-byte boundary (EA[28:31] > 0b1100); otherwise no effect

Integer load/store multiple or string

Broken into a series of 4-byte accesses until the last byte is accessed or a 16-byte boundary is 
reached, whichever occurs first. If bytes remain past a 16-byte boundary, resume accessing 4 
bytes at a time until the last byte is accessed or the next 16-byte boundary is reached, whichever 
occurs first; repeat.

AP load/store halfword Alignment exception if crosses 16-byte boundary (EA[28:31] = 0b1111); otherwise no effect (see 
note)

AP load/store word Alignment exception if crosses 16-byte boundary (EA[28:31] > 0b1100); otherwise no effect (see 
note)

AP load/store doubleword Alignment exception if crosses 16-byte boundary (EA[28:31] > 0b1000); otherwise no effect (see 
note)

AP load/store quadword Alignment exception if crosses 16-byte boundary (EA[28:31] ≠ 0b0000); otherwise no effect

Note: An auxiliary processor can specify that the EA for a given AP load/store instruction must be aligned at the 
operand-size boundary, or alternatively, at a word boundary. If the AP so indicates this requirement and the 
calculated EA fails to meet it, the PPC440 generates an Alignment exception. Alternatively, an auxiliary 
processor can specify that the EA for a given AP load/store instruction should be “forced” to be aligned, by 
ignoring the appropriate number of low-order EA bits and processing the AP load/store as if those bits were 0. 
Byte, halfword, word, doubleword, and quadword AP load/store instructions would ignore 0, 1, 2, 3, and 4 low-
order EA bits, respectively.
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Similarly, the TLB management instructions access page operands, and—as determined by the page size—the 
associated low-order effective address bits are ignored during the execution of these instructions.

Instruction storage operands, on the other hand, are always four bytes long, and the effective addresses calculated 
by Branch instructions are therefore always word-aligned.

2.1.2 Effective Address Calculation

For a storage access instruction, if the sum of the effective address and the operand length exceeds the maximum 
effective address of 232–1 (that is, the storage operand itself crosses the maximum address boundary), the result 
of the operation is undefined, as specified by the architecture. The PPC440 performs the operation as if the 
storage operand wrapped around from the maximum effective address to effective address 0. Software, however, 
should not depend upon this behavior, so that it may be ported to other implementations that do not handle this 
scenario in the same fashion. Accordingly, software should ensure that no data storage operands cross the 
maximum address boundary. 

Note that since instructions are words and since the effective addresses of instructions are always implicitly on 
word boundaries, it is not possible for an instruction storage operand to cross any word boundary, including the 
maximum address boundary.

Effective address arithmetic, which calculates the starting address for storage operands, wraps around from the 
maximum address to address 0, for all effective address computations except next sequential instruction fetching. 
See Instruction Storage Addressing Modes on page 31 for more information on next sequential instruction fetching 
at the maximum address boundary.

2.1.2.1 Data Storage Addressing Modes

There are two data storage addressing modes supported by the PPC440:

• Base + displacement (D-mode) addressing mode:

The 16-bit D field is sign-extended and added to the contents of the GPR designated by RA or to zero if 
RA = 0; the low-order 32 bits of the sum form the effective address of the data storage operand.

• Base + index (X-mode) addressing mode:

The contents of the GPR designated by RB (or the value 0 for lswi and stswi) are added to the contents of the 
GPR designated by RA, or to 0 if RA = 0; the low-order 32 bits of the sum form the effective address of the data 
storage operand.

2.1.2.2 Instruction Storage Addressing Modes

There are four instruction storage addressing modes supported by the PPC440:

• I-form branch instructions (unconditional):

The 24-bit LI field is concatenated on the right with 0b00, sign-extended, and then added to either the address 
of the branch instruction if AA=0, or to 0 if AA=1; the low-order 32 bits of the sum form the effective address of 
the next instruction.

• Taken B-form branch instructions:

The 14-bit BD field is concatenated on the right with 0b00, sign-extended, and then added to either the 
address of the branch instruction if AA=0, or to 0 if AA=1; the low-order 32 bits of the sum form the effective 
address of the next instruction.

• Taken XL-form branch instructions:
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The contents of bits 0:29 of the Link Register (LR) or the Count Register (CTR) are concatenated on the right 
with 0b00 to form the 32-bit effective address of the next instruction.

• Next sequential instruction fetching (including non-taken branch instructions):

The value 4 is added to the address of the current instruction to form the 32-bit effective address of the next 
instruction. If the address of the current instruction is 0xFFFFFFFC, the PPC440 wraps the next sequential 
instruction address back to address 0. This behavior is not required by the architecture, which specifies that 
the next sequential instruction address is undefined under these circumstances. Therefore, software should 
not depend upon this behavior, so that it may be ported to other implementations that do not handle this sce-
nario in the same fashion. Accordingly, if software wishes to execute across this maximum address boundary 
and wrap back to address 0, it should place an unconditional branch at the boundary, with a displacement of 4.

In addition to the above four instruction storage addressing modes, the following behavior applies to branch 
instructions:

• Any branch instruction with LK=1:

The value 4 is added to the address of the current instruction and the low-order 32 bits of the result are placed 
into the LR. As for the similar scenario for next sequential instruction fetching, if the address of the branch 
instruction is 0xFFFF FFFC, the result placed into the LR is architecturally undefined, although once again the 
PPC440 wraps the LR update value back to address 0. Again, however, software should not depend on this 
behavior, in order that it may be ported to implementations which do not handle this scenario in the same fash-
ion.

2.1.3 Byte Ordering

If scalars (individual data items and instructions) were indivisible, there would be no such concept as “byte 
ordering.” It is meaningless to consider the order of bits or groups of bits within the smallest addressable unit of 
storage, because nothing can be observed about such order. Only when scalars, which the programmer and 
processor regard as indivisible quantities, can comprise more than one addressable unit of storage does the 
question of order arise.

For a machine in which the smallest addressable unit of storage is the 64-bit doubleword, there is no question of 
the ordering of bytes within doublewords. All transfers of individual scalars between registers and storage are of 
doublewords, and the address of the byte containing the high-order eight bits of a scalar is no different from the 
address of a byte containing any other part of the scalar.

For the Book-E Enhanced PowerPC Architecture, as for most current computer architectures, the smallest 
addressable unit of storage is the 8-bit byte. Many scalars are halfwords, words, or doublewords, which consist of 
groups of bytes. When a word-length scalar is moved from a register to storage, the scalar occupies four 
consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte addresses with respect to 
the value of the scalar: which byte contains the highest-order eight bits of the scalar, which byte contains the next-
highest-order eight bits, and so on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essentially arbitrary. There are 4! = 24 
ways to specify the ordering of four bytes within a word, but only two of these orderings are sensible:

• The ordering that assigns the lowest address to the highest-order (“left-most”) eight bits of the scalar, the next 
sequential address to the next-highest-order eight bits, and so on.

This ordering is called big endian because the “big end” (most-significant end) of the scalar, considered as a 
binary number, comes first in storage. IBM RISC System/6000, IBM System/390, and Motorola 680x0 are 
examples of computer architectures using this byte ordering.

• The ordering that assigns the lowest address to the lowest-order (“right-most”) eight bits of the scalar, the next 
sequential address to the next-lowest-order eight bits, and so on.
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This ordering is called little endian because the “little end” (least-significant end) of the scalar, considered as a 
binary number, comes first in storage. The Intel x86 is an example of a processor architecture using this byte 
ordering.

PowerPC Book-E supports both big endian and little endian byte ordering, for both instruction and data storage 
accesses. Which byte ordering is used is controlled on a memory page basis by the endian (E) storage attribute, 
which is a field within the TLB entry for the page. The endian storage attribute is set to 0 for a big endian page, and 
is set to 1 for a little endian page. See Memory Management on page 103 for more information on memory pages, 
the TLB, and storage attributes, including the endian storage attribute.

2.1.3.1 Structure Mapping Examples

The following C language structure, s, contains an assortment of scalars and a character string. The comments 
show the value assumed to be in each structure element; these values show how the bytes comprising each 
structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 doubleword */
char *c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on desirable boundaries. The 
structure mapping examples below show each scalar aligned at its natural boundary. This alignment introduces 
padding of four bytes between a and b, one byte between d and e, and two bytes between e and f. The same 
amount of padding is present in both big endian and little endian mappings.

Big Endian Mapping    

The big endian mapping of structure s follows (the data is highlighted in the structure mappings). Addresses, in 
hexadecimal, are below the data stored at the address. The contents of each byte, as defined in structure s, is 
shown as a (hexadecimal) number or character (for the string elements). The shaded cells correspond to padded 
bytes.

11 12 13 14
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

21 22 23 24 25 26 27 28
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

31 32 33 34 'A' 'B' 'C' 'D'
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 51 52
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
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Little Endian Mapping

Structure s is shown mapped little endian.

2.1.3.2 Instruction Byte Ordering

PowerPC Book-E defines instructions as aligned words (four bytes) in memory. As such, instructions in a big 
endian program image are arranged with the most-significant byte (MSB) of the instruction word at the lowest-
numbered address.

Consider the big endian mapping of instruction p at address 0x00, where, for example, p = add r7, r7, r4:

On the other hand, in a little endian mapping the same instruction is arranged with the least-significant byte (LSB) 
of the instruction word at the lowest-numbered address:

By the definition of PowerPC Book-E bit numbering, the most-significant byte of an instruction is the byte 
containing bits 0:7 of the instruction. As depicted in the instruction format diagrams (see Instruction Formats on 
page 210), this most-significant byte is the one which contains the primary opcode field (bits 0:5). Due to this 
difference in byte orderings, the processor must perform whatever byte reversal is required (depending on the 
particular byte ordering in use) in order to correctly deliver the opcode field to the instruction decoder. In the 
PPC440, this reversal is performed between the memory interface and the instruction cache, according to the 
value of the endian storage attribute for each memory page, such that the bytes in the instruction cache are always 
correctly arranged for delivery directly to the instruction decoder.

If the endian storage attribute for a memory page is reprogrammed from one byte ordering to the other, the 
contents of the memory page must be reloaded with program and data structures that are in the appropriate byte 
ordering. Furthermore, anytime the contents of instruction memory change, the instruction cache must be made 
coherent with the updates by invalidating the instruction cache and refetching the updated memory contents with 
the new byte ordering.

2.1.3.3 Data Byte Ordering

Unlike instruction fetches, data accesses cannot be byte-reversed between memory and the data cache. Data byte 
ordering in memory depends upon the data type (byte, halfword, word, and so on) of a specific data item. It is only 
when moving a data item of a specific type from or to an architected register (as directed by the execution of a 

14 13 12 11
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

34 33 32 31 'A' 'B' 'C' 'D'
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 52 51
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

64 63 62 61
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

MSB LSB

0x00 0x01 0x02 0x03

LSB MSB

0x00 0x01 0x02 0x03
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particular storage access instruction) that it becomes known what kind of byte reversal may be required due to the 
byte ordering of the memory page containing the data item. Therefore, byte reversal during load or store accesses 
is performed between data cache (or memory, on a data cache miss, for example) and the load register target or 
store register source, depending on the specific type of load or store instruction (that is, byte, halfword, word, and 
so on). 

Comparing the big endian and little endian mappings of structure s, as shown in Structure Mapping Examples on 
page 33, the differences between the byte locations of any data item in the structure depends upon the size of the 
particular data item. For example (again referring to the big endian and little endian mappings of structure s):

• The word a has its four bytes reversed within the word spanning addresses 0x00 – 0x03.

• The halfword e has its two bytes reversed within the halfword spanning addresses 0x1C – 0x1D.

Note that the array of bytes d, where each data item is a byte, is not reversed when the big endian and little endian 
mappings are compared. For example, the character 'A' is located at address 0x14 in both the big endian and little 
endian mappings.

The size of the data item being loaded or stored must be known before the processor can decide whether, and if 
so, how to reorder the bytes when moving them between a register and the data cache (or memory).

• For byte loads and stores, including strings, no reordering of bytes occurs, regardless of byte ordering.

• For halfword loads and stores, bytes are reversed within the halfword, for one byte order with respect to the 
other.

• For word loads and stores (including load/store multiple), bytes are reversed within the word, for one byte order 
with respect to the other.

• For doubleword loads and stores (AP loads/stores only), bytes are reversed within the doubleword, for one 
byte order with respect to the other.

• For quadword loads and stores (AP loads/stores only), bytes are reversed within the quadword, for one byte 
order with respect to the other.

Note that this mechanism applies independent of the alignment of data. In other words, when loading a multi-byte 
data operand with a scalar load instruction, bytes are accessed from the data cache (or memory) starting with the 
byte at the calculated effective address and continuing with consecutively higher-numbered bytes until the required 
number of bytes have been retrieved. Then, the bytes are arranged such that either the byte from the highest-
numbered address (for big endian storage regions) or the lowest-numbered address (for little endian storage 
regions) is placed into the least-significant byte of the register. The rest of the register is filled in corresponding 
order with the rest of the accessed bytes. An analogous procedure is followed for scalar store instructions.

For load/store multiple instructions, each group of four bytes is transferred between memory and the register 
according to the procedure for a scalar load word instruction.

For load/store string instructions, the most-significant byte of the first register is transferred to or from memory at 
the starting (lowest-numbered) effective address, regardless of byte ordering. Subsequent register bytes (from 
most-significant to least-significant, and then moving into the next register, starting with the most-significant byte, 
and so on) are transferred to or from memory at sequentially higher-numbered addresses. This behavior for byte 
strings ensures that if two strings are loaded into registers and then compared, the first bytes of the strings are 
treated as most significant with respect to the comparison.

2.1.3.4 Byte-Reverse Instructions

PowerPC Book-E defines load/store byte-reverse instructions which can access storage which is specified as 
being of one byte ordering in the same manner that a regular (that is, non-byte-reverse) load/store instruction 
would access storage which is specified as being of the opposite byte ordering. In other words, a load/store byte-
reverse instruction to a big endian memory page transfers data between the data cache (or memory) and the 
register in the same manner that a normal load/store would transfer the data to or from a little endian memory 
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page. Similarly, a load/store byte-reverse instruction to a little endian memory page transfers data between the 
data cache (or memory) and the register in the same manner that a normal load/store would transfer the data to or 
from a big endian memory page.

The function of the load/store byte-reverse instructions is useful when a particular memory page contains a 
combination of data with both big endian and little endian byte ordering. In such an environment, the Endian 
storage attribute for the memory page would be set according to the predominant byte ordering for the page, and 
the normal load/store instructions would be used to access data operands which used this predominant byte 
ordering. Conversely, the load/store byte-reverse instructions would be used to access the data operands which 
were of the other (less prevalent) byte ordering.

Software compilers cannot typically make general use of the load/store byte-reverse instructions, so they are 
ordinarily used only in special, hand-coded device drivers.

2.2 Registers
This section provides an overview of the register categories and types provided by the PPC440. Detailed 
descriptions of each of the registers are provided within the chapters covering the functions with which they are 
associated (for example, the cache control and cache debug registers are described in Instruction and Data 
Caches on page 71). An alphabetical summary of all registers is provided in Register Summary on page 403

All registers in the PPC440 are 32 bits wide, although certain bits in some registers are reserved and thus not 
necessarily implemented. For all registers with fields marked as reserved, these reserved fields should be written 
as 0 and read as undefined. The recommended coding practice is to perform the initial write to a register with 
reserved fields set to 0, and to perform all subsequent writes to the register using a read-modify-write strategy: 
read the register; use logical instructions to alter defined fields, leaving reserved fields unmodified; and write the 
register.

All of the registers are grouped into categories according to the processor functions with which they are 
associated. In addition, each register is classified as being of a particular type, as characterized by the specific 
instructions which are used to read and write registers of that type. Finally, most of the registers contained within 
the PPC440 are defined by the Book-E Enhanced PowerPC Architecture, although some registers are 
implementation-specific and unique to the PPC440. 

Figure 2-1 illustrates the PPC440 registers contained in the user programming model, that is, those registers to 
which access is non-privileged and which are available to both user and supervisor programs.
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Figure 2-2 on page 38 illustrates the PPC440 registers contained in the supervisor programming model, to which 
access is privileged and which are available to supervisor programs only. See User and Supervisor Modes on 
page 65 for more information on privileged instructions and register access, and the user and supervisor 
programming models.

Figure 2-1. User Programming Model Registers 
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Figure 2-2. Supervisor Programming Model Registers 
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MMU Control Register

MMUCR

PIR

Processor ID Register

IVOR0

IVOR15

Interrupt Vector Offset Registers

Decrementer

DEC

Decrementer Auto-Reload

DECAR

Cache Control

Instruction Cache Debug Tag Registers

ICDBTRH

ICDBTRL

Data Cache Debug Tag Registers

DCDBTRH

DCDBTRL

INV0

INV1

INV2

INV3

Instruction Cache Normal Victim

ITV0

ITV1

ITV2

ITV3

Instruction Cache Transient Victim

DNV0

DNV1

DNV2

DNV3

Data Cache Normal Victim

DTV0

DTV1

DTV2

DTV3

Data Cache Transient Victim

SPRG0

SPRG7

•
•
•

Debug Data Register

DBDR

DBCR2
Instruction Cache Victim Limit

IVLIM

Data Cache Victim Limit

DVLIM
Critical Save/Restore Registers

Cache Debug

•
•
•

Reset Configuration

RSTCFG

MCSRR0

MCSRR1

Machine Check Save/Restore Registers

Exception Syndrome Register

ESR
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Table 2-3 lists each register category and the registers that belong to each category, along with their types and a 
cross-reference to the section of this document which describes them more fully. Registers that are not part of 
PowerPC Book-E, and are thus specific to the PPC440, are shown in italics in Table 2-3. Unless otherwise 
indicated, all registers have read/write access.

Table 2-3. Register Categories  

Register Category Register(s) Model and Access Type Page

Branch Control

CR User CR 54

CTR User SPR 54

LR User SPR 53

Cache Control

DNV0–DNV3 Supervisor SPR 72

DTV0–DTV3 Supervisor SPR 72

DVLIM Supervisor SPR 74

INV0–INV3 Supervisor SPR 72

ITV0–ITV3 Supervisor SPR 72

IVLIM Supervisor SPR 74

Cache Debug
DCDBTRH, DCDBTRL Supervisor, read-only SPR 96

ICDBDR, ICDBTRH, ICDBTRL Supervisor, read-only SPR 83

Debug

DAC1–DAC2 Supervisor SPR 206

DBCR0–DBCR2 Supervisor SPR 201

DBDR Supervisor SPR 207

DBSR Supervisor SPR 205

DVC1–DVC2 Supervisor SPR 206

IAC1–IAC4 Supervisor SPR 206

Device Control Implemented outside core Supervisor DCR 41

Integer Processing
GPR0–GPR31 User GPR 57

XER User SPR 57

Interrupt Processing

CSRR0–CSRR1 Supervisor SPR 135

DEAR Supervisor SPR 136

ESR Supervisor SPR 138

IVOR0–IVOR15 Supervisor SPR 137

IVPR Supervisor SPR 138

MCSR Supervisor SPR 140

MCSRR0-MCSRR1 Supervisor SPR 135

SRR0–SRR1 Supervisor SPR 134
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2.2.1 Register Types

There are five register types contained within and/or supported by the PPC440. Each register type is characterized 
by the instructions which are used to read and write the registers of that type. The following subsections provide an 
overview of each of the register types and the instructions associated with them.

2.2.1.1 General Purpose Registers

The PPC440 contains 32 integer general purpose registers (GPRs); each contains 32 bits. Data from the data 
cache or memory can be loaded into GPRs using integer load instructions; the contents of GPRs can be stored to 
the data cache or memory using integer store instructions. Most of the integer instructions reference GPRs. The 
GPRs are also used as targets and sources for most of the instructions which read and write the other register 
types.

Integer Processing on page 57 provides more information on integer operations and the use of GPRs.

2.2.1.2 Special Purpose Registers

Special Purpose Registers (SPRs) are directly accessed using the mtspr and mfspr instructions. In addition, 
certain SPRs may be updated as a side-effect of the execution of various instructions. For example, the Integer 
Exception Register (XER) (see Integer Exception Register (XER) on page 57) is an SPR which is updated with 
arithmetic status (such as carry and overflow) upon execution of certain forms of integer arithmetic instructions.

SPRs control the use of the debug facilities, timers, interrupts, memory management, caches, and other 
architected processor resources. Table 9-1 on page 403 shows the mnemonic, name, and number for each SPR, 
in order by SPR number. Each of the SPRs is described in more detail within the section or chapter covering the 
function with which it is associated. See Table 2-3 on page 39 for a cross-reference to the associated document 
section for each register.

Processor Control

CCR0 Supervisor SPR 83

CCR1 Supervisor SPR 83

MSR Supervisor MSR 133

PIR, PVR Supervisor, read-only SPR 60

RSTCFG Supervisor, read-only SPR 65

SPRG0–SPRG3 Supervisor SPR 60

SPRG4–SPRG7 User, read-only; Supervisor SPR 60

USPRG0 User SPR 60

Storage Control
MMUCR Supervisor SPR 117

PID Supervisor SPR 120

Timer

DEC Supervisor SPR 175

DECAR Supervisor, write-only SPR 175

TBL, TBU User read, Supervisor write SPR 174

TCR Supervisor SPR 178

TSR Supervisor SPR 179

Table 2-3. Register Categories (continued) 

Register Category Register(s) Model and Access Type Page
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2.2.1.3 Condition Register

The Condition Register (CR) is a 32-bit register of its own unique type and is divided up into eight, independent 4-
bit fields (CR0–CR7). The CR may be used to record certain conditional results of various arithmetic and logical 
operations. Subsequently, conditional branch instructions may designate a bit of the CR as one of the branch 
conditions (see Branch Processing on page 51). Instructions are also provided for performing logical bit operations 
and for moving fields within the CR.

See Condition Register (CR) on page 54 for more information on the various instructions which can update the CR.

2.2.1.4 Machine State Register

The Machine State Register (MSR) is a register of its own unique type that controls important chip functions, such 
as the enabling or disabling of various interrupt types.

The MSR can be written from a GPR using the mtmsr instruction. The contents of the MSR can be read into a 
GPR using the mfmsr instruction. The MSR[EE] bit can be set or cleared atomically using the wrtee or wrteei 
instructions. The MSR contents are also automatically saved, altered, and restored by the interrupt-handling 
mechanism. See Machine State Register (MSR) on page 133 for more detailed information on the MSR and the 
function of each of its bits.

2.2.1.5 Device Control Registers

DCRs may be used to control various on-chip system functions, such as the operation of on-chip buses, 
peripherals, and certain processor core behaviors. The DCR access instructions are mtdcr (move to device control 
register) and mfdcr (move from device control register), which move data between GPRs and the DCRs.

Some DCRs are directly accessed, that is, they are accessed using their DCR numbers. Other DCRs are indirectly 
accessed. Such DCRs are accessed by writing an offset to a directly accessed DCR and then reading the data at 
the offset in another directly accessed DCR.

2.2.1.6 Memory Mapped Registers

Some registers associated with on-chip peripherals are memory-mapped input/output (MMIO) registers. Such 
registers are mapped into the system memory space and are accessed using load/store instructions that 
contain the register addresses. 

2.3 Instruction Classes
PowerPC Book-E architecture defines all instructions as falling into exactly one of the following four classes, as 
determined by the primary opcode (and the extended opcode, if any):

1. Defined

2. Allocated

3. Preserved

4. Reserved (illegal or nop)

2.3.1 Defined Instruction Class

This class of instructions consists of all the instructions defined in PowerPC Book-E. In general, defined 
instructions are guaranteed to be supported within a PowerPC Book-E system as specified by the architecture, 
either within the processor implementation itself or within emulation software supported by the system operating 
software.
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One exception to this is that, for implementations (such as the PPC440) that only provide the 32-bit subset of 
PowerPC Book-E, it is not expected (and likely not even possible) that emulation of the 64-bit behavior of the 
defined instructions will be provided by the system.

As defined by PowerPC Book-E, any attempt to execute a defined instruction will:

• Cause an Illegal Instruction exception type Program interrupt, if the instruction is not recognized by the imple-
mentation; or

• Cause an Unimplemented Instruction exception type Program interrupt, if the instruction is recognized by the 
implementation and is not a floating-point instruction, but is not supported by the implementation; or

• Cause a Floating-Point Unavailable interrupt if the instruction is recognized as a floating-point instruction, but 
floating-point processing is disabled; or

• Cause an Unimplemented Instruction exception type Program interrupt, if the instruction is recognized as a 
floating-point instruction and floating-point processing is enabled, but the instruction is not supported by the 
implementation; or

• Perform the actions described in the rest of this document, if the instruction is recognized and supported by the 
implementation. The architected behavior may cause other exceptions.

The PPC440 recognizes and fully supports all of the instructions in the defined class, with a few exceptions. First, 
because the PPC440 is a 32-bit implementation, those operations which are defined specifically for 64-bit 
operation are not supported at all, and will always cause an Illegal Instruction exception type Program interrupt.

Second, instructions that are defined for floating-point processing may be implemented within an auxiliary 
processor and attached to the core using the AP interface. If no such auxiliary processor is attached, attempting to 
execute any floating-point instructions will cause an Illegal Instruction exception type Program interrupt. If an 
auxiliary processor which supports the floating-point instructions is attached, the behavior of these instructions is 
as defined above and as determined by the implementation details of the floating-point auxiliary processor.

Finally, there are two other defined instructions which are not supported within the PPC440. One is a TLB 
management instruction (tlbiva, TLB Invalidate Virtual Address) that is specifically intended for coherent 
multiprocessor systems. The other is mfapidi (Move From Auxiliary Processor ID Indirect), which is a special 
instruction intended to assist with identification of the auxiliary processors which may be attached to a particular 
processor implementation. Since the PPC440 does not support mfapidi, the means of identifying the auxiliary 
processors in a PPC440-based system are implementation-dependent. Execution of either tlbiva or mfapidi will 
cause an Illegal Instruction exception type Program interrupt.

2.3.2 Allocated Instruction Class

This class of instructions contains a set of primary opcodes, as well as extended opcodes for certain primary 
opcodes. The specific opcodes are listed in Appendix A.3 on page 445.

Allocated instructions are provided for purposes that are outside the scope of PowerPC Book-E, and are for 
implementation-dependent and application-specific use, including use within auxiliary processors.

PowerPC Book-E declares that any attempt to execute an allocated instruction results in one of the following 
effects:

• Causes an Illegal Instruction exception type Program interrupt, if the instruction is not recognized by the imple-
mentation

• Causes an Auxiliary Processor Unavailable interrupt if the instruction is recognized by the implementation, but 
allocated instruction processing is disabled

• Causes an Unimplemented Instruction exception type Program interrupt, if the instruction is recognized and 
allocated instruction processing is enabled, but the instruction is not supported by the implementation
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• Perform the actions described for the particular implementation of the allocated instruction. The implementa-
tion-dependent behavior may cause other exceptions.

In addition to supporting the defined instructions of PowerPC Book-E, the PPC440 also implements a number of 
instructions which use the allocated instruction opcodes, and thus are not part of the PowerPC Book-E 
architecture. Table 2-21 on page 50 identifies the allocated instructions that are implemented within the PPC440. 
All of these instructions are always enabled and supported, and thus they always perform the functions defined for 
them within this document, and never cause Illegal Instruction, Auxiliary Processor Unavailable, nor 
Unimplemented Instruction exceptions.

The PPC440 also supports the use of any of the allocated opcodes by an attached auxiliary processor, except for 
those allocated opcodes which have been implemented within the PPC440, as mentioned above. Also, there is 
one other allocated opcode (primary opcode 31, secondary opcode 262) that has been implemented within the 
PPC440 and is thus not available for use by an attached auxiliary processor. This is the opcode which was used on 
previous PowerPC 400 Series embedded controllers for the icbt (Instruction Cache Block Touch) instruction. The 
icbt instruction is now part of the defined instruction class for PowerPC Book-E, and uses a new opcode (primary 
opcode 31, secondary opcode 22). The PPC440 implements the new defined opcode, but also continues to 
support the previous opcode, in order to support legacy software written for earlier PowerPC 400 Series 
implementations. The icbt instruction description in Instruction Set on page 209 only identifies the defined opcode, 
although Appendix A Instruction Summary on page 411 includes both the defined and the allocated opcode in the 
table which lists all the instructions by opcode. In order to ensure portability between the PPC440 and future 
PowerPC Book-E implementations, software should take care to only use the defined opcode for icbt, and avoid 
usage of the previous opcode which is now in the allocated class.

2.3.3 Preserved Instruction Class

The preserved instruction class is provided to support backward compatibility with the PowerPC Architecture, 
and/or earlier versions of the PowerPC Book-E architecture. This instruction class includes opcodes which were 
defined for these previous architectures, but which are no longer defined for PowerPC Book-E.

Any attempt to execute a preserved instruction results in one of the following effects:

• Performs the actions described in the previous version of the architecture, if the instruction is recognized by the 
implementation

• Causes an Illegal Instruction exception type Program interrupt, if the instruction is not recognized by the imple-
mentation.

The only preserved instruction recognized and supported by the PPC440 is the mftb (Move From Time Base) 
opcode. This instruction was used in the PowerPC Architecture to read the Time Base Upper (TBU) and Time 
Base Lower (TBL) registers. PowerPC Book-E architecture instead defines TBU and TBL as Special Purpose 
Registers (SPRs), and thus the mfspr (Move From Special Purpose Register) instruction is used to read them. In 
order to enable legacy time base management software to be run on the PPC440, the processor core also 
supports the preserved opcode of mftb. However, the mftb instruction is not included in the various sections of this 
document that describe the implemented instructions, and software should take care to use the currently 
architected mechanism of mfspr to read the time base registers, in order to guarantee portability between the 
PPC440 and future implementations of PowerPC Book-E. 

On the other hand, Appendix A Instruction Summary on page 411 does identify the mftb instruction as an 
implemented preserved opcode in the table which lists all the instructions by opcode.

2.3.4 Reserved Instruction Class

This class of instructions consists of all instruction primary opcodes (and associated extended opcodes, if 
applicable) which do not belong to either the defined, allocated, or preserved instruction classes.
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Reserved instructions are available for future versions of PowerPC Book-E architecture. That is, future versions of 
PowerPC Book-E may define any of these instructions to perform new functions or make them available for 
implementation-dependent use as allocated instructions. There are two types of reserved instructions: reserved-
illegal and reserved-nop.

Any attempt to execute a reserved-illegal instruction will cause an Illegal Instruction exception type Program 
interrupt. Reserved-illegal instructions are, therefore, available for future extensions to PowerPC Book-E that 
would affect architected state. Such extensions might include new forms of integer or floating-point arithmetic 
instructions, or new forms of load or store instructions that affect architected registers or the contents of memory.

Any attempt to execute a reserved-nop instruction, on the other hand, either has no effect (that is, is treated as a 
no-operation instruction), or causes an Illegal Instruction exception type Program interrupt. Because 
implementations are typically expected to treat reserved-nop instructions as true no-ops, these instruction opcodes 
are thus available for future extensions to PowerPC Book-E which have no effect on architected state. Such 
extensions might include performance-enhancing hints, such as new forms of cache touch instructions. Software 
would be able to take advantage of the functionality offered by the new instructions, and still remain backwards-
compatible with implementations of previous versions of PowerPC Book-E.

The PPC440 implements all of the reserved-nop instruction opcodes as true no-ops. The specific reserved-nop 
opcodes are listed in Appendix A.5 on page 446

2.4 Implemented Instruction Set Summary
This section provides an overview of the various types and categories of instructions implemented within the 
PPC440. In addition, Instruction Set on page 209 provides a complete alphabetical listing of every implemented 
instruction, including its register transfer language (RTL) and a detailed description of its operation. Also, 
Appendix A Instruction Summary on page 411 lists each implemented instruction alphabetically (and by opcode) 
along with a short-form description and its extended mnemonic(s).

Table 2-4 summarizes the PPC440 instruction set by category. Instructions within each category are described in 
subsequent sections. 

Table 2-4. Instruction Categories  

Category Subcategory Instruction Types

Integer

Integer Storage Access load, store

Integer Arithmetic add, subtract, multiply, divide, negate

Integer Logical and, andc, or, orc, xor, nand, nor, xnor, extend sign, count leading 
zeros

Integer Compare compare, compare logical

Integer Select select operand

Integer Trap trap

Integer Rotate rotate and insert, rotate and mask

Integer Shift shift left, shift right, shift right algebraic

Branch branch, branch conditional, branch to link, branch to count
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2.4.1 Integer Instructions

Integer instructions transfer data between memory and the GPRs, and perform various operations on the GPRs. 
This category of instructions is further divided into seven sub-categories, described below.

2.4.1.1 Integer Storage Access Instructions

Integer storage access instructions load and store data between memory and the GPRs. These instructions 
operate on bytes, halfwords, and words. Integer storage access instructions also support loading and storing 
multiple registers, character strings, and byte-reversed data, and loading data with sign-extension.

Table 2-5 shows the integer storage access instructions in the PPC440. In the table, the syntax “[u]” indicates that 
the instruction has both an “update” form (in which the RA addressing register is updated with the calculated 
address) and a “non-update” form. Similarly, the syntax “[x]” indicates that the instruction has both an “indexed” 
form (in which the address is formed by adding the contents of the RA and RB GPRs) and a “base + displacement” 
form (in which the address is formed by adding a 16-bit signed immediate value (specified as part of the 
instruction) to the contents of GPR RA. See the detailed instruction descriptions in Instruction Set on page 209.  

Processor Control

Condition Register Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor

Register Management move to/from SPR, move to/from DCR, move to/from MSR, write to 
external interrupt enable bit, move to/from CR

System Linkage system call, return from interrupt, return from critical interrupt, 
return from machine check interrupt

Processor Synchronization instruction synchronize

Storage Control

Cache Management data allocate, data invalidate, data touch, data zero, data flush, 
data store, instruction invalidate, instruction touch

TLB Management read, write, search, synchronize

Storage Synchronization memory synchronize, memory barrier

Allocated

Allocated Arithmetic multiply-accumulate, negative multiply-accumulate, multiply half-
word

Allocated Logical detect left-most zero byte

Allocated Cache Management data congruence-class invalidate, instruction congruence-class 
invalidate

Allocated Cache Debug data read, instruction read

Table 2-5. Integer Storage Access Instructions  
Loads Stores

Byte Halfword Word Multiple/String Byte Halfword Word Multiple/String

lbz[u][x]
lha[u][x]
lhbrx
lhz[u][x]

lwarx
lwbrx
lwz[u][x]

lmw
lswi
lswx

stb[u][x]
sth[u][x]
sthbrx

stw[u][x]
stwbrx
stwcx.

stmw
stswi
stswx

Table 2-4. Instruction Categories (continued) 

Category Subcategory Instruction Types
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2.4.1.2 Integer Arithmetic Instructions

Arithmetic operations are performed on integer or ordinal operands stored in registers. Instructions that perform 
operations on two operands are defined in a three-operand format; an operation is performed on the operands, 
which are stored in two registers. The result is placed in a third register. Instructions that perform operations on one 
operand are defined in a two-operand format; the operation is performed on the operand in a register and the result 
is placed in another register. Several instructions also have immediate formats in which one of the source 
operands is a field in the instruction.

Most integer arithmetic instructions have versions that can update CR[CR0] and/or XER[SO, OV] (Summary 
Overflow, Overflow), based on the result of the instruction. Some integer arithmetic instructions also update 
XER[CA] (Carry) implicitly. See Integer Processing on page 57 for more information on how these instructions 
update the CR and/or the XER.

Table 2-6 lists the integer arithmetic instructions in the PPC440. In the table, the syntax “[o]” indicates that the 
instruction has both an “o” form (which updates the XER[SO,OV] fields) and a “non-o” form. Similarly, the syntax 
“[.]” indicates that the instruction has both a “record” form (which updates CR[CR0]) and a “non-record” form.  

2.4.1.3 Integer Logical Instructions

Table 2-7 lists the integer logical instructions in the PPC440. See Integer Arithmetic Instructions on page 46 for an 
explanation of the “[.]” syntax.  

2.4.1.4 Integer Compare Instructions

These instructions perform arithmetic or logical comparisons between two operands and update the CR with the 
result of the comparison.

Table 2-8 lists the integer compare instructions in the PPC440.

Table 2-6. Integer Arithmetic Instructions  
Add Subtract Multiply Divide Negate

add[o][.]
addc[o][.]
adde[o][.]
addi
addic[.]
addis
addme[o][.]
addze[o][.]

subf[o][.]
subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

mulhw[.]
mulhwu[.]
mulli
mullw[o][.]

divw[o][.]
divwu[o][.] neg[o][.]

Table 2-7. Integer Logical Instructions  

And And with
complement Nand Or Or with

complement Nor Xor Equivalence Extend sign
Count

Leading
zeros

and[.] 
andi.
andis.

andc[.] nand[.]
or[.]
ori
oris

orc[.] nor[.]
xor[.]
xori
xoris

eqv[.] extsb[.]
extsh[.] cntlzw[.]

Table 2-8. Integer Compare Instructions  
Arithmetic Logical

cmp
cmpi

cmpl
cmpli
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2.4.1.5 Integer Trap Instructions

Table 2-9 lists the integer trap instructions in the PPC440.

2.4.1.6 Integer Rotate Instructions

These instructions rotate operands stored in the GPRs. Rotate instructions can also mask rotated operands.

Table 2-10 lists the rotate instructions in the PPC440. See Integer Arithmetic Instructions on page 46 for an 
explanation of the “[.]” syntax.  

2.4.1.7 Integer Shift Instructions

Table 2-11 lists the integer shift instructions in the PPC440. Note that the shift right algebraic instructions implicitly 
update the XER[CA] field. See Integer Arithmetic Instructions on page 46 for an explanation of the “[.]” syntax.  

2.4.1.8 Integer Select Instruction

Table 2-12 lists the integer select instruction in the PPC440. The RA operand is 0 if the RA field of the instruction is 
0, or is the contents of GPR[RA] otherwise.  

2.4.2 Branch Instructions

These instructions unconditionally or conditionally branch to an address. Conditional branch instructions can test 
condition codes set in the CR by a previous instruction and branch accordingly. Conditional branch instructions can 
also decrement and test the Count Register (CTR) as part of branch determination, and can save the return 
address in the Link Register (LR). The target address for a branch can be a displacement from the current 
instruction address or an absolute address, or contained in the LR or CTR.

See Branch Processing on page 51 for more information on branch operations.

Table 2-9. Integer Trap Instructions  
Trap

tw
twi

Table 2-10. Integer Rotate Instructions  
Rotate and Insert Rotate and Mask

rlwimi[.] rlwinm[.]
rlwnm[.]

Table 2-11. Integer Shift Instructions  
Shift Left Shift Right Shift Right Algebraic

slw[.] srw[.] sraw[.]
srawi[.]

Table 2-12. Integer Select Instruction  
Integer Select

isel
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Table 2-13 lists the branch instructions in the PPC440. In the table, the syntax “[l]” indicates that the instruction has 
both a “link update” form (which updates LR with the address of the instruction after the branch) and a “non-link 
update” form. Similarly, the syntax “[a]” indicates that the instruction has both an “absolute address” form (in which 
the target address is formed directly using the immediate field specified as part of the instruction) and a “relative” 
form (in which the target address is formed by adding the specified immediate field to the address of the branch 
instruction).  

2.4.3 Processor Control Instructions

Processor control instructions manipulate system registers, perform system software linkage, and synchronize 
processor operations. The instructions in these three sub-categories of processor control instructions are 
described below.

2.4.3.1 Condition Register Logical Instructions

These instructions perform logical operations on a specified pair of bits in the CR, placing the result in another 
specified bit. The benefit of these instructions is that they can logically combine the results of several comparison 
operations without incurring the overhead of conditional branching between each one. Software performance can 
significantly improve if multiple conditions are tested at once as part of a branch decision.

Table 2-14 lists the condition register logical instructions in the PPC440. 

2.4.3.2 Register Management Instructions

These instructions move data between the GPRs and control registers in the PPC440.

Table 2-15 lists the register management instructions in the PPC440. 

2.4.3.3 System Linkage Instructions

These instructions invoke supervisor software level for system services, and return from interrupts.

Table 2-13. Branch Instructions  
Branch

b[l][a]
bc[l][a]
bcctr[l]
bclr[l]

Table 2-14. Condition Register Logical Instructions  

crand 
crandc
creqv
crnand

crnor
cror
crorc
crxor

Table 2-15. Register Management Instructions  
CR DCR MSR SPR

mcrf
mcrxr
mfcr
mtcrf

mfdcr
mtdcr

mfmsr
mtmsr
wrtee
wrteei

mfspr
mtspr
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Table 2-16 lists the system linkage instructions in the PPC440.

2.4.3.4 Processor Synchronization Instruction

The processor synchronization instruction, isync, forces the processor to complete all instructions preceding the 
isync before allowing any context changes as a result of any instructions that follow the isync. Additionally, all 
instructions that follow the isync will execute within the context established by the completion of all the instructions 
that precede the isync. See Synchronization on page 67 for more information on the synchronizing effect of isync.

Table 2-17 shows the processor synchronization instruction in the PPC440.

2.4.4 Storage Control Instructions

These instructions manage the instruction and data caches and the TLB of the PPC440. Instructions are also 
provided to synchronize and order storage accesses. The instructions in these three sub-categories of storage 
control instructions are described below.

2.4.4.1 Cache Management Instructions

These instructions control the operation of the data and instruction caches. Instructions are provided to fill, flush, 
invalidate, or zero data cache blocks, where a block is defined as a 32-byte cache line. instructions are also 
provided to fill or invalidate instruction cache blocks.

Table 2-18 lists the cache management instructions in the PPC440. 

2.4.4.2 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array, and search the TLB array for an entry 
which will translate a given virtual address. There is also an instruction for synchronizing TLB updates with other 
processors, but since the PPC440 is intended for use in uni-processor environments, this instruction performs no 
operation on the PPC440.

Table 2-16. System Linkage Instructions  

rfi
rfci
rfmci
sc

Table 2-17. Processor Synchronization Instruction 

isync

Table 2-18. Cache Management Instructions  
Data Cache Instruction Cache

dcba
dcbf
dcbi
dcbst
dcbt
dcbtst
dcbz

icbi
icbt
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Table 2-19 lists the TLB management instructions in the PPC440. See Integer Arithmetic Instructions on page 46 
for an explanation of the “[.]” syntax.

2.4.4.3 Storage Synchronization Instructions

The storage synchronization instructions allow software to enforce ordering amongst the storage accesses caused 
by load and store instructions, which by default are “weakly-ordered” by the processor. “Weakly-ordered” means 
that the processor is architecturally permitted to perform loads and stores generally out-of-order with respect to 
their sequence within the instruction stream, with some exceptions. However, if a storage synchronization 
instruction is executed, then all storage accesses prompted by instructions preceding the synchronizing instruction 
must be performed before any storage accesses prompted by instructions which come after the synchronizing 
instruction. See Synchronization on page 67 for more information on storage synchronization.

Table 2-17 shows the storage synchronization instructions in the PPC440.

2.4.5 Allocated Instructions

These instructions are not part of the PowerPC Book-E architecture, but they are included as part of the PPC440. 
Architecturally, they are considered allocated instructions, as they use opcodes which are within the allocated 
class of instructions, which the PowerPC Book-E architecture identifies as being available for implementation-
dependent and/or application-specific purposes. However, all of the allocated instructions which are implemented 
within the PPC440 are “standard” for the family of PowerPC embedded controllers, and are not unique to the 
PPC440.

The allocated instructions implemented within the PPC440 are divided into four sub-categories, and are shown in 
Table 2-21. See Integer Arithmetic Instructions on page 46 for an explanation of the “[.]” and “[o]” syntax.  

Table 2-19. TLB Management Instructions  

tlbre
tlbsx[.]
tlbsync
tlbwe

Table 2-20. Storage Synchronization Instructions 

msync
mbar

Table 2-21. Allocated Instructions  

Arithmetic Logical Cache
Management

Cache
Debug

Multiply-Accumulate Negative
Multiply-Accumulate Multiply Halfword

macchw[o][.]
macchws[o][.]
macchwsu[o][.]
macchwu[o][.]
machhw[o][.]
machhws[o][.]
machhwsu[o][.]
machhwu[o][.]
maclhw[o][.]
maclhws[o][.]
maclhwsu[o][.]
maclhwu[o][.]

nmacchw[o][.]
nmacchws[o][.]
nmachhw[o][.]
nmachhws[o][.]
nmaclhw[o][.]
nmaclhws[o][.]

mulchw[.]
mulchwu[.]
mulhhw[.]
mulhhwu[.]
mullhw[.]
mullhwu[.]

dlmzb[.] dccci
iccci

dcread
icread
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2.5 Branch Processing
The four branch instructions provided by PPC440 are summarized in Table 2.4.2 on page 47. In addition, each of 
these instructions is described in detail in Instruction Set on page 209. The following sections provide additional 
information on branch addressing, instruction fields, prediction, and registers.

2.5.1 Branch Addressing

The branch instruction (b[l][a]) specifies the displacement of the branch target address as a 26-bit value (the 24-bit 
LI field right-extended with 0b00). This displacement is regarded as a signed 26-bit number covering an address 
range of ±32MB. Similarly, the branch conditional instruction (bc[l][a]) specifies the displacement as a 16-bit value 
(the 14-bit BD field right-extended with 0b00). This displacement covers an address range of ±32KB.

For the relative form of the branch and branch conditional instructions (b[l] and bc[l], with instruction field AA = 0), 
the target address is the address of the branch instruction itself (the Current Instruction Address, or CIA) plus the 
signed displacement. This address calculation is defined to “wrap around” from the maximum effective address 
(0xFFFFFFFF) to 0x0000 0000, and vice-versa.

For the absolute form of the branch and branch conditional instructions (ba[l] and bca[l], with instruction field 
AA = 1), the target address is the sign-extended displacement. This means that with absolute forms of the branch 
and branch conditional instructions, the branch target can be within the first or last 32MB or 32KB of the address 
space, respectively.

The other two branch instructions, bclr (branch conditional to LR) and bcctr (branch conditional to CTR), do not 
use absolute nor relative addressing. Instead, they use indirect addressing, in which the target of the branch is 
specified indirectly as the contents of the LR or CTR.

2.5.2 Branch Instruction BI Field

Conditional branch instructions can optionally test one bit of the CR, as indicated by instruction field BO[0] (see BO 
field description below). The value of instruction field BI specifies the CR bit to be tested (0-31). The BI field is 
ignored if BO[0] = 1. The branch (b[l][a]) instruction is by definition unconditional, and hence does not have a BI 
instruction field. Instead, the position of this field is part of the LI displacement field.

2.5.3 Branch Instruction BO Field

The BO field specifies the condition under which a conditional branch is taken, and whether the branch decrements 
the CTR. The branch (b[l][a]) instruction is by definition unconditional, and hence does not have a BO instruction 
field. Instead, the position of this field is part of the LI displacement field.

Conditional branch instructions can optionally test one bit in the CR. This option is selected when BO[0] = 0; if 
BO[0] = 1, the CR does not participate in the branch condition test. If the CR condition option is selected, the 
condition is satisfied (branch can occur) if the CR bit selected by the BI instruction field matches BO[1].

Conditional branch instructions can also optionally decrement the CTR by one, and test whether the decremented 
value is 0. This option is selected when BO[2] = 0; if BO[2] = 1, the CTR is not decremented and does not 
participate in the branch condition test. If CTR decrement option is selected, BO[3] specifies the condition that 
must be satisfied to allow the branch to be taken. If BO[3] = 0, CTR ≠ 0 is required for the branch to occur. If 
BO[3] = 1, CTR = 0 is required for the branch to occur.
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Table 2-22 summarizes the usage of the bits of the BO field. BO[4] is further discussed in Branch Prediction on 
page 52

Table 2-23 lists specific BO field contents, and the resulting actions; z represents a mandatory value of zero, and y 
is a branch prediction option discussed in Branch Prediction on page 52 

2.5.4 Branch Prediction

Conditional branches might be taken or not taken; if taken, instruction fetching is re-directed to the target address. 
If the branch is not taken, instruction fetching simply falls through to the next sequential instruction. The PPC440 
attempts to predict whether or not a branch is taken before all information necessary to determine the branch 
direction is available. This action is called branch prediction. The processor core can then prefetch instructions 
down the predicted path. If the prediction is correct, performance is improved because the branch target instruction 
is available immediately, instead of having to wait until the branch conditions are resolved. If the prediction is 
incorrect, then the prefetched instructions (which were fetched from addresses down the “wrong” path of the 
branch) must be discarded, and new instructions fetched from the correct path. 

The PPC440 combines the static prediction mechanism defined by PowerPC Book-E, together with a dynamic 
branch prediction mechanism, in order to provide correct branch prediction as often as possible. The dynamic 
branch prediction mechanism is an implementation optimization, and is not part of the architecture, nor is it visible 
to the programming model. Appendix B PPC440 Compiler Optimizations on page 455 provides additional 
information on the dynamic branch prediction mechanism.

Table 2-22. BO Field Definition  
BO Bit Description

BO[0]
CR Test Control
0 Test CR bit specified by BI field for value specified by BO[1]
1 Do not test CR

BO[1]
CR Test Value
0 If BO[0] = 0, test for CR[BI] = 0.
1 If BO[0] = 0, test for CR[BI] = 1.

BO[2]
CTR Decrement and Test Control
0 Decrement CTR by one and test whether the decremented CTR satisfies the condition specified by BO[3].
1 Do not decrement CTR, do not test CTR.

BO[3]
CTR Test Value
0 If BO[2] = 0, test for decremented CTR ≠ 0.
1 If BO[2] = 0, test for decremented CTR = 0.

BO[4]
Branch Prediction Reversal
0 Apply standard branch prediction.
1 Reverse the standard branch prediction.

Table 2-23. BO Field Examples  
BO Value Description

0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and CR[BI]=0.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and CR[BI] = 0.

001zy Branch if CR[BI] = 0.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and CR[BI] = 1.

0101y Decrement the CTR, then branch if the decremented CTR=0 and CR[BI] = 1.

011zy Branch if CR[BI] = 1.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.
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The static branch prediction mechanism enables software to designate the “preferred” branch prediction via bits in 
the instruction encoding. The “default” static branch prediction for conditional branches is as follows:

Predict that the branch is to be taken if ((BO[0] ∧ BO[2]) ∨ s) =  1

where s is bit 16 of the instruction (the sign bit of the displacement for all bc forms, and zero for all bclr and bcctr 
forms). In other words, conditional branches are predicted taken if they are “unconditional” (i.e., they do not test the 
CR nor the CTR decrement, and are always taken), or if their branch displacement is “negative” (i.e., the branch is 
branching “backwards” from the current instruction address). The standard prediction for this case derives from 
considering the relative form of bc, often used at the end of loops to control the number of times that a loop is 
executed. The branch is taken each time the loop is executed except the last, so it is best if the branch is predicted 
taken. The branch target is the beginning of the loop, so the branch displacement is negative and s = 1. Because 
this situation is most common, a branch is taken if s = 1.

If branch displacements are positive, s = 0, then the branch is predicted not taken. Also, if the branch instruction is 
any form of bclr or bcctr except the “unconditional” form, then s = 0, and the branch is predicted not taken.

There is a peculiar consequence of this prediction algorithm for the absolute forms of bc (bca and bcla). As 
described in Branch Addressing on page 51, if s = 1, the branch target is in high memory. If s = 0, the branch target 
is in low memory. Because these are absolute-addressing forms, there is no reason to treat high and low memory 
differently. Nevertheless, for the high memory case the standard prediction is taken, and for the low memory case 
the standard prediction is not taken.

Another bit in the BO field allows software further control over branch prediction. Specifically, BO[4] is the 
prediction reversal bit. If BO[4] = 0, the default prediction is applied. If BO[4] = 1, the reverse of the default 
prediction is applied. For the cases in Table 2-23 where BO[4] = y, software can reverse the default prediction by 
setting y to 1. This should only be done when the default prediction is likely to be wrong. Note that for the “branch 
always” condition, reversal of the default prediction is not allowed, as BO[4] is designated as z for this case, 
meaning the bit must be set to 0 or the instruction form is invalid.

2.5.5 Branch Control Registers

There are three registers in the PPC440 which are associated with branch processing, and they are described in 
the following sections.

2.5.5.1 Link Register (LR)

The LR is written from a GPR using mtspr, and can be read into a GPR using mfspr. The LR can also be updated 
by the “link update” form of branch instructions (instruction field LK = 1). Such branch instructions load the LR with 
the address of the instruction following the branch instruction (4 + address of the branch instruction). Thus, the LR 
contents can be used as a return address for a subroutine that was entered using a link update form of branch. The 
bclr instruction uses the LR in this fashion, enabling indirect branching to any address.

When being used as a return address by a bclr instruction, bits 30:31 of the LR are ignored, since all instruction 
addresses are on word boundaries.
Access to the LR is non-privileged.

   

Figure 2-3. Link Register (LR) 

0:31 Link Register contents Target address of bclr instruction
AMCC Proprietary       53



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
2.5.5.2 Count Register (CTR)

The CTR is written from a GPR using mtspr, and can be read into a GPR using mfspr. The CTR contents can be 
used as a loop count that gets decremented and tested by conditional branch instructions that specify count 
decrement as one of their branch conditions (instruction field BO[2] = 0). Alternatively, the CTR contents can 
specify a target address for the bcctr instruction, enabling indirect branching to any address.

Access to the CTR is non-privileged.

 

2.5.5.3 Condition Register (CR)

The CR is used to record certain information (“conditions”) related to the results of the various instructions which 
are enabled to update the CR. A bit in the CR may also be selected to be tested as part of the condition of a 
conditional branch instruction.

The CR is organized into eight 4-bit fields (CR0–CR7), as shown in Figure 2-5. Table 2-24 lists the instructions 
which update the CR.

Access to the CR is non-privileged.

    

Figure 2-4. Count Register (CTR) 

0:31 Count
Used as count for branch conditional with decre-
ment instructions, or as target address for bcctr 
instructions

Figure 2-5. Condition Register (CR) 

0:3 CR0 Condition Register Field 0

4:7 CR1 Condition Register Field 1

8:11 CR2 Condition Register Field 2

12:15 CR3 Condition Register Field 3

16:19 CR4 Condition Register Field 4

20:23 CR5 Condition Register Field 5

24:27 CR6 Condition Register Field 6

28:31 CR7 Condition Register Field 7
54       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
 

Instruction Set on page 209, provides detailed information on how each of these instructions updates the CR. To 
summarize, the CR can be accessed in any of the following ways:

• mfcr reads the CR into a GPR. Note that this instruction does not update the CR and is therefore not listed in 
Table 2-24.

• Conditional branch instructions can designate a CR bit to be used as a branch condition. Note that these 
instructions do not update the CR and are therefore not listed in Table 2-24.

• mtcrf sets specified CR fields by writing to the CR from a GPR, under control of a mask field specified as part 
of the instruction.

• mcrf updates a specified CR field by copying another specified CR field into it.

• mcrxr copies certain bits of the XER into a specified CR field, and clears the corresponding XER bits.

• Integer compare instructions update a specified CR field.

• CR-logical instructions update a specified CR bit with the result of any one of eight logical operations on a 
specified pair of CR bits.

• Certain forms of various integer instructions (the “.” forms) implicitly update CR[CR0], as do certain forms of the 
auxiliary processor instructions implemented within the PPC440.

Table 2-24. CR Updating Instructions  

Integer Processor
Control

Storage
Control

Storage
Access Arithmetic Logical Compare Rotate Shift

CR-Logical
and Register
Management

TLB
Mgmt. Logical

stwcx.

add.[o]
addc.[o]
adde.[o]
addic.
addme.[o]
addze.[o]

subf.[o]
subfc.[o]
subfe.[o]
subfme.[o]
subfze.[o]

mulhw.
mulhwu.
mullw.[o]

divw.[o]
divwu.[o]

neg.[o]

and.
andi.
andis.

andc.

nand.

or.
orc.

nor.

xor.

eqv.

extsb.
extsh.

cntlzw.

cmp
cmpi

cmpl
cmpli

rlwimi.

rlwinm.
rlwnm.

slw.

srw.

sraw.
srawi.

crand
crandc
creqv
crnand
crnor
cror
crorc
crxor

mcrf
mcrxr
mtcrf

tlbsx.

macchw.[o]
macchws.[o]
macchwsu.[o]
macchwu.[o]
machhw.[o]
machhws.[o]
machhwsu.[o]
machhwu.[o]
maclhw.[o]
maclhws.[o]
maclhwsu.[o]
maclhwu.[o]

nmacchw.[o]
nmacchws.[o]
nmachhw.[o]
nmachhws.[o]
nmaclhw.[o]
nmaclhws.[o]

mulchw.
mulchwu.
mulhhw.
mulhhwu.
mullhw.
mullhwu.

dlmzb.
AMCC Proprietary       55



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
• Auxiliary processor instructions may in general update a specified CR field in an implementation-specified 
manner. In addition, if an auxiliary processor implements the floating-point operations specified by PowerPC 
Book-E, then those instructions update the CR in the manner defined by the architecture. See Book E: Pow-
erPC Architecture Enhanced for Embedded Applications for details.

CR[CR0] Implicit Update By Integer Instructions

Most of the CR-updating instructions listed in Table 2-24 implicitly update the CR0 field. These are the various 
“dot-form” instructions, indicated by a “.” in the instruction mnemonic. Most of these instructions update CR[CR0] 
according to an arithmetic comparison of 0 with the 32-bit result which the instruction writes to the GPR file. That is, 
after performing the operation defined for the instruction, the 32-bit result which is written to the GPR file is 
compared to 0 using a signed comparison, independent of whether the actual operation being performed by the 
instruction is considered “signed” or not. For example, logical instructions such as and., or., and nor. update 
CR[CR0] according to this signed comparison to 0, even though the result of such a logical operation is not 
typically interpreted as a signed value. For each of these dot-form instructions, the individual bits in CR[CR0] are 
updated as follows:

Note that if an arithmetic overflow occurs, the “sign” of an instruction result indicated in CR[CR0] might not 
represent the “true” (infinitely precise) algebraic result of the instruction that set CR0. For example, if an add. 
instruction adds two large positive numbers and the magnitude of the result cannot be represented as a twos-
complement number in a 32-bit register, an overflow occurs and CR[CR0]0 is set, even though the infinitely precise 
result of the add is positive.

Similarly, adding the largest 32-bit twos-complement negative number (0x80000000) to itself results in an 
arithmetic overflow and 0x0000 0000 is recorded in the target register. CR[CR0]2 is set, indicating a result of 0, but 
the infinitely precise result is negative.

CR[CR0]3 is a copy of XER[SO] at the completion of the instruction, whether or not the instruction which is 
updating CR[CR0] is also updating XER[SO]. Note that if an instruction causes an arithmetic overflow but is not of 
the form which actually updates XER[SO], then the value placed in CR[CR0]3 does not reflect the arithmetic 
overflow which occurred on the instruction (it is merely a copy of the value of XER[SO] which was already in the 
XER before the execution of the instruction updating CR[CR0]).

There are a few dot-form instructions which do not update CR[CR0] in the fashion described above. These 
instructions are: stwcx., tlbsx., and dlmzb. See the instruction descriptions in Instruction Set on page 209 for 
details on how these instructions update CR[CR0].

CR Update By Integer Compare Instructions

Integer compare instructions update a specified CR field with the result of a comparison of two 32-bit numbers, the 
first of which is from a GPR and the second of which is either an immediate value or from another GPR. There are 
two types of integer compare instructions, arithmetic and logical, and they are distinguished by the interpretation 
given to the 32-bit numbers being compared. For arithmetic compares, the numbers are considered to be signed, 
whereas for logical compares, the numbers are considered to be unsigned. As an example, consider the 
comparison of 0 with 0xFFFFFFFF. In an arithmetic compare, 0 is larger; in a logical compare, 0xFFFFFFFF is 
larger.

CR[CR0]0 — LT Less than 0; set if the most-significant bit of the 32-bit result is 1.

CR[CR0]1 — GT Greater than 0; set if the 32-bit result is non-zero and the most-significant bit 
of the result is 0.

CR[CR0]2 — EQ Equal to 0; set if the 32-bit result is 0.

CR[CR0]3 — SO Summary overflow; a copy of XER[SO] at the completion of the instruction 
(including any XER[SO] update being performed the instruction itself.
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A compare instruction can direct its result to any CR field. The BF field (bits 6:8) of the instruction specifies the CR 
field to be updated. After a compare, the specified CR field is interpreted as follows:

2.6 Integer Processing  
Integer processing includes loading and storing data between memory and GPRs, as well as performing various 
operations on the values in GPRs and other registers (the categories of integer instructions are summarized in 
Table 2-4 on page 44). The sections which follow describe the registers which are used for integer processing, and 
how they are updated by various instructions. In addition, Condition Register (CR) on page 54 provides more 
information on the CR updates caused by integer instructions. Finally, Instruction Set on page 209 also provides 
details on the various register updates performed by integer instructions.

2.6.1 General Purpose Registers (GPRs)

The PPC440 contains 32 GPRs. The contents of these registers can be transferred to and from memory using 
integer storage access instructions. Operations are performed on GPRs by most other instructions. 

Access to the GPRs is non-privileged.

    

2.6.2 Integer Exception Register (XER)  

The XER records overflow and carry indications from integer arithmetic and shift instructions. It also provides a 
byte count for string indexed integer storage access instructions (lswx and stswx). Note that the term exception in 
the name of this register does not refer to exceptions as they relate to interrupts, but rather to the arithmetic 
exceptions of carry and overflow.

Figure 2-7 illustrates the fields of the XER, while Table 2-25 and Table 2-26 list the instructions which update 
XER[SO,OV] and the XER[CA] fields, respectively. The sections which follow the figure and tables describe the 
fields of the XER in more detail.

Access to the XER is non-privileged.

CR[(BF)]0 — LT The first operand is less than the second operand.

CR[(BF)]1 — GT The first operand is greater than the second operand.

CR[(BF)]2 — EQ The first operand is equal to the second operand.

CR[(BF)]3 — SO Summary overflow; a copy of XER[SO].

Figure 2-6. General Purpose Registers (R0-R31) 

0:31 General Purpose Register data
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Figure 2-7. Integer Exception Register (XER) 

0 SO
Summary Overflow
0 No overflow has occurred.
1 Overflow has occurred.

Can be set by mtspr or by integer or auxiliary 
processor instructions with the [o] option; can be 
reset by mtspr or by mcrxr.

1 OV
Overflow
0 No overflow has occurred.
1 Overflow has occurred.

Can be set by mtspr or by integer or allocated 
instructions with the [o] option; can be reset by 
mtspr, by mcrxr, or by integer or allocated 
instructions with the [o] option.

2 CA
Carry
0 Carry has not occurred.
1 Carry has occurred.

Can be set by mtspr or by certain integer arith-
metic and shift instructions; can be reset by 
mtspr, by mcrxr, or by certain integer arithmetic 
and shift instructions.

3:24 Reserved

25:31 TBC Transfer Byte Count Used as a byte count by lswx and stswx; written 
by dlmzb[.] and by mtspr.

Table 2-25. XER[SO,OV] Updating Instructions  
Integer Arithmetic Processor Control

Add Subtract Multiply Divide Negate Multiply-
Accumulate

Negative Multiply- 
Accumulate

Register
Management

addo[.]
addco[.]
addeo[.]
addmeo[.]
addzeo[.]

subfo[.]
subfco[.]
subfeo[.]
subfmeo[.]
subfzeo[.]

mullwo[.] divwo[.]
divwuo[.] nego[.]

macchwo[.]
macchwso[.]
macchwsuo[.]
macchwuo[.]
machhwo[.]
machhwso[.]
machhwsuo[.]
machhwuo[.]
maclhwo[.]
maclhwso[.]
maclhwsuo[.]
maclhwuo[.]

nmacchwo[.]
nmacchwso[.]
nmachhwo[.]
nmachhwso[.]
nmaclhwo[.]
nmaclhwso[.]

mtspr
mcrxr

Table 2-26. XER[CA] Updating Instructions  
Integer Arithmetic Integer Shift Processor Control

Add Subtract Shift Right Algebraic Register
Management

addc[o][.]
adde[o][.]
addic[.]
addme[o][.]
addze[o][.]

subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

sraw[.]
srawi[.]

mtspr
mcrxr
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2.6.2.1 Summary Overflow (SO) Field

This field is set to 1 when an instruction is executed that causes XER[OV] to be set to 1, except for the case of 
mtspr(XER), which writes XER[SO,OV] with the values in (RS)0:1, respectively. Once set, XER[SO] is not reset 
until either an mtspr(XER) is executed with data that explicitly writes 0 to XER[SO], or until an mcrxr instruction is 
executed. The mcrxr instruction sets XER[SO] (as well as XER[OV,CA]) to 0 after copying all three fields into 
CR[CR0]0:2 (and setting CR[CR0]3 to 0).

Given this behavior, XER[SO] does not necessarily indicate that an overflow occurred on the most recent integer 
arithmetic operation, but rather that one occurred at some time subsequent to the last clearing of XER[SO] by 
mtspr(XER) or mcrxr.

XER[SO] is read (along with the rest of the XER) into a GPR by mfspr(XER). In addition, various integer 
instructions copy XER[SO] into CR[CR0]3 (see Condition Register (CR) on page 54).

2.6.2.2 Overflow (OV) Field

This field is updated by certain integer arithmetic instructions to indicate whether the infinitely precise result of the 
operation can be represented in 32 bits. For those integer arithmetic instructions that update XER[OV] and produce 
signed results, XER[OV] = 1 if the result is greater than 231 – 1 or less than –231; otherwise, XER[OV] = 0. For 
those integer arithmetic instructions that update XER[OV] and produce unsigned results (certain integer divide 
instructions and multiply-accumulate instructions), XER[OV] = 1 if the result is greater than 232–1; otherwise, 
XER[OV] = 0. See the instruction descriptions in Instruction Set on page 209 for more details on the conditions 
under which the integer divide instructions set XER[OV] to 1.

The mtspr(XER) and mcrxr instructions also update XER[OV]. Specifically, mcrxr sets XER[OV] (and 
XER[SO,CA]) to 0 after copying all three fields into CR[CR0]0:2 (and setting CR[CR0]3 to 0), while mtspr(XER) 
writes XER[OV] with the value in (RS)1.

XER[OV] is read (along with the rest of the XER) into a GPR by mfspr(XER).

2.6.2.3 Carry (CA) Field

This field is updated by certain integer arithmetic instructions (the “carrying” and “extended” versions of add and 
subtract) to indicate whether or not there is a carry-out of the most-significant bit of the 32-bit result. XER[CA] = 1 
indicates a carry. The integer shift right algebraic instructions update XER[CA] to indicate whether or not any 1-bits 
were shifted out of the least significant bit of the result, if the source operand was negative (see the instruction 
descriptions in Instruction Set on page 209 for more details). 

The mtspr(XER) and mcrxr instructions also update XER[CA]. Specifically, mcrxr sets XER[CA] (as well as 
XER[SO,OV]) to 0 after copying all three fields into CR[CR0]0:2 (and setting CR[CR0]3 to 0), while mtspr(XER) 
writes XER[CA] with the value in (RS)2.

XER[CA] is read (along with the rest of the XER) into a GPR by mfspr(XER). In addition, the “extended” versions 
of the add and subtract integer arithmetic instructions use XER[CA] as a source operand for their arithmetic 
operations.

Transfer Byte Count (TBC) Field

The TBC field is used by the string indexed integer storage access instructions (lswx and stswx) as a byte count. 
The TBC field is updated by the dlmzb[.] instruction with a value indicating the number of bytes up to and including 
the zero byte detected by the instruction (see the instruction description for dlmzb in Instruction Set on page 209 
for more details). The TBC field is also written by mtspr(XER) with the value in (RS)25:31.

XER[TBC] is read (along with the rest of the XER) into a GPR by mfspr(XER).
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2.7 Processor Control
The PPC440 provides several registers for general processor control and status. These include:

• Machine State Register (MSR)

Controls interrupts and other processor functions

• Special Purpose Registers General (SPRGs)

SPRs for general purpose software use

• Processor Version Register (PVR)

Indicates the specific implementation of a processor

• Processor Identification Register (PIR)

Indicates the specific instance of a processor in a multi-processor system

• Core Configuration Register 0 (CCR0)

Controls specific processor functions, such as instruction prefetch

• Reset Configuration (RSTCFG)

Reports the values of certain fields of the TLB as supplied at reset

Except for the MSR, each of these registers is described in more detail in the following sections. The MSR is 
described in more detail in Interrupts and Exceptions on page 127.

2.7.1 Special Purpose Registers General (USPRG0, SPRG0:SPRG7)

USPRG0 and SPRG0:SPRG7 are provided for general purpose, system-dependent software use. One common 
system usage of these registers is as temporary storage locations. For example, a routine might save the contents 
of a GPR to an SPRG, and later restore the GPR from it. This is faster than a save/restore to a memory location. 
These registers are written using mtspr and read using mfspr.

Access to USPRG0 is non-privileged for both read and write. 

Access to SPRG4:SPRG7 is non-privileged for read but privileged for write, and hence different SPR numbers are 
used for reading than for writing. 

Access to SPRG0:SPRG3 is privileged for both read and write.

      

2.7.2 Processor Version Register (PVR)

The PVR is a read-only register typically used to identify a specific processor core and chip implementation. 
Software can read the PVR to determine processor core and chip hardware features. The PVR can be read into a 
GPR using mfspr instruction.

Refer to the chip data sheet for the PVR value for a particular chip.

Access to the PVR is privileged.

Figure 2-8. Special Purpose Registers General (USPRG0, SPRG0:SPRG7) 

0:31 General data Software value; no hardware usage.
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2.7.3 Processor Identification Register (PIR)

The PIR is a read-only register that uniquely identifies a specific instance of a processor core, within a multi-
processor configuration, enabling software to determine exactly which processor it is running on. This capability is 
important for operating system software within multiprocessor configurations. The PIR can be read into a GPR 
using mfspr.

Because the PPC440 is a uniprocessor, PIR[PIN] = 0b0000.

Access to the PIR is privileged.  

    

2.7.4 Core Configuration Register 0 (CCR0)

The CCR0 controls a number of special chip functions, including data cache and auxiliary processor operation, 
speculative instruction fetching, trace, and the operation of the cache block touch instructions. The CCR0 is written 
from a GPR using mtspr, and can be read into a GPR using mfspr. Figure 2-11 illustrates the fields of the CCR0, 
and gives a brief description of their functions. A cross reference after the bit-field description indicates the section 
of this document which describes each field in more detail.

Access to the CCR0 is privileged.   

   

Figure 2-9. Processor Version Register (PVR) 

0:31 Processor Version Refer to the chip data sheet for the PVR value for a 
particular chip.

Figure 2-10. Processor Identification Register (PIR) 

0:27 Reserved

28:31 PIN Processor Identification Number (PIN)

Figure 2-11. Core Configuration Register 0 (CCR0) 

0 Reserved

1 PRE

Parity Recovery Enable
0 Semi-recoverable parity mode enabled for data 

cache
1 Fully recoverable parity mode enabled for data 

cache

Must be set to 1 to guarantee full recovery from 
MMU and data cache parity errors. 

2:3 Reserved

4 CRPE
Cache Read Parity Enable
0 Disable parity information reads
1 Enable parity information reads

When enabled, execution of icread, dcread, or 
tlbre loads parity information into the ICDBTRH, 
DCDBTRL, or target GPR, respectively.

5:9 Reserved

10 DSTG

Disable Store Gathering
0 Enabled; stores to contiguous addresses may be 

gathered into a single transfer
1 Disabled; all stores to memory will be performed 

independently

See Store Gathering on page 90.
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11 DAPUIB

Disable APU Instruction Broadcast
0 Enabled.
1 Disabled; instructions not broadcast to APU for 

decoding

This mechanism is provided as a means of reduc-
ing power consumption when an auxiliary proces-
sor is not attached and/or is not being used.
See Reset and Initialization in the chip user’s 
manual.

12:15 Reserved

16 DTB
Disable Trace Broadcast
0 Enabled.
1 Disabled; no trace information is broadcast.

This mechanism is provided as a means of reduc-
ing power consumption when instruction tracing is 
not needed.
See Reset and Initialization in the chip user’s 
manual.

17 GICBT

Guaranteed Instruction Cache Block Touch
0 icbt may be abandoned without having filled 

cache line if instruction pipeline stalls.
1 icbt is guaranteed to fill cache line even if 

instruction pipeline stalls.

See icbt Operation on page 83.

18 GDCBT

Guaranteed Data Cache Block Touch
0 dcbt/dcbtst may be abandoned without 

having filled cache line if load/store pipeline 
stalls.

1 dcbt/dcbtst are guaranteed to fill cache line 
even if load/store pipeline stalls.

See Data Cache Control and Debug on page 94.

19:22 Reserved

23 FLSTA

Force Load/Store Alignment
0 No Alignment exception on integer storage 

access instructions, regardless of alignment
1 An alignment exception occurs on integer 

storage access instructions if data address is not 
on an operand boundary.

See Load and Store Alignment on page 88.

24 Reserved

25 DBTAC
Disable the Branch Target Address Cache (BTAC)
0 Enabled
1 Disabled

26:27 Reserved

28:29 ICSLC Instruction Cache Speculative Line Count

Number of additional lines (0–3) to fill on instruc-
tion fetch miss.
See Speculative Prefetch Mechanism on 
page 79.

30:31 ICSLT Instruction Cache Speculative Line Threshold

Number of doublewords that must have already 
been filled in order that the current speculative 
line fill is not abandoned on a redirection of the 
instruction stream.
See Speculative Prefetch Mechanism on 
page 79.
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2.7.5 Core Configuration Register 1 (CCR1)

Bits 0:19 of CCR1 can cause all possible parity error exceptions to verify correct machine check exception handler 
operation. Other CCR1 bits can force a full-line data cache flush, or select a CPU timer clock input other than 
CPUClock. The CCR1 is written from a GPR using mtspr, and can be read into a GPR using mfspr. Figure 2-11 
illustrates the fields of the CCR1, and gives a brief description of their functions.

Access to the CCR1 is privileged.
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Figure 2-12. Core Configuration Register 1 (CCR1) 

0:7 ICDPEI
Instruction Cache Data Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bits recorded when the 
instruction cache is filled. Each of the 8 bits corre-
sponds to one of the instruction words in the line.

8:9 ICTPEI
Instruction Cache Tag Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bits recorded for the tag 
field in the instruction cache.

10:11 DCTPEI
Data Cache Tag Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bits recorded for the tag 
field in the data cache.

12 DCDPEI
Data Cache Data Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bits recorded for the 
data field in the data cache.

13 DCUPEI
Data Cache U-bit Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bit recorded for the U 
fields in the data cache.

14 DCMPEI
Data Cache Modified-bit Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bits recorded for the 
modified (dirty) field in the data cache.

15 FCOM
Force Cache Operation Miss
0 normal operation
1 cache ops appear to miss the cache

Force icbt, dcbt, dcbtst, dcbst, dcbf, dcbi, and 
dcbz to appear to miss the caches. The intended 
use is with icbt and dcbt only, which will fill a dupli-
cate line and allow testing of multi-hit parity errors. 
See Section 3.2.4.7 Simulating Instruction Cache 
Parity Errors for Software Testing on page 85 and 
Figure 3.3.3.8 on page 100.

16:19 MMUPEI
Memory Management Unit Parity Error Insert
0 record even parity (normal)
1 record odd parity (simulate parity error)

Controls inversion of parity bits recorded for the tag 
field in the MMU.

20 FFF
Force Full-line Flush
0 flush only as much data as necessary.
1 always flush entire cache lines

When flushing 32-byte (8-word) lines from the data 
cache, normal operation is to write nothing, a dou-
ble word, quad word, or the entire 8-word block to 
the memory as required by the dirty bits. This bit 
ensures that none or all dirty bits are set so that 
either nothing or the entire 8-word block is written 
to memory when flushing a line from the data 
cache. Refer to Section 3.3.1.4 Line Flush Opera-
tions on page 91.

21:22 Reserved

23 DPC
Disable Parity Checking
0 Disable Parity Checking is disabled
1 Disable Parity Checking is enabled

DPC = 1 eliminates possibility of false parity errors.

24 TCS

Timer Clock Select
0 CPU timer advances by one at each rising edge 

of the CPU input clock (CPUCoreClk).
1 CPU timer advances by one for each rising edge 

of the CPU timer clock (TmrClk).

When TCS = 1, CPU timer clock input can toggle 
at up to half of the CPU clock frequency.

25:31 Reserved
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2.7.6 Reset Configuration (RSTCFG)

The read-only RSTCFG register reports the values of certain fields of TLB as supplied at reset.

Access to RSTCFG is privileged.

    

2.8 User and Supervisor Modes
PowerPC Book-E architecture defines two operating “states” or “modes,” supervisor (privileged), and user (non-
privileged). Which mode the processor is operating in is controlled by MSR[PR]. When MSR[PR] is 0, the 
processor is in supervisor mode, and can execute all instructions and access all registers, including privileged 
ones. When MSR[PR] is 1, the processor is in user mode, and can only execute non-privileged instructions and 
access non-privileged registers. An attempt to execute a privileged instruction or to access a privileged register 
while in user mode causes a Privileged Instruction exception type Program interrupt to occur. 

Note that the name “PR” for the MSR field refers to an historical alternative name for user mode, which is “problem 
state.” Hence the value 1 in the field indicates “problem state,” and not “privileged” as one might expect.

Figure 2-13. Reset Configuration (RSTCFG) 

0:15 Reserved

16 U0
U0 Storage Attribute
0 U0 storage attribute is disabled
1 U0 storage attribute is enabled

U0 has no effect in the PPC440.

17 U1

U1 Storage Attribute
0 Memory page contains normal instructions and 

data
1 Memory page contains transient instructions or 

data

18 U2

U2 Storage Attribute
0 A storage miss does not cause a line to be 

allocated in the data cache
1 A storage miss causes a line to be allocated in 

the data cache

19 U3
U3 Storage Attribute
0 U3 storage attribute is disabled
1 U3 storage attribute is enabled

U3 has no effect in the PPC440.

20:23 Reserved

24 E
E Storage Attribute
0 Accesses to the page are big endian.
1 Accesses to the page are little endian.

25:27 Reserved

28:31 ERPN Extended Real Page Number The ERPN is set to 0b0000 on reset. The reset 
vector is 0x0FFFFFFFC for all boot configurations.
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2.8.1 Privileged Instructions

The following instructions are privileged and cannot be executed in user mode:

2.8.2 Privileged SPRs

Most SPRs are privileged. The only defined non-privileged SPRs are the LR, CTR, XER, USPRG0, SPRG4–7 
(read access only), TBU (read access only), and TBL (read access only). The PPC440 also treats all SPR numbers 
with a 1 in bit 5 of the SPRN field as privileged, whether the particular SPR number is defined or not. Thus the 
processor core causes a Privileged Instruction exception type Program interrupt on any attempt to access such an 
SPR number while in user mode. In addition, the processor core causes an Illegal Instruction exception type 
Program interrupt on any attempt to access while in user mode an undefined SPR number with a 0 in SPRN5. On 
the other hand, the result of attempting to access an undefined SPR number in supervisor mode is undefined, 
regardless of the value in SPRN5.

2.9 Speculative Accesses
The PowerPC Book-E Architecture permits implementations to perform speculative accesses to memory, either for 
instruction fetching, or for data loads. A speculative access is defined as any access that is not required by the 
sequential execution model (SEM).

For example, the PPC440 speculatively prefetches instructions down the predicted path of a conditional branch; if 
the branch is later determined to not go in the predicted direction, the fetching of the instructions from the predicted 
path is not required by the SEM and thus is speculative. Similarly, the PPC440 executes load instructions out-of-
order, and may read data from memory for a load instruction that is past an undetermined branch.

Table 2-27. Privileged Instructions  

dcbi
dccci
dcread
iccci
icread
mfdcr
mfmsr
mfspr For any SPR Number with SPRN5 = 1. See Privileged SPRs on page 66.

mtdcr
mtmsr
mtspr For any SPR Number with SPRN5 = 1. See Privileged SPRs on page 66.

rfci
rfi
rfmci
tlbre
tlbsx
tlbsync
tlbwe
wrtee
wrteei
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Sometimes speculative accesses are inappropriate, however. For example, attempting to access data at 
addresses to which I/O devices are mapped can cause problems. If the I/O device is a serial port, reading it 
speculatively could cause data to be lost.

The architecture provides two mechanisms for protecting against errant accesses to such “non-well-behaved” 
memory addresses. The first is the guarded (G) storage attribute, and protects against speculative data accesses. 
The second is the execute permission mechanism, and protects against speculative instruction fetches. Both of 
these mechanisms are described in Memory Management on page 103

2.10 Synchronization
The PPC440 supports the synchronization operations of the PowerPC Book-E architecture. There are three kinds 
of synchronization defined by the architecture, each of which is described in the following sections.

2.10.1 Context Synchronization

The context of a program is the environment in which the program executes. For example, the mode (user or 
supervisor) is part of the context, as are the address translation space and storage attributes of the memory pages 
being accessed by the program. Context is controlled by the contents of certain registers and other resources, 
such as the MSR and the translation look aside buffer (TLB).

Under certain circumstances, it is necessary for the hardware or software to force the synchronization of a 
program’s context. Context synchronizing operations include all interrupts except Machine Check, as well as the 
isync, sc, rfi, rfci, and rfmci instructions. Context synchronizing operations satisfy the following requirements:

1. The operation is not initiated until all instructions preceding the operation have completed to the point at which 
they have reported any and all exceptions that they will cause.

2. All instructions preceding the operation must complete in the context in which they were initiated. That is, they 
must not be affected by any context changes caused by the context synchronizing operation, or any instruc-
tions after the context synchronizing operation.

3. If the operation is the sc instruction (which causes a System Call interrupt) or is itself an interrupt, then the 
operation is not initiated until no higher priority interrupt is pending (see Interrupts and Exceptions on 
page 127).

4. All instructions that follow the operation must be re-fetched and executed in the context that is established by 
the completion of the context synchronizing operation and all of the instructions which preceded it.

Note that context synchronizing operations do not force the completion of storage accesses, nor do they enforce 
any ordering amongst accesses before and/or after the context synchronizing operation. If such behavior is 
required, then a storage synchronizing instruction must be used (see Storage Ordering and Synchronization on 
page 68).

Also note that architecturally Machine Check interrupts are not context synchronizing. Therefore, an instruction that 
precedes a context synchronizing operation can cause a Machine Check interrupt after the context synchronizing 
operation occurs and additional instructions have completed. For the PPC440, this can only occur with Data 
Machine Check exceptions, and not Instruction Machine Check exceptions.

The following scenarios use pseudocode examples to illustrate the effects of context synchronization. Subsequent 
text explains how software can further guarantee “storage ordering.”

1. Consider the following self-modifying code instruction sequence:
stw XYZ Store to caching inhibited address XYZ
isync
XYZ fetch and execute the instruction at address XYZ
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In this sequence, the isync instruction does not guarantee that the XYZ instruction is fetched after the store 
has occurred to memory. There is no guarantee which XYZ instruction will execute; either the old version or 
the new (stored) version might.

2. Now consider the required self-modifying code sequence:
stw Write new instruction to data cache
dcbst Push the new instruction from the data cache to memory
msync Guarantee that dcbst completes before subsequent instructions begin
icbi Invalidate old copy of instruction in instruction cache
msync Guarantee that icbi completes before subsequent instructions begin
isync Force context synchronization, discarded instructions and re-fetch, fetch of stored instruction

guaranteed to get new value
3. This final example illustrates the use of isync with context changes to the debug facilities

mtdbcr0 Enable the instruction address compare (IAC) debug event
isync Wait for the new Debug Control Register 0 (DBCR0) context to be established
XYZ This instruction is at the IAC address; an isync is necessary to guarantee that the IAC event

is recognized on the execution of this instruction; without the isync, the XYZ instruction may
be prefetched and dispatched to execution before recognizing that the IAC event has been
enabled.

2.10.2 Execution Synchronization

Execution synchronization is a subset of context synchronization. An execution synchronizing operation satisfies 
the first two requirements of context synchronizing operations, but not the latter two. That is, execution 
synchronizing operations guarantee that preceding instructions execute in the “old” context, but do not guarantee 
that subsequent instructions operate in the “new” context. An example of a scenario requiring execution 
synchronization would be just before the execution of a TLB-updating instructions (such as tlbwe). An execution 
synchronizing instruction should be executed to guarantee that all preceding storage access instructions have 
performed their address translations before executing tlbwe to invalidate an entry which might be used by those 
preceding instructions.

There are four execution synchronizing instructions: mtmsr, wrtee, wrteei, and msync. Of course, all context 
synchronizing instruction are also implicitly execution synchronizing, since context synchronization is a superset of 
execution synchronization.

Note that PowerPC Book-E imposes additional requirements on updates to MSR[EE] (the external interrupt enable 
bit). Specifically, if a mtmsr, wrtee, or wrteei instruction sets MSR[EE] = 1, and an External Input, Decrementer, or 
Fixed Interval Timer exception is pending, the interrupt must be taken before the instruction that follows the 
MSR[EE]-updating is executed. In this sense, these MSR[EE]-updating instructions can be thought of as being 
context synchronizing with respect to the MSR[EE] bit, in that it guarantees that subsequent instructions execute 
(or are prevented from executing and an interrupt taken) according to the new context of MSR[EE].

2.10.3 Storage Ordering and Synchronization

Storage synchronization enforces ordering between storage access instructions executed by the PPC440. There 
are two storage synchronizing instructions: msync and mbar. PowerPC Book-E architecture defines different 
ordering requirements for these two instructions, but the PPC440 implements them in an identical fashion. 
Architecturally, msync is the “stronger” of the two, and is also execution synchronizing, whereas mbar is not. 
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The instruction mbar acts as a “barrier” between all storage access instructions executed before the mbar and all 
those executed after the mbar. That is, mbar ensures that all of the storage accesses initiated by instructions 
before the mbar are performed with respect to the memory subsystem before any of the accesses initiated by 
instructions after the mbar. However, mbar does not prevent subsequent instructions from executing (nor even 
from completing) before the completion of the storage accesses initiated by instructions before the mbar.

msync, on the other hand, does guarantee that all preceding storage accesses have actually been performed with 
respect to the memory subsystem before the execution of any instruction after the msync. Note that this 
requirement goes beyond the requirements of mere execution synchronization, in that execution synchronization 
doesn’t require the completion of preceding storage accesses.

The following two examples illustrate the distinctive use of mbar vs. msync.
stw Store data to an I/O device
msync Wait for store to actually complete
mtdcr Reconfigure the I/O device

In this example, the mtdcr is reconfiguring the I/O device in a manner which would cause the preceding store 
instruction to fail, were the mtdcr to change the device before the completion of the store. Since mtdcr is not a 
storage access instruction, the use of mbar instead of msync would not guarantee that the store is performed 
before letting the mtdcr reconfigure the device. It only guarantees that subsequent storage accesses are not 
performed to memory or any device before the earlier store.

Now consider this next example:
stb X Store data to an I/O device at address X, causing a status bit at address Y to be reset
mbar Guarantee preceding store is performed to the device before any subsequent 

storage accesses are performed
lbz Y Load status from the I/O device at address Y

Here, mbar is appropriate instead of msync, because all that is required is that the store to the I/O device happens 
before the load does, but not that other instructions subsequent to the mbar won’t get executed before the store.
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3. Instruction and Data Caches
The PPC440 provides separate instruction and data cache controllers and arrays, which allow concurrent access 
and minimize pipeline stalls. The storage capacity of both cache arrays is 32KB. Both cache controllers have 32-
byte lines, and both are highly associative, having 64-way set-associativity. The PowerPC instruction set provides 
a rich set of cache management instructions for software-enforced coherency. The PPC440 implementation also 
provides special debug instructions that can directly read the tag and data arrays. The cache controllers interface 
to the processor local bus (PLB) for connection to the IBM CoreConnect system-on-a-chip environment.

Both the data and instruction caches are parity protected against soft errors. If such errors are detected, the CPU 
will vector to the machine check interrupt handler, where software can take appropriate action. The details of 
suggested interrupt handling are described below in Section 3.2 Instruction Cache Controller and in Section 3.3 
Data Cache Controller

The rest of this chapter provides more detailed information about the operation of the instruction and data cache 
controllers and arrays.

3.1 Cache Array Organization and Operation

The instruction and data cache arrays are organized identically, although the fields of the tag and data portions of 
the arrays are slightly different because the functions of the arrays differ, and because the instruction cache is 
virtually tagged while the data cache has real tags.

The organization of the cache into “ways” and “sets” is as follows. There are 64 ways in each set, with a set 
consisting of all 64 lines (one line from each way) at which a given memory location can reside. Conversely, there 
are 16 sets in each way, with a way consisting of 16 lines (one from each set).

Table 3-1 illustrates the ways and sets of the cache arrays. The tag field for each line in each way holds the high-
order address bits associated with the line that currently resides in that way. The middle-order address bits form an 
index to select a specific set of the cache, while the five lowest-order address bits form a byte-offset to choose a 
specific byte (or bytes, depending on the size of the operation) from the 32-byte cache line. 

In the cache array, an effective address (EA) is divided into three parts: tag, set, and byte offset. See Figure 3-6 
and Figure 3-7 on page 85 for instruction cache tag address bits, and Figure 3-8 and Figure 3-9 on page 97 for 
data cache tag address bits. Also, see Instruction Cache Synonyms on page 80 for details on instruction cache 
synonyms associated with the use of virtual tags for the instruction cache. A23:26 are the set address bits, and 
A27:31 are the byte offset address bits.

Table 3-1. Instruction and Data Cache Array Organization 

Way 0 Way 1 • • • Way 62 Way 63

Set 0 Line 0 Line 16 • • • Line 992 Line 1008

Set 1 Line 1 Line 17 • • • Line 993 Line 1009

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Set 14 Line 14 Line 30 • • • Line 1006 Line 1022

Set 15 Line 15 Line 31 • • • Line 1007 Line 1023
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3.1.1 Cache Line Replacement Policy

Memory addresses are specified as being cacheable or caching inhibited on a page basis, using the caching 
inhibited (I) storage attribute (see Caching Inhibited (I) on page 115). When a program references a cacheable 
memory location and that location is not already in the cache (a cache miss), the line may be brought into the 
cache (a cache line fill operation) and placed into any one of the ways within the set selected by the middle portion 
of the address (address bits EA23:26 select the set). If the particular way within the set already contains a valid line 
from some other address, the existing line is removed and replaced by the newly referenced line from memory. 
The line being replaced is referred to as the victim.

The way selected to be the victim for replacement is controlled by a field within a Special Purpose Register (SPR). 
There is a separate “victim index field” for each set within the cache.

The following register figure shows the format for each of the four of the Victim Registers (VR):
• Instruction Cache Normal VR (INV0:INV3)
• Instruction Cache Transient VR (ITV0:ITV3)
• Data Cache Normal VR (DNV0:DNV3)
• Data Cache Transient VR (DTV0:DTV3)

  

Note:  Each of the victim index fields consist of six bits, as there are 64 ways in 32KB cache. Unused bits of the 
victim selection registers are reserved.

Each of the 16 SPRs illustrated in Figure 3-1 can be written from a GPR using mtspr, and can be read into a GPR 
using mfspr. In general, however, these registers are initialized by software once at startup, and then are 
managed automatically by hardware after that. Specifically, every time a new cache line is placed into the cache, 
the appropriate victim index field (as controlled by the type of access and the particular cache set being updated) is 
first referenced to determine which way within that set should be replaced. Then, that same field is incriminated 
such that the ways within that set are replaced in a round-robin fashion as each new line is brought into that set. 
When the victim index field value reaches the index of the last way (according to the size of the cache and the type 
of access being performed), the value is wrapped back to the index of the first way for that type of access. The first 
and last ways for the different types of accesses are controlled by fields in a pair of victim limit SPRs, one for each 
cache (see Cache Locking and Transient Mechanism on page 73 for more information).

The victim index field that is used varies according to the type of access and the address of the cache line. 
Table 3-2 describes the correlation between the victim index fields and different access types, and addresses.

Figure 3-1. Victim Registers (INV0:INV3) (ITV0:ITV3) (DNV0:DNV3) (DTV0:DTV3) 

0:1 Reserved

2:7 VNDXA Victim Index A (for cache lines with EA[25:26] = 
0b00)

8:9 Reserved

10:15 VNDXB Victim Index B (for cache lines with EA[25:26] = 
0b01)

16:17 Reserved

18:23 VNDXC Victim Index C (for cache lines with EA[25:26] = 
0b10)

24:25 Reserved

26:31 VNDXD Victim Index D (for cache lines with EA[25:26] = 
0b11)
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3.1.2 Cache Locking and Transient Mechanism

Both caches support locking, at a “way” granularity. Any number of ways can be locked, from 0 ways to 63. At least 
one way must always be left unlocked, for use by cacheable line fills.

In addition, a portion of each cache can be designated as a “transient” region, by specifying that only a limited 
number of ways are used for cache lines from memory pages that are identified as being transient in nature by a 
storage attribute from the MMU (see Memory Management on page 103). For the instruction cache, such memory 
pages can be used for code sequences that are unlikely to be reused once the processor moves on to the next 
series of instruction lines. Thus, performance may be improved by preventing each series of instruction lines from 
overwriting the rest of the “regular” code in the instruction cache. Similarly, for the data cache, transient pages can 
be used for large “streaming” data structures, such as multimedia data. As each piece of the data stream is 
processed and written back to memory, the next piece can be brought in, overwriting the previous (now obsolete) 
cache lines instead of displacing other areas of the cache, which may contain other data that should remain in the 
cache.

A set of fields in a pair of victim limit registers specifies which ways of the cache are used for normal accesses 
and/or transient accesses, as well as which ways are locked. These registers, Instruction Cache Victim Limit 
(IVLIM) and Data Cache Victim Limit (DVLIM), are illustrated in Figure 3-2. They can be written from a GPR using 
mtspr, and can be read into a GPR using mfspr.

Table 3-2. Victim Index Field Selection 

Address23:26 Victim Index Field

0 xxV0[VNDXA]

1 xxV0[VNDXB]

2 xxV0[VNDXC]

3 xxV0[VNDXD]

4 xxV1[VNDXA]

5 xxV1[VNDXB]

6 xxV1[VNDXC]

7 xxV1[VNDXD]

8 xxV2[VNDXA]

9 xxV2[VNDXB]

10 xxV2[VNDXC]

11 xxV2[VNDXD]

12 xxV3[VNDXA]

13 xxV3[VNDXB]

14 xxV3[VNDXC]

15 xxV3[VNDXD]

Note:  “xx” refers to “IN”, “IT”, “DN”, or “DT”, depending on whether the access is to the 
instruction or data cache, and whether the access is “normal” or “transient.” (See Cache 
Locking and Transient Mechanism on page 73)
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When a cache line fill occurs as the result of a normal memory access (that is, one not marked as transient using 
the U1 storage attribute from the MMU; see Memory Management on page 103), the cache line to be replaced is 
selected by the corresponding victim index field from one of the normal victim index registers (INV0–INV3 for 
instruction cache lines, DNV0–DNV3 for data cache lines). As the processor increments any of these normal victim 
index fields according to the round-robin mechanism described in Cache Line Replacement Policy on page 72, the 
values of the fields are constrained to lie within the range specified by the NFLOOR field of the corresponding 
victim limit register, and the last way of the cache. That is, when one of the normal victim index fields is 
incremented past the last way of the cache, it wraps back to the value of the NFLOOR field of the associated victim 
limit register.

Similarly, when a cache line fill occurs as the result of a transient memory access, the cache line to be replaced is 
selected by the corresponding victim index field from one of the transient victim index registers (ITV0–ITV3 for 
instruction cache lines, DTV0–DTV3 for data cache lines). As the processor core increments any of these transient 
victim index fields according to the round-robin replacement mechanism, the values of the fields are constrained to 
lie within the range specified by the TFLOOR and the TCEILING fields of the corresponding victim limit register. 
That is, when one of the transient victim index fields is incremented past the TCEILING value of the associated 
victim limit register, it wraps back to the value of the TFLOOR field of that victim limit register.

Given the operation of this mechanism, if both the NFLOOR and TFLOOR fields are set to 0, and the TCEILING is 
set to the index of the last way of the cache, then all cache line fills—both normal and transient—are permitted to 
use the entire cache, and nothing is locked. Alternatively, if both the NFLOOR and TFLOOR fields are set to values 
greater than 0, the lines in those ways of the cache whose indexes are between 0 and the lower of the two floor 
values are effectively locked, as no cache line fills (neither normal nor transient) will be allowed to replace the lines 
in those ways. Yet another example is when the TFLOOR is lower than the NFLOOR, and the TCEILING is lower 
than the last way of the cache. In this scenario, the ways between the TFLOOR and the NFLOOR contain only 
transient lines, while the ways between the NFLOOR and the TCEILING may contain either normal or transient 
lines, and the ways from the TCEILING to the last way of the cache contain only normal lines.

Programming Note: It is a programming error for software to program the TCEILING field to a value lower 
than that of the TFLOOR field. Furthermore, software must initialize each of the normal and transient victim 
index fields to values that are between the ranges designated by the respective victim limit fields, prior to 
performing any cacheable accesses intended to utilize these ranges.

In order to setup a locked area within the data cache, software must perform the following steps (the procedure for 
the instruction cache is similar, with icbt instructions substituting for dcbt instructions):

1. Execute msync and then isync to guarantee all previous cache operation have completed.

2. Mark all TLB entries associated with memory pages which are being used to perform the locking function as 
caching-inhibited. Leave the TLB entries associated with the memory pages containing the data which is to be 
locked into the data cache marked as cacheable, however.

3. Execute msync and then isync again, to cause the new TLB entry values to take effect.

Figure 3-2. Instruction Cache Victim Limit (IVLIM) and Data Cache Victim Limit (DVLIM) Registers 

0:3 Reserved

4:9 TFLOOR Transient Floor

10:14 Reserved

15:20 TCEILING Transient Ceiling

21:25 Reserved

26:31 NFLOOR Normal Floor
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4. Set both the NFLOOR and the TFLOOR values to the index of the first way which should be locked, and set 
the TCEILING value to the last way of the cache.

5. Set each of the normal and transient victim index fields to the same value as the NFLOOR and TFLOOR.

6. Execute dcbt instructions to the cache lines within the cacheable memory pages which contain the data which 
is to be locked in the data cache. The number of dcbt instructions executed to any given set should not exceed 
the number of ways which will exist in the locked region (otherwise not all of the lines will be able to be simulta-
neously locked in the data cache). Remember that when a series of dcbt instructions are executed to sequen-
tially increasing addresses (with the address increment being the size of a cache block -- 32 bytes), it takes 
sixteen such dcbt operations (one for each set) before the next way of the initial set will be targeted again.

7. Execute msync and then isync again, to guarantee that all of the dcbt operations have completed and 
updated the corresponding victim index fields.

8. Set the NFLOOR, TFLOOR, and TCEILING values to the desired indices for the operating normal and tran-
sient regions of the cache. Both the NFLOOR and the TFLOOR values should be set higher than the highest 
locked way of the data cache; otherwise, subsequent normal and/or transient accesses could overwrite a way 
containing a line which was to be locked.

9. Set each of the normal and transient victim index fields to the value of the NFLOOR and TFLOOR, respec-
tively.

10. Restore the cacheability of the memory pages which were used to perform the locking function to the desired 
operating values, by clearing the caching-inhibited attribute of the TLB entries which were updated in step 2.

11. Execute msync and then isync again, to cause the new TLB entry values to take effect.

The ways of the data cache whose indices are below the lower of the NFLOOR and TFLOOR values will now be 
locked.
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Figure 3-3 and Figure 3-4 illustrate two examples of the use of the locking and transient mechanisms. Other 
configurations are possible, given the ability to program each of the victim limit fields to different relative values. 
Some configurations are not necessarily useful or practical.

Figure 3-3. Cache Locking and Transient Mechanism (Example 1) 

Cache Set n

Way 63

NORMAL LINES

Way NFLOOR

Way TCEILING

TRANSIENT LINES

Way TFLOOR

Way TFLOOR – 1

LOCKED LINES

Way 0

Note:  This example illustrates partitioning of the cache into locked, transient, and normal regions 
with no overlap. The figure illustrates a single set, but all sets of the cache are partitioned accord-
ing to the same victim limit values.
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3.2 Instruction Cache Controller

The instruction cache controller (ICC) delivers two instructions per cycle to the instruction unit of the PPC440. The 
ICC interfaces to the PLB using a 128-bit read interface. The ICC handles frequency synchronization between the 
PPC440 and the PLB, and can operate at any ratio of n:1, n:2, and n:3, where n is an integer greater than the 
corresponding denominator.

The ICC provides a speculative prefetch mechanism which can be configured to automatically prefetch a burst of 
up to three additional lines upon any fetch request which misses in the instruction cache.

Figure 3-4. Cache Locking and Transient Mechanism (Example 2) 

 

Cache Set n

Way 63

NORMAL LINES

Way TCEILING+1

Way TCEILING

NORMAL/TRANSIENT LINES

Way NFLOOR

Way NFLOOR-1

TRANSIENT LINES

Way TFLOOR

Way TFLOOR-1

LOCKED LINES

Way 0

Note:  This example illustrates partitioning of the cache into locked, transient, and normal regions 
where the transient and normal regions partially overlap. The figure illustrates a single set, but all 
sets of the cache are partitioned according to the same victim limit values.
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The ICC also handles the execution of the PowerPC instruction cache management instructions, for touching 
(prefetching) or invalidating cache lines, or for flash invalidation of the entire cache. Resources for controlling and 
debugging the instruction cache operation are also provided.

3.2.1 ICC Operations

When the ICC receives an instruction fetch request from the instruction unit of the PPC440, the ICC simultaneously 
searches the instruction cache array for the cache line associated with the virtual address of the fetch request, and 
translates the virtual address into a real address (see Memory Management on page 103 for information about 
address translation). If the requested cache line is found in the array (a cache hit), the pair of instructions at the 
requested address are returned to the instruction unit. If the requested cache line is not found in the array (a cache 
miss), the ICC sends a request for the entire cache line (32 bytes) to the instruction PLB interface, using the real 
address. Note that the entire 32-byte cache line is requested, even if the caching inhibited (I) storage attribute is 
set for the memory page containing that cache line (see Caching Inhibited (I) on page 115). Also note that the 
request to the instruction PLB interface is sent using the specific instruction address requested by the instruction 
unit, so that the memory subsystem may read the cache line target word first and supply the requested instructions 
before retrieving the rest of the cache line.

As the ICC receives each portion of the cache line from the instruction PLB interface, it is placed into the instruction 
cache line fill data (ICLFD) buffer. Instructions from this buffer may be bypassed to the instruction unit as 
requested, without waiting for the entire cache line to be filled. Once the entire cache line has been filled into the 
buffer, and assuming that the memory page containing that line is cacheable, it is written into the instruction cache. 
If the memory page containing the line is caching inhibited, the line will remain in the ICLFD until it is displaced by 
a subsequent request for another cache line (either cacheable or caching inhibited).

If a memory subsystem error (such as an address time-out, invalid address, or some other type of hardware error 
external to the PPC440) occurs during the filling of the cache line, the line will not be written into the instruction 
cache, although instructions from the line may still be forwarded to the instruction unit from the ICLFD. Later, if 
execution of an instruction from that line is attempted, an Instruction Machine Check exception will be reported, 
and a Machine Check interrupt (if enabled) will result. See Machine Check Interrupt on page 144 for more 
information on Machine Check interrupts.

Once a request for a cache line read has been requested on the instruction PLB interface, the entire line read will 
be performed and the line will be written into the instruction cache (assuming no error occurs on the read), 
regardless of whether or not the instruction stream branches (or is interrupted) away from the line being read. This 
behavior is due to the nature of the PLB architecture, and the fact that once started, a cache line read request type 
cannot be abandoned. This does not mean, however, that the ICC will wait for this cache line read to complete 
before responding to a new request from the instruction unit (due, perhaps, to a branch redirection, or an interrupt). 
Instead, the ICC will immediately access the cache to determine if the cache line at the new address requested by 
the instruction unit is already in the cache. If so, the requested pair of instructions from this line will immediately be 
forwarded to the instruction unit, while the ICC in parallel continues to fill the previously requested cache line. In 
other words, the instruction cache is completely non-blocking.

If the newly requested cache line is instead a miss in the instruction cache, the ICC will immediately attempt to 
cancel the previous cache line read request. If the previous cache line read request has not yet been requested on 
the PLB bus, the old request will be cancelled and the new request will be made. If the previous cache line read 
request has already been requested, then as previously stated it cannot be abandoned, but the ICC will 
immediately present the request for the new cache line, such that it may be serviced immediately after the previous 
cache line read is completed. The ICC never aborts any PLB request once it has been made, except when a 
processor reset occurs while the PLB request is being made.
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Programming Note:

It is a programming error for an instruction fetch request to reference a valid cache line in the 
instruction cache if the caching inhibited storage attribute is set for the memory page containing the 
cache line. The result of attempting to execute an instruction from such an access is undefined. After 
processor reset, hardware automatically sets the caching inhibited storage attribute for the memory 
page containing the reset address, and also automatically flash invalidates the instruction cache. 
Subsequently, lines will not be placed into the instruction cache unless they are accessed by reference 
to a memory page for which the caching inhibited attribute has been turned off. If software 
subsequently turns on the caching inhibited storage attribute for such a page, software must make 
sure that no lines from that page remain valid in the instruction cache, before attempting to fetch and 
execute instructions from the (now caching inhibited) page.

3.2.2 Speculative Prefetch Mechanism

The ICC can be configured to automatically prefetch up to three more cache lines upon (in addition to the line being 
requested by the instruction unit) in response to a cache miss. This speculative prefetch only occurs on requests 
for lines from cacheable memory pages, and then only if enabled by the setting of certain fields in the Core 
Configuration Register 0 (CCR0) (see Figure 2-11 on page 61).

CCR0[ICSLC] specifies the number of additional cache lines (from 0 to 3) to speculatively prefetch upon an 
instruction cache miss. If this field is non-zero, upon an instruction cache miss, the ICC will first check the cache to 
see whether the additional lines are themselves already in the cache. If not, then the ICC will present a fixed-length 
burst request to the instruction PLB interface, requesting the additional cache line(s). The burst request is 
presented after the cache line request for the initial cache line requested by the instruction unit is presented and 
acknowledged on the PLB.

The speculative line fill mechanism will not request lines past the end of the minimum memory page size, which is 
1KB. That is, if the line requested by the instruction unit is at or near the end of an aligned 1KB boundary, the 
speculative prefetch mechanism will only request those additional lines specified by the CCR0[ICSLC] field that are 
also within the same 1KB page of memory. This allows the speculative prefetch mechanism to operate without 
having to access the Memory Management Unit (MMU) for a translation for the next page address.

Another field in the CCR0 register, CCR0[ICSLT], specifies a threshold value that is used to determine whether the 
speculative burst request should be abandoned prior to completion, as a result of a change in direction in the 
instruction stream (such as a branch or interrupt). If the instruction unit requests a new cache line and the new 
request is a hit in the instruction cache, both the original line fill request and any speculative burst request 
associated with it will be unaffected. Furthermore, if the new cache line requested by the instruction unit is a miss 
in the instruction cache, any prior request which has not yet been requested on the PLB interface will be cancelled, 
regardless of the value of CCR0[ICSLT]. However, if a prior speculative burst request has already been requested 
on the PLB interface, the value of CCR0[ICSLT] determines if and when the speculative burst request will be 
abandoned. CCR0[ICSLT] specifies the number of double words (8-byte units) of the current cache line which must 
already have been received by the ICC, in order that the filling of the current cache line will not be abandoned (note 
that in this context, the term “current” refers to the cache line with which the next PLB data transfer is associated, at 
the time that the ICC determines that it needs to request a new line). That is, if the ICC has already received the 
number of double words indicated by CCR0[ICSLT], the ICC will not terminate the burst until it has received that 
entire cache line. All additional lines beyond the one in progress at the time that the ICC determines that it needs to 
request a new line will be abandoned. For example, if CCR0[ICSLC] is set to 3, and the ICC is in the middle of 
receiving the data for the first of the three speculative lines at the time that the new instruction cache miss request 
is received from the instruction unit, the second and third lines of the speculative burst will be abandoned, and 
whether the first of the speculative lines is abandoned is controlled by CCR0[ICSLT].
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Since cache lines contain 32 bytes, there are four double words in each cache line. Thus, CCR0[ICSLT] can be set 
to a value from 0 to 3. If CCR0[ICSLT] = 0, the current line fill will be completed regardless of how many double 
words have already been received. Similarly, if CCR0[ICSLT] = 3, the current line fill will be abandoned if only two 
or fewer double words have been received by the ICC.

If at the time that the ICC determines that it needs to request a new line and abandon a speculative burst request, 
the ICC has still not received all of the data associated with the initial cache line request which prompted the 
speculative burst request, then this initial cache line is considered the “current” line, and the speculative burst 
request will be abandoned without filling any of the speculative lines, regardless of the setting of CCR0[ICSLT]. 
The filling of the initial cache line will be completed, however, as the PLB protocol does not provide for the 
abandonment of the cache line (non-burst) request type.

Regardless of the value of CCR0[ICSLT], any time that a cache line fill is abandoned such that all of the data for 
that cache line is not received, the line may still be used to bypass instructions to the instruction unit, but it will not 
be written into the instruction cache, and it will be overwritten in the ICLFD buffer as soon as instructions for a new 
line begin arriving from the PLB.

3.2.3 Instruction Cache Coherency

In general, the PPC440 does not automatically enforce coherency between the instruction cache, data cache, and 
memory. If the contents of memory location are changed, either within the data cache or within memory itself, and 
whether by the PPC440 through the execution of store instructions or by some other mechanism in the system 
writing to memory, software must use cache management instructions to ensure that the instruction cache is made 
coherent with these changes. This involves invalidating any obsolete copies of these memory locations within the 
instruction cache, so that they will be reread from memory the next time they are referenced by program execution.

3.2.3.1 Self-Modifying Code

To illustrate the use of the cache management instructions to enforce instruction cache coherency, consider the 
example of self-modifying code, whereby the program executing on the PPC440 stores new data to memory, with 
the intention of later branching to and executing this new “data,” which are actually instructions.

The following code example illustrates the required sequence for software to use when writing self-modifying code. 
This example assumes that addr1 references a cacheable memory page.

stw regN, addr1 # store the data (an instruction) in regN to addr1 in the data cache
dcbst addr1 # write the new instruction from the data cache to memory
msync # wait until the data actually reaches the memory
icbi addr1 # invalidate addr1 in the instruction cache if it exists
msync addr1 # wait for the instruction cache invalidation to take effect
isync # flush any prefetched instructions within the ICC and instruction

# unit and re-fetch them (an older copy of the instruction at addr1
# may have already been fetched)

At this point, software may begin executing the instruction at addr1 and be guaranteed that the new instruction will 
be recognized.

3.2.3.2 Instruction Cache Synonyms

A synonym is a cache line that is associated with the same real address as another cache line that is in the cache 
array at the same time. Such synonyms can occur when different virtual addresses are mapped to the same real 
address, and the virtual address is used either as an index to the cache array (a virtually-indexed cache) or as the 
cache line tag (a virtually-tagged cache). 
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The instruction cache on the PPC440 is real-indexed but virtually-tagged and thus it is possible for synonyms to 
exist in the cache. (The data cache on the other hand is both real-indexed and real-tagged, and thus cannot have 
any synonyms.) Because of this, special care must be taken when managing instruction cache coherency and 
attempting to invalidate lines in the cache.

As explained in Memory Management on page 103, the virtual address (VA) consists of the 32-bit effective 
address (EA; for instruction fetches, this is the address calculated by the instruction unit and sent to the ICC) 
combined with the 8-bit Process ID (PID) and the 1-bit address space (MSR[IS] for instruction fetches). As 
described in Table 3-2 on page 73, VA27:31 chooses the byte offset within the cache line, while VA23:26 is used as 
the index to select a set, and then the rest of the virtual address is used as the tag. The tag thus consists of EA0:22, 
the PID, and MSR[IS] (for instruction fetches; for cache management instructions such as icbi, MSR[DS] is used to 
specify the address space; see the instruction descriptions for the instruction cache management instructions for 
more information). The tag portion of the VA is compared against the corresponding tag fields of each cache line 
within the way selected by VA23:26.

Note that the address translation architecture of PowerPC Book-E is such that the low-order address bits 22:31 are 
always the same for the EA, VA, and real address (RA), because these bits are never translated due to the 
minimum page size being 1KB (these low-order 10 bits are always used for the byte offset within the page). As the 
page size increases, more and more low-order bits are used for the byte offset within the page, and thus fewer and 
fewer bits are translated between the VA and the RA (see Table 4-3 on page 111). Synonyms only become 
possible when the system-level memory management software establishes multiple mappings to the same real 
page, which by definition involves different virtual addresses (either through differences in the higher-order EA bits 
which make up the VA, or through different process IDs, or different address spaces, or some combination of these 
three portions of the VA).

A further requirement for synonyms to exist in the instruction cache is for more than one of the virtual pages which 
map to a given real page to have execute permission, and for these pages to be cacheable (cache lines associated 
with pages without execute permission, or for which the caching inhibited storage attribute is set, cannot be placed 
in the instruction cache).

If the system-level memory management software permits instruction cache synonyms to be created, then extra 
care must be taken when attempting to invalidate instruction cache lines associated with a particular address. If 
software desires to invalidate only the cache line which is associated with a specific VA, then only a single icbi 
instruction need be executed, specifying that VA. If, however, software wishes to invalidate all instruction cache 
lines which are associated with a particular RA, then software must issue an icbi instruction for each VA which has 
a mapping to that particular RA and for which a line might exist in the instruction cache. In order to do this, the 
memory management software must keep track of which mappings to a given RA exist (or ever existed, if a 
mapping has been removed but cache lines associated with it might still exist), so that icbi instructions can be 
executed using the necessary VAs.

Alternatively, software can execute an iccci instruction, which flash invalidates the entire instruction cache without 
regard to the addresses with which the cache lines are associated.
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3.2.4 Instruction Cache Control and Debug

The PPC440 provides various registers and instructions to control instruction cache operation and to help debug 
instruction cache problems.

3.2.4.1 Instruction Cache Management and Debug Instruction Summary

For detailed descriptions of the instructions summarized in this section, see Instruction Set on page 209 Also, see 
Instruction Cache Coherency on page 80 for more information on how these instructions are used to manage 
coherency in the instruction cache.

In the instruction descriptions, the term “block” describes the unit of storage operated on by the cache block 
instructions. For the PPC440, this is the same as a cache line.

The following instructions are used by software to manage the instruction cache:

icbi Instruction Cache Block Invalidate

Invalidates a cache block.

icbt Instruction Cache Block Touch

Initiates a block fill, enabling a program to begin a cache block fetch before the program needs 
an instruction in the block. The program can subsequently branch to the instruction address 
and fetch the instruction without incurring a cache miss.

See icbt Operation on page 83.

iccci Instruction Cache Congruence Class Invalidate

Flash invalidates the entire instruction cache. Execution of this instruction is privileged.

icread Instruction Cache Read

Reads a cache line (tag and data) from a specified index of the instruction cache, into a set of 
SPRs. Execution of this instruction is privileged.

See icread Operation on page 83.
82       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
3.2.4.2 Core Configuration Register 0 (CCR0)

The CCR0 register controls the speculative prefetch mechanism and the behavior of the icbt instruction. The 
CCR0 register also controls various other functions within the PPC440 that are unrelated to the instruction cache. 
Each of the these functions is discussed in more detail in the related sections of this manual. See Figure 2-11 on 
page 61 for the detailed bit assignment of the CCR0 register.

3.2.4.3 Core Configuration Register 1 (CCR1)

The CCR1 register controls parity error insertion for software testing, one option for line flush behavior in the D-
cache, and a control bit that selects the timer input clock. Each of the these functions is discussed in more detail in 
the related sections of this manual. See Figure 2-12 on page 64 for the detailed bit assignment of the CCR1 
register.

3.2.4.4 icbt Operation

The icbt instruction is typically used as a “hint” to the processor that a particular block of instructions is likely to be 
executed in the near future. Thus the processor can begin filling that block into the instruction cache, so that when 
the executing program eventually branches there the instructions will already be present in the cache, thereby 
improving performance.

Of course, it would not typically be advantageous if the filling of the cache line requested by the icbt itself caused a 
delay in the fetching of instructions needed by the currently executing program. For this reason, the default 
behavior of the icbt instruction is for it to have the lowest priority for sending a request to the PLB. If a subsequent 
instruction cache miss occurs due to a request from the instruction unit, then the line fill for the icbt will be 
abandoned (if it has not already been acknowledged on the PLB).

On the other hand, the icbt instruction can also be used as a convenient mechanism for setting up a fixed, known 
environment within the instruction cache. This is useful for establishing contents for cache line locking, or for 
deterministic performance on a particular sequence of code, or even for debugging of low-level hardware and 
software problems.

When being used for these latter purposes, it is important that the icbt instruction deliver a deterministic result, 
namely the guaranteed establishment in the cache of the specified line. Accordingly, the PPC440 provides a field 
in the CCR0 register that can be used to cause the icbt instruction to operate in this manner. Specifically, when the 
CCR0 [GICBT] field is set, the execution of icbt is guaranteed to establish the specified cache line in the instruction 
cache (assuming that a TLB entry for the referenced memory page exists and has both read and execute 
permission, and that the caching inhibited storage attribute is not set). The cache line fill associated with such a 
guaranteed icbt will not be abandoned due to subsequent instruction cache misses.

Operation of the icbt instruction is affected by the CCR1[FCOM] bit, which forces the icbt to appear to miss the 
cache, even if it should really be a hit. This causes two copies of the line to be established in the cache, simulating 
a multi-hit parity error. See Simulating Instruction Cache Parity Errors for Software Testing on page 85.

3.2.4.5 icread Operation

The icread instruction can be used to directly read both the tag and instruction information of a specified word in a 
specified entry of the instruction cache. The instruction information is read into the Instruction Cache Debug Data 
Register (ICDBDR), while the tag information is read into a pair of SPRs, the Instruction Cache Debug Tag 
Register High (ICDBTRH) and Instruction Cache Debug Tag Register Low (ICDBTRL). From there, the information 
can subsequently be moved into GPRs using mfspr instructions.
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The execution of the icread instruction generates the equivalent of an EA, which is then broken down and used to 
select a specific instruction word from a specific cache line. EA0:16 are ignored, EA17:22 select the way, EA23:26 
select the set, and EA27:29 select the word.

The EA generated by the icread instruction must be word-aligned (that is, EA30:31 must be 0); otherwise, it is a 
programming error and the result is undefined.

If the CCR0[CRPE] bit is set, execution of the icread instruction also loads parity information into the ICBDTRH. 

Execution of the icread instruction is privileged, and is intended for use for debugging purposes only.

Programming Note:

The PPC440 does not automatically synchronize context between an icread instruction and the 
subsequent mfspr instructions which read the results of the icread instruction into GPRs. In order to 
guarantee that the mfspr instructions obtain the results of the icread instruction, a sequence such as 
the following must be used:

icread regA,regB # read cache information (the contents of GPR A and GPR B are 
# added and the result used to specify a cache line index to be read)

isync # ensure icread completes before attempting to read results
mficdbdr regC # move instruction information into GPR C
mficdbtrh regD # move high portion of tag into GPR D
mficdbtrl regE # move low portion of tag into GPR E

The following figures illustrate the ICDBDR, ICDBTRH, and ICDBTRL registers.

  

   

Figure 3-5. Instruction Cache Debug Data Register (ICDBDR) 

0:31 Instruction machine code from instruction cache

Figure 3-6. Instruction Cache Debug Tag Register High (ICDBTRH) 

0:23  Tag Effective Address Bits 0:23 of the 32-bit effective address associated 
with the cache line read by icread.

24 V
Cache Line Valid
0 Cache line is not valid.
1 Cache line is valid.

The valid indicator for the cache line read by 
icread.

25:26 TPAR Tag Parity The parity bits for the address tag for the cache line 
read by icread, if CCR0[CRPE] is set.

27 DAPAR Instruction Data parity
The parity bit for the instruction word at the 32-bit 
effective address specified in the icread instruc-
tion, if CCR0[CRPE] is set.

28:31 Reserved
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3.2.4.6 Instruction Cache Parity Operations

The instruction cache contains parity bits and multi-hit detection hardware to protect against soft data errors. Both 
the instruction tags and data are protected. Instruction cache lines consist of a tag field, 256 bits of data, and 10 
parity bits. The tag field is stored in CAM (Content Addressable Memory) cells, while the data and parity bits are 
stored in normal RAM cells. The instruction cache is real-indexed but virtually-tagged, so the tag field contains a 
TID field that is compared to the PID value, a TD bit that can be set to disable the TID comparison for shared 
pages, and the effective address bits to be compared to the fetch request. The exact number of effective address 
bits depends on the specific cache size.

Two types of errors may be detected by the instruction cache parity logic. In the first type, the parity bits stored in 
the RAM array are checked against the appropriate data in the instruction cache line when the RAM line is read for 
an instruction fetch. Note that a parity error will not be signaled as a result of an icread instruction.

The second type of parity error that may be detected is a multi-hit, sometimes referred to as an MHIT. This type of 
error may occur when a tag address bit is corrupted, leaving two tags in the instruction cache array that match the 
same input address. Multi-hit errors may be detected on any instruction fetch. No parity errors of any kind are 
detected on speculative fetch lookups or icbt lookups, Rather, such lookups are treated as cache hits and cause 
no further action until an instruction fetch lookup at the offending address causes an error to be detected.

If a parity error is detected, and the MSR[ME] is asserted, (i.e., Machine Check interrupts are enabled), the 
processor vectors to the Machine Check interrupt handler. As is the case for any Machine Check interrupt, after 
vectoring to the machine check handler, the MCSRR0 contains the value of the oldest “uncommitted” instruction in 
the pipeline at the time of the exception and MCSRR1 contains the old Machine Status Register (MSR) context. 
The interrupt handler is able to query Machine Check Status Register (MCSR) to find out that it was called due to a 
instruction cache parity error, and is then expected to invalidate the I-cache (using iccci). The handler returns to 
the interrupted process using the rfmci instruction.

As long as parity checking and machine check interrupts are enabled, instruction cache parity errors are always 
recoverable. That is, they are detected and cause a machine check interrupt before the parity error can cause the 
machine to update the architectural state with corrupt data. Also note that the machine check interrupt is 
asynchronous; that is, the return address in the MCSRR0 does not point at the instruction address that contains 
the parity error. Rather, the Machine Check interrupt is taken as soon as the parity error is detected, and some 
instructions in progress will get flushed and re-executed after the interrupt, just as if the machine were responding 
to an external interrupt. 

3.2.4.7 Simulating Instruction Cache Parity Errors for Software Testing

Because parity errors occur in the cache infrequently and unpredictably, it is desirable to provide users with a way 
to simulate the effect of an instruction cache parity error so that interrupt handling software may be exercised. This 
is exactly the purpose of the CCR1[ICDPEI], CCR1[ICTPEI], and CCR1[FCOM] fields. 

Figure 3-7. Instruction Cache Debug Tag Register Low (ICDBTRL) 

0:21 Reserved

22 TS Translation Space The address space portion of the virtual address 
associated with the cache line read by icread.

23 TD
Translation ID (TID) Disable
0 TID enable
1 TID disable

TID Disable field for the memory page associated 
with the cache line read by icread.

24:31 TID Translation ID TID field portion of the virtual address associated 
with the cache line read by icread.
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There are 10 parity bits stored in the RAM cells of each instruction cache line. Two of those bits hold the parity for 
the tag information, and the remaining 8 bits hold the parity for each of the 8 32-bit instruction words in the line. 
(There are two parity bits for the tag data because the parity is calculated for alternating bits of the tag field, to 
guard against a single particle strike event that upsets two adjacent bits. The instruction data bits are physically 
interleaved in such a way as to allow the use of a single parity bit per instruction word.) The parity bits are 
calculated and stored as the line is filled into the cache. Usually parity is calculated as the even parity for each set 
of bits to be protected, which the checking hardware expects. However, if any of the CCR1[ICTPEI] bits are set, the 
calculated parity for the corresponding bits of the tag are inverted and stored as odd parity. Similarly, if any of the 
CCR1[ICDPEI] bits are set, the parity for the corresponding instruction word is set to odd parity. Then, when the 
instructions stored with odd parity are fetched, they will cause a Parity exception type Machine Check interrupt and 
exercise the interrupt handling software. The following pseudo-code is an example of how to use the 
CCR1[ICDPEI] field to simulate a parity error on word 0 of a target cache line:

; make sure all this code in the cache before execution
icbi <target line address> ; get the target line out of the cache
msync ; wait for the icbi
mtspr CCR1, 0x80000000 ; Set CCR1[ICDPEI0]
isync ; wait for the CCR1 context to update
icbt <target line address> ; this line fills and sets odd parity for word 0
msync ; wait for the fill to finish
mtspr CCR1, 0x0 ; Reset CCR1[ICDPEI0]
isync ; wait for the CCR1 context to update
br <word 0 of target line> ; fetching the target of the branch causes interrupt

Note that any instruction lines filled while bits are set in the CCR1[ICDPEI] or CCR1[ICTPEI] field will be affected, 
so users must code carefully to affect only the intended addresses.

The CCR1[FCOM] (Force Cache Operation Miss) bit enables the simulation of a multi-hit parity error. When set, it 
will cause an icbt to appear to be a miss, initiating a line fill, even if the line is really already in the cache. Thus, this 
bit allows the same line to be filled to the cache multiple times, which will generate a multi-hit parity error when an 
attempt is made to fetch an instruction from those cache lines. The following pseudo-code is an example of how to 
use the CCR1[FCOM] field to simulate a multi-hit parity error in the instruction cache:

; make sure all this code is cached and the “target line” is also
; in the cache before execution (use icbt as necessary)
mtspr CCR1, 0x00010000 ; Set CCR1[FCOM]
isync ; wait for the CCR1 context to update
icbt <target line address> ; this line fills a second copy of the target line
msync ; wait for the fill to finish
mtspr CCR1, 0x0 ; Reset CCR1[FCOM]
isync ; wait for the CCR1 context to update
br <word 0 of target line> ; fetching the target of the branch causes interrupt

3.3 Data Cache Controller

The data cache controller (DCC) handles the execution of the storage access instructions, moving data between 
memory, the data cache, and the PPC440 GPR file. The DCC interfaces to the PLB using two independent 128-bit 
interfaces, one for read operations and one for writes. The DCC handles frequency synchronization between the 
PPC440 and the PLB, and can operate at any ratio of n:1, n:2, and n:3, where n is an integer greater than the 
corresponding denominator.

The DCC also handles the execution of the PowerPC data cache management instructions, for touching 
(prefetching), flushing, invalidating, or zeroing cache lines, or for flash invalidation of the entire cache. Resources 
for controlling and debugging the data cache operation are also provided.
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Extensive load, store, and flush queues are also provided, such that up to three outstanding line fills, up to four 
outstanding load misses, and up to two outstanding line flushes can be pending, with the DCC continuing to 
service subsequent load and store hits in an out-of-order fashion.

The rest of this section describes each of these functions in more detail.

3.3.1 DCC Operations

When the DCC executes a load, store, or data cache management instruction, the DCC first translates the 
effective address specified by the instruction into a real address (see Memory Management on page 103 for more 
information on address translation). Next, the DCC searches the data cache array for the cache line associated 
with the real address of the requested data. If the cache line is found in the array (a cache hit), that cache line is 
used to satisfy the request, according to the type of operation (load, store, and so on).

If the cache line is not found in the array (a cache miss), the next action depends upon the type of instruction being 
executed, as well as the storage attributes of the memory page containing the data being accessed. For most 
operations, and assuming the memory page is cacheable (see Caching Inhibited (I) on page 115), the DCC will 
send a request for the entire cache line (32 bytes) to the data read PLB interface. The request to the data read PLB 
interface is sent using the specific byte address requested by the instruction, so that the memory subsystem may 
read the cache line target word first (if it supports such operation) and supply the specific byte[s] requested before 
retrieving the rest of the cache line.

While the DCC is waiting for a cache line read to complete, it can continue to process subsequent instructions, and 
handle those accesses that hit in the data cache. That is, the data cache is completely non-blocking.

As the DCC receives each portion of the cache line from the data read PLB interface, it is placed into one of three 
data cache line fill data (DCLFD) buffers. Data from these buffers may be bypassed to the GPR file to satisfy load 
instructions, without waiting for the entire cache line to be filled. Once the entire cache line has been filled into the 
buffer, it will be written into the data cache at the first opportunity (either when the data cache is otherwise idle, or 
when subsequent operations require that the DCLFD buffer be written to the data cache). 

If a memory subsystem error (such as an address time-out, invalid address, or some other type of hardware error 
external to the PPC440) occurs during the filling of the cache line, the line will still be written into the data cache, 
and data from the line may still be delivered to the GPR file for load instructions. However, the DCC will also report 
a Data Machine Check exception to the instruction unit of the PPC440, and a Machine Check interrupt (if enabled) 
will result. See Machine Check Interrupt on page 144 for more information on Machine Check interrupts.

Once a data cache line read request has been made, the entire line read will be performed and the line will be 
written into the data cache, regardless of whether or not the instruction stream branches (or is interrupted) away 
from the instruction which prompted the initial line read request. That is, if a data cache line read is initiated 
speculatively, before knowing whether or not a given instruction execution is really required (for example, on a load 
instruction which is after an unresolved branch), that line read will be completed, even if it is later determined that 
the cache line is not really needed. The DCC never aborts any PLB request once it has been made, except when a 
processor reset occurs while the PLB request is being made.

In general, the DCC will initiate memory read requests without waiting to determine whether the access is actually 
required by the sequential execution model (SEM). That is, the request will be initiated speculatively, even if the 
instruction causing the request might be abandoned due to a branch, interrupt, or other change in the instruction 
flow. Of course, write requests to memory cannot be initiated speculatively, although a line fill request in response 
to a cacheable store access which misses in the data cache could be.
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On the other hand, if the guarded storage attribute is set for the memory page being accessed, then the memory 
request will not be initiated until it is guaranteed that the access is required by the SEM. Once initiated, the access 
will not be abandoned, and the instruction is guaranteed to complete, prior to any change in the instruction stream. 
That is, if the instruction stream is interrupted, then upon return the instruction execution will resume after the 
instruction which accessed guarded storage, such that the guarded storage access will not be re-executed.

See Guarded (G) on page 115 for more information on accessing guarded storage.

Programming Note:

It is a programming error for a load, store, or dcbz instruction to reference a valid cache line in the data 
cache if the caching inhibited storage attribute is set for the memory page containing the cache line. 
The result of such an access is undefined. After processor reset, hardware automatically sets the 
caching inhibited storage attribute for the memory page containing the reset address, and software 
should flash invalidate the data cache (using dccci; see Data Cache Management and Debug 
Instruction Summary on page 94) before executing any load, store, or dcbz instructions. 
Subsequently, lines will not be placed into the data cache unless they are accessed by reference to a 
memory page for which the caching inhibited attribute has been turned off. If software subsequently 
turns on the caching inhibited storage attribute for such a page, software must make sure that no lines 
from that page remain valid in the data cache (typically by using the dcbf instruction), before 
attempting to access the (now caching inhibited) page with load, store, or dcbz instructions.

The only instructions that are permitted to reference a caching inhibited line which is a hit in the data 
cache are the cache management instructions dcbst, dcbf, dcbi, dccci, and dcread. The dcbt and 
dcbtst instructions have no effect if they reference a caching inhibited address, regardless of whether 
the line exists in the data cache.

3.3.1.1 Load and Store Alignment

The DCC implements all of the integer load and store instructions defined for 32-bit implementations by the 
PowerPC Book-E architecture. These include byte, half word, and word loads and stores, as well as load and store 
string (0 to 127 bytes) and load and store multiple (1 to 32 registers) instructions. Integer byte, half word, and word 
loads and stores are performed with a single access to memory if the entire data operand is contained within an 
aligned 16-byte (quad word) block of memory, regardless of the actual operand alignment within that block. If the 
data operand crosses a quad word boundary, the load or store is performed using two accesses to memory.

The load and store string and multiple instructions are performed using one memory access for each four bytes, 
unless and until an access would cross an aligned quad word boundary. The access that would cross the boundary 
is shortened to access just the number of bytes left within the current quad word block, and then the accesses are 
resumed with four bytes per access, starting at the beginning of the next quad word block, until the end of the load 
or store string or multiple is reached.

The DCC handles all misaligned integer load and store accesses in hardware, without causing an Alignment 
exception. However, the control bit CCR0[FLSTA] can be set to force all misaligned storage access instructions to 
cause an Alignment exception (see Figure 2-11 on page 61). When this bit is set, all integer storage accesses 
must be aligned on an operand-size boundary, or an Alignment exception will result. Load and store multiple 
instructions must be aligned on a 4-byte boundary, while load and store string instructions can be aligned on any 
boundary (these instructions are considered to reference byte strings, and hence the operand size is a byte).

3.3.1.2 Load Operations

Load instructions that reference cacheable memory pages and miss in the data cache result in cache line read 
requests being presented to the data read PLB interface. Load operations to caching inhibited memory pages, 
however, will only access the bytes specifically requested, according to the type of load instruction. This behavior 
(of only accessing the requested bytes) is only architecturally required when the guarded storage attribute is also 
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set, but the DCC will enforce this requirement on any load to a caching inhibited memory page. Subsequent load 
operations to the same caching inhibited locations will cause new requests to be sent to the data read PLB 
interface (data from caching inhibited locations will not be reused from the DCLFD buffer).

The DCC includes three DCLFD buffers, such that a total of three independent data cache line fill requests can be 
in progress at one time. The DCC can continue to process subsequent load and store accesses while these line 
fills are in progress.

The DCC also includes a 4-entry load miss queue (LMQ), which holds up to four outstanding load instructions that 
have either missed in the data cache or access caching inhibited memory pages. Collectively, any LMQ entries 
which reference cacheable memory pages can reference no more than three different cache lines, since there are 
only three DCLFD buffers. A load instruction in the LMQ remains there until the requested data arrives in the 
DCLFD buffer, at which time the data is delivered to the register file and the instruction is removed from the LMQ.

3.3.1.3 Store Operations

The processing of store instructions in the DCC is affected by several factors, including the caching inhibited (I), 
write-through (W), and guarded (G) storage attributes, as well as whether or not the allocation of data cache lines 
is enabled for cacheable store misses. There are three different behaviors to consider:

• Whether a data cache line is allocated (if the line is not already in the data cache)

• Whether the data is written directly to memory or only into the data cache

• Whether the store data can be gathered with store data from previous or subsequent store instructions before 
being written to memory

Allocation of Data Cache Line on Store Miss

Of course, if the caching inhibited attribute is set for the memory page being referenced by the store instruction, no 
data cache line will be allocated. For cacheable store accesses, allocation is controlled by one of two mechanisms: 
either by a “global” control bit in the Memory Management Unit Control Register (MMUCR), which is applied to all 
cacheable store accesses regardless of address; or by the U2 storage attribute for the memory page being 
accessed. See Memory Management Unit Control Register (MMUCR) on page 117 for more information on how 
store miss cache line allocation is controlled.

Regardless of which mechanism is controlling the allocation, if the corresponding bit is set, the cacheable store 
miss is handled as a store without allocate (SWOA). That is, if SWOA is indicated, then if the access misses in the 
data cache, then the line will not be allocated (read from memory), and instead the byte[s] being stored will be 
written directly to memory. Of course, if the cache line has already been allocated and is being read into a DCLFD 
buffer (due perhaps to a previous cacheable load access), then the SWOA indication is ignored and the access is 
treated as if it were a store with allocate. Similarly, if SWOA is not indicated, the cache line will be allocated and the 
cacheable store miss will result in the cache line being read from memory.

Direct Write to Memory

Of course, if the caching inhibited attribute is set for the memory page being referenced by the store instruction, the 
data must be written directly to memory. For cacheable store accesses that are also write-through, the store data 
will also be written directly to memory, regardless of whether the access hits in the data cache, and independent of 
the SWOA mechanism. For cacheable store accesses that are not write through, whether the data is written 
directly to memory depends on both whether the access hits or misses in the data cache, and the SWOA 
mechanism. If the access is either a hit in the data cache, or if SWOA is not indicated, then the data will only be 
written to the data cache, and not to memory. Conversely, if the cacheable store access is both a miss in the data 
cache and SWOA is indicated, the access will be treated as if it were caching inhibited and the data will be written 
directly to memory and not to the data cache (since the data cache line is neither there already nor will it be 
allocated).
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Store Gathering

In general, memory write operations caused by separate store instructions that specify locations in either write-
through or caching inhibited storage may be gathered into one simultaneous access to memory. Similarly, store 
accesses that are handled as if they were caching inhibited (due to their being both a miss in the data cache and 
being indicated as SWOA) may be gathered. Store accesses that are only written into the data cache do not need 
to be gathered, because there is no performance penalty associated with the separate accesses to the array.

A given sequence of two store operations may only be gathered together if the targeted bytes are contained within 
the same aligned quad word of memory, and if they are contiguous with respect to each other. Subsequent store 
operations may continue to be gathered with the previously gathered sequence, subject to the same two rules 
(same aligned quad word and contiguous with the collection of previously gathered bytes). For example, a 
sequence of three store word operations to addresses 4, 8, and 0 may all be gathered together, as the first two are 
contiguous with each other, and the third (store word to address 0) is contiguous with the gathered combination of 
the previous two.

An additional requirement for store gathering applies to stores which target caching inhibited memory pages. 
Specifically, a given store to a caching inhibited page can only be gathered with previous store operations if the 
bytes targeted by the given store do not overlap with any of the previously gathered bytes. In other words, a store 
to a caching inhibited page must be both contiguous and non-overlapping with the previous store operation(s) with 
which it is being gathered. This ensures that the multiple write operations associated with a sequence of store 
instructions which each target a common caching inhibited location will each be performed independently on that 
target location.

Finally, a given store operation will not be gathered with an earlier store operation if it is separated from the earlier 
store operation by an msync or an mbar instruction, or if either of the two store operations reference a memory 
page which is both guarded and caching inhibited, or if store gathering is disabled altogether by CCR0[DSTG] (see 
Figure 2-11 on page 61).
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Table 3-3 summarizes how the various storage attributes and other circumstances affect the DCC behavior on 
store accesses.  

3.3.1.4 Line Flush Operations

When a store operation (or the dcbz instruction) writes data into the data cache without also writing the data to 
main memory, the cache line is said to become dirty, meaning that the data in the cache is the current value, 
whereas the value in memory is obsolete. Of course, when such a dirty cache line is replaced (due, for example, to 
a new cache line fill overwriting the existing line in the cache), the data in the cache line must be copied to memory. 
Otherwise, the results of the previous store operation[s] that caused the cache line to be marked as dirty would be 
lost. The operation of copying a dirty cache line to memory is referred to as a cache line flush. Cache lines are 
flushed either due to being replaced when a new cache line is filled, or in response to an explicit software flush 
request associated with the execution of a dcbst or dcbf instruction.

The DCC implements four dirty bits per cache line, one for each aligned double word within the cache line. 
Whenever any byte of a given double word is stored into a data cache line without also writing that same byte to 
memory, the corresponding dirty bit for that cache line is set (if CCR1[FFF] is set, then all four dirty bits are set 
instead of just the one corresponding dirty bit). When a data cache line is flushed, the type of request made to the 
data write PLB interface depends upon which dirty bits associated with the line are set, and the state of the 
CCR1[FFF] bit. If the CCR1[FFF] bit is set, the request will always be for an entire 32-byte line. Most users will 
leave the CCR1[FFF] reset to zero, in which case the controller minimizes the size of the transfer by the following 
algorithm. If only one dirty bit is set, the request type will be for a single double word write. If only two dirty bits are 
set, and they are in the same quad word, then the request type will be for a 16-byte line write. If two or more dirty 

Table 3-3. Data Cache Behavior on Store Accesses 

Store Access Attributes DCC Actions

Caching
Inhibited

(I)
Hit/Miss SWOA

Write
through

(W)
Guarded

(G)
Write

Cache?
Write

Memory? Gather?1

0 Hit — 0 — Yes No N/A

0 Hit — 1 0 Yes Yes Yes

0 Hit — 1 1 Yes Yes No

0 Miss 0 0 — Yes No N/A

0 Miss 0 1 0 Yes Yes Yes

0 Miss 0 1 1 Yes Yes No

0 Miss 1 — 0 No Yes Yes

0 Miss 1 — 1 No Yes No

1 —2 — —3 0 No Yes Yes4

1 —2 — —3 1 No Yes No

Note 1: If store gathering is disabled altogether (by setting CCR0[DSTG] to 1), then such gathering will not occur, regardless of the 
indication in this table. Furthermore, where this table indicates that store gathering may occur it is presumed that the operations 
being gathered are targeting the same aligned quad word of memory, and are contiguous with respect to each other.

Note 2: It is a programming error for a data cache hit to occur on a store access to a caching inhibited page. The result of such an 
access is undefined.

Note 3: It is programming error for the write-through storage attribute to be set for a page which also has the caching inhibited storage 
attribute set. The result of an access to such a page is undefined.

Note 4: Stores to caching inhibited memory locations may only be gathered with previous store operations if none of the targeted bytes 
overlap with the bytes targeted by the previous store operations.
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bits are set, and they are in different quad words, the request type will be for an entire 32-byte line write. 
Regardless of the type of request generated by a cache line flush, the address is always specified as the first byte 
of the request.

If a store access occurs to a cache line in a memory page for which the write-through storage attribute is set, the 
dirty bits for that cache line do not get updated, since such a store access will be written directly to memory (and 
into the data cache as well, if the access is either a hit or if the cache line is allocated upon a miss).

On the other hand, it is permissible for there to exist multiple TLB entries that map to the same real memory page, 
but specify different values for the write-through storage attribute. In this case, it is possible for a store operation to 
a virtual page which is marked as non-write-through to have caused the cache line to be marked as dirty, so that a 
subsequent store operation to a different virtual page mapped to the same real page but marked as write-through 
encounters a dirty line in the data cache. If this happens, the store to the write-through page will write the data for 
the store to both the data cache and to memory, but it will not modify the dirty bits for the cache line.

3.3.1.5 Data Read PLB Interface Requests

When a PLB read request results from an access to a cacheable memory location, the request is always for a 32-
byte line read, regardless of the type and size of the access that prompted the request. The address presented will 
be for the first byte of the target of the access.

On the other hand, when a PLB read request results from an access to a caching-inhibited memory location, only 
the byte[s] specifically accessed will be requested from the PLB, according to the type of instruction prompting the 
access. The following types of PLB read requests can occur due to caching inhibited requests:

• 1-byte read (any byte address 0–15 within a quad word)

• 2-byte read (any byte address 0–14 within a quad word)

• 3-byte read (any byte address 0–13 within a quad word)

• 4-byte read (any byte address 0–12 within a quad word)

• 8-byte read (any byte address 0–8 within a quad word)

This request can only occur due to a double word floating-point or AP load instruction

• 16-byte line fill (must be for byte address 0 of a quad word)

This request can only occur due to a quad word AP load instruction

3.3.1.6 Data Write PLB Interface Requests

When a PLB write request results from a data cache line flush, the specific type and size of the request is as 
described in Line Flush Operations on page 91.

When a PLB write request results from store operations to caching-inhibited, write-through, and/or store without 
allocate (SWOA) memory locations, the type and size of the request can be any one of the following (this list 
includes the possible effects of store gathering; see Store Gathering on page 90):

• 1-byte write request (any byte address 0–15 within a quad word)

• 2-byte write request (any byte address 0–14 within a quad word)

• 3-byte write request (any byte address 0–13 within a quad word)

• 4-byte write request (any byte address 0–12 within a quad word)

• 5-byte write request (any byte address 0–11 within a quad word)

Only possible due to store gathering
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• 6-byte write request (any byte address 0–10 within a quad word)

Only possible due to store gathering

• 7-byte write request (any byte address 0–9 within a quad word)

Only possible due to store gathering

• 8-byte write request (any byte address 0–8 within a quad word)

Only possible due to store gathering, or due to a floating-point or AP doubleword store

• 9-byte write request (any byte address 0–7 within a quad word)

Only possible due to store gathering

• 10-byte write request (any byte address 0–6 within a quad word)

Only possible due to store gathering

• 11-byte write request (any byte address 0–5 within a quad word)

Only possible due to store gathering

• 12-byte write request (any byte address 0–4 within a quad word)

Only possible due to store gathering

• 13-byte write request (any byte address 0–3 within a quad word)

Only possible due to store gathering

• 14-byte write request (any byte address 0–2 within a quad word)

Only possible due to store gathering

• 15-byte write request (any byte address 0–1 within a quad word)

Only possible due to store gathering

• 16-byte line write request (must be to byte address 0 of a quad word)

Only possible due to store gathering, or due to an AP quad word store

3.3.1.7 Storage Access Ordering

In general, the DCC can perform load and store operations out-of-order with respect to the instruction stream. That 
is, the memory accesses associated with a sequence of load and store instructions may be performed in memory 
in an order different from that implied by the order of the instructions. For example, loads can be processed ahead 
of earlier stores, or stores can be processed ahead of earlier loads. Also, later loads and stores that hit in the data 
cache may be processed before earlier loads and stores that miss in the data cache.

The DCC does enforce the requirements of the SEM, such that the net result of a sequence of load and store 
operations is the same as that implied by the order of the instructions. This means, for example, that if a later load 
reads the same address written by an earlier store, the DCC guarantees that the load will use the data written by 
the store, and not the older “pre-store” data. But the memory subsystem could still see a read access associated 
with an even later load before it sees the write access associated with the earlier store.

If the DCC needs to make a read request to the data read PLB interface, and this request conflicts with (that is, 
references one or more of the same bytes as) an earlier write request which is being made to the data write PLB 
interface, the DCC will withhold the read request from the data read PLB interface until the write request has been 
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acknowledged on the data write PLB interface. Once the earlier write request has been acknowledged, the read 
request will be presented, and it is the responsibility of the PLB subsystem to ensure that the data returned for the 
read request reflects the value of the data written by the write operation.

Conversely, if a write request conflicts with an earlier read request, the DCC will withhold the write request until the 
read request has been acknowledged, at which point it is the responsibility of the PLB subsystem to ensure that the 
data returned for the read request does not reflect the newer data being written by the write request.

The PPC440 provides storage synchronization instructions to enable software to control the order in which the 
memory accesses associated with a sequence of instructions are performed. See Storage Ordering and 
Synchronization on page 68 for more information on the use of these instructions.

3.3.2 Data Cache Coherency

The PPC440 does not enforce the coherency of the data cache with respect to alterations of memory performed by 
entities other than the PPC440. Similarly, if entities other than the PPC440 attempt to read memory locations which 
currently exist within the PPC440 data cache and in a modified state, the PPC440 does not recognize such 
accesses and thus will not respond to such accesses with the modified data from the cache. In other words, the 
data cache on the PPC440 is not a snooping data cache, and there is no hardware enforcement of data cache 
coherency with memory with respect to other entities in the system which access memory.

It is the responsibility of software to manage this coherency through the appropriate use of the caching inhibited 
storage attribute, the write-through storage attribute, and/or the data cache management instructions.

3.3.3 Data Cache Control and Debug

The PPC440 provides various registers and instructions to control data cache operation and to help debug data 
cache problems.

3.3.3.1 Data Cache Management and Debug Instruction Summary

For detailed descriptions of the instructions summarized in this section, see Instruction Set on page 209

In the instruction descriptions, the term “block” describes the unit of storage operated on by the cache block 
instructions. For the PPC440, this is the same as a cache line.

The following instructions are used by software to manage the data cache.

dcba Data Cache Block Allocate

This instruction is implemented as a nop on the PPC440.

dcbf Data Cache Block Flush

Writes a cache block to memory (if the block has been modified) and then invalidates the block.

dcbi Data Cache Block Invalidate

Invalidates a cache block. Any modified data is discarded and not flushed to memory.

Execution of this instruction is privileged.

dcbst Data Cache Block Store

Writes a cache block to memory (if the block has been modified) and leaves the block valid but 
marked as unmodified.
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3.3.3.2 Core Configuration Register 0 (CCR0)

The CCR0 register controls the behavior of the dcbt instruction, the handling of misaligned memory accesses, and 
the store gathering mechanism. The CCR0 register also controls various other functions within the PPC440 that 
are unrelated to the data cache. Each of these functions is discussed in more detail in the related sections of this 
manual.

Figure 2-11 on page 61 illustrates the fields of the CCR0 register.

3.3.3.3 Core Configuration Register 1 (CCR1)

The CCR1 register controls the behavior of the line flushes in response to cast-outs or dcbf or dcbst instructions. 
It also contains bits to control the artificial injection of parity errors for software testing purposes. Some of those bits 
affect the data cache, while other control the MMU or instruction cache. Each of these functions is discussed in 
more detail in the related sections of this manual.

Figure 2-12 on page 64 illustrates the fields of the CCR1 register.

3.3.3.4 dcbt and dcbtst Operation

The dcbt instruction is typically used as a “hint” to the processor that a particular block of data is likely to be 
referenced by the executing program in the near future. Thus the processor can begin filling that block into the data 
cache, so that when the executing program eventually performs a load from the block it will already be present in 
the cache, thereby improving performance.

The dcbtst instruction is typically used for a similar purpose, but specifically for cases where the executing 
program is likely to store to the referenced block in the near future. The differentiation in the purpose of the dcbtst 
instruction relative to the dcbt instruction is only relevant within shared-memory systems with hardware-enforced 
support for cache coherency. In such systems, the dcbtst instruction would attempt to establish the block within 
the data cache in such a fashion that the processor would most readily be able to subsequently write to the block 
(for example, in a processor with a MESI-protocol cache subsystem, the block might be obtained in Exclusive 

dcbt Data Cache Block Touch

Initiates a cache block fill, enabling the fill to begin prior to the executing program requiring any 
data in the block. The program can subsequently access the data in the block without incurring 
a cache miss.

dcbtst Data Cache Block Touch for Store

Implemented identically to the dcbt instruction.

dcbz Data Cache Block Set to Zero

Establishes a cache line in the data cache and sets the line to all zeros, without first reading the 
previous contents of the cache block from memory, thereby improving performance. All four 
doublewords in the line are marked as dirty.

dccci Data Cache Congruence Class Invalidate

Flash invalidates the entire data cache. Execution of this instruction is privileged.

dcread Data Cache Read

Reads a cache line (tag and data) from a specified index of the data cache, into a GPR and a 
pair of SPRs. Execution of this instruction is privileged.

See dcread Operation on page 96.
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state). However, because the PPC440 does not provide support for hardware-enforced cache coherency, the 
dcbtst instruction is handled in an identical fashion to the dcbt instruction. The rest of this section thus makes 
reference only to the dcbt instruction, but in all cases the information applies to dcbtst as well.

Of course, it would not typically be advantageous if the filling of the cache line requested by the dcbt itself caused 
a delay in the reading of data needed by the currently executing program. For this reason, the default behavior of 
the dcbt instruction is for it to be ignored if the filling of the requested cache block cannot be immediately 
commenced and waiting for such commencement would result in the DCC execution pipeline being stalled. For 
example, the dcbt instruction will be ignored if all three DCLFD buffers are already in use, and execution of 
subsequent storage access instructions is pending.

On the other hand, the dcbt instruction can also be used as a convenient mechanism for setting up a fixed, known 
environment within the data cache. This is useful for establishing contents for cache line locking, or for 
deterministic performance on a particular sequence of code, or even for debugging of low-level hardware and 
software problems.

When being used for these latter purposes, it is important that the dcbt instruction deliver a deterministic result, 
namely the guaranteed establishment in the cache of the specified line. Accordingly, the PPC440 provides a field 
in the CCR0 register which can be used to cause the dcbt instruction to operate in this manner. Specifically, when 
the CCR0 [GDCBT] field is set, the execution of dcbt is guaranteed to establish the specified cache line in the data 
cache (assuming that a TLB entry for the referenced memory page exists and has read permission, and that the 
caching inhibited storage attribute is not set). The cache line fill associated with such a guaranteed dcbt will occur 
regardless of any potential instruction execution-stalling circumstances within the DCC.

Operation of the dcbt instruction is affected by the CCR1[FCOM] bit, which forces the dcbt to appear to miss the 
cache, even if it should really be a hit. This causes two copies of the line to be established in the cache, simulating 
a multi-hit parity error. See Simulating Data Cache Parity Errors for Software Testing on page 100.

3.3.3.5 dcread Operation

The dcread instruction can be used to directly read both the tag information and a specified data word in a 
specified entry of the data cache. The data word is read into the target GPR specified in the instruction encoding, 
while the tag information is read into a pair of SPRs, Data Cache Debug Tag Register High (DCDBTRH) and Data 
Cache Debug Tag Register Low (DCDBTRL). The tag information can subsequently be moved into GPRs using 
mfspr instructions.

The execution of the dcread instruction generates the equivalent of an EA, which is then broken down and used to 
select a specific data word from a specific cache line. EA0:16 are ignored, EA17:22 select the way, EA23:26 select 
the set, and EA27:29 select the word.

The EA generated by the dcread instruction must be word-aligned (that is, EA30:31 must be 0); otherwise, it is a 
programming error and the result is undefined.

If the CCR0[CRPE] bit is set, execution of the dcread instruction also loads parity information into the DCDBTRL. 
Note that the DCDBTRL[DPAR] field, unlike all the other parity fields, loads the check values of the parity, instead 
of the raw parity values. That is, the DPAR field will always load with zeros unless a parity error has occurred, or 
been inserted intentionally using the appropriate bits in the CCR1. This behavior is an artifact of the hardware 
design of the parity checking logic.

Execution of the dcread instruction is privileged, and is intended for use for debugging purposes only.

Programming Note:

The PPC440 does not support the use of the dcread instruction when the DCC is still in the process of 
performing cache operations associated with previously executed instructions (such as line fills and 
line flushes). Also, the PPC440 does not automatically synchronize context between a dcread 
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instruction and the subsequent mfspr instructions that read the results of the dcread instruction into 
GPRs. In order to guarantee that the dcread instruction operates correctly, and that the mfspr 
instructions obtain the results of the dcread instruction, a sequence such as the following must be 
used:

msync # ensure that all previous cache operations have completed
dcread regT,regA,regB # read cache information; the contents of GPR A and GPR B are 

# added and the result used to specify a cache line index to be read;
# the data word is moved into GPR T and the tag information is read
# into DCDBTRH and DCDBTRL

isync # ensure dcread completes before attempting to read results
mfdcdbtrh regD # move high portion of tag into GPR D
mfdcdbtrl regE # move low portion of tag into GPR E

    

    

Figure 3-8. Data Cache Debug Tag Register High (DCDBTRH) 

0:23 TRA Tag Real Address
Bits 0:23 of the lower 32 bits of the 36-bit real 
address associated with the cache line read by 
dcread.

24 V
Cache Line Valid
0 Cache line is not valid.
1 Cache line is valid.

The valid indicator for the cache line read by 
dcread.

25:27 Reserved

28:31 TERA Tag Extended Real Address Upper 4 bits of the 36-bit real address associated 
with the cache line read by dcread.

Figure 3-9. Data Cache Debug Tag Register Low (DCDBTRL) 

0:12 Reserved

13 UPAR
U bit parity
UPAR = U0 XOR U1 XOR U2 XOR U3

The parity for the U0-U3 bits in the cache line read 
by dcread if CCR0[CRPE] = 1, otherwise 0.

14:15 TPAR
Tag parity
Bit 14 - XOR of odd address bits
Bit 15 - XOR of even address bits

The parity for the tag bits in the cache line read by 
dcread if CCR0[CRPE] = 1, otherwise 0.
TPAR bit 14 = XOR(DCDBTRH[TERA29,31], 
DCDBTRH[TRA1,3...21, 23])
TPAR bit 15 = XOR(DCDBTRH[TERA28,30], 
DCDBTRH[TRA0,2...20, 22])

16:19 DPAR

Data parity
Bit 16 - Data Parity of Doubleword 0
Bit 17 - Data Parity of Doubleword 1
Bit 18 - Data Parity of Doubleword 2
Bit 19 - Data Parity of Doubleword 3

The parity check values for the data bytes in the 
word read by dcread if CCR0[CRPE] = 1, other-
wise 0.
Doubleword 0 - Address 0xXXXXXX00
Doubleword 1 - Address 0xXXXXXX08
Doubleword 2 - Address 0xXXXXXX10
Doubleword 3 - Address 0xXXXXXX18

20:23 MPAR

Modified (dirty) parity
Bit 20 - Dirty bit Parity for Doubleword 0
Bit 21 - Dirty bit Parity for Doubleword 1
Bit 22 - Dirty bit Parity for Doubleword 2
Bit 23 - Dirty bit Parity for Doubleword 3

The parity for the modified (dirty) indicators for 
each of the four double words in the cache line 
read by dcread if CCR0[CRPE] = 1, otherwise 0.
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3.3.3.6 Data Cache Parity Operations

The data cache contains parity bits and multi-hit detection hardware to protect against soft data errors. Both the 
data cache tags and data are protected. Data cache lines consist of a tag field, 256 bits of data, 4 modified (dirty) 
bits, 4 user attribute (U) bits, and 39 parity bits. The tag field is stored in CAM (Content Addressable Memory) cells, 
while the data and parity bits are stored in normal RAM cells. The data cache is physically tagged and indexed, so 
the tag field contains a real address that is compared to the real address produced by the translation hardware 
when a load, store, or other cache operation is executed. The exact number of effective address bits depends on 
the specific cache size. 

Two types of errors are detected by the data cache parity logic. In the first type, the parity bits stored in the RAM 
array are checked against the appropriate data in the RAM line any time the RAM line is read. The RAM data may 
be read by an indexed operation such as a reload dump (RLD), or by a CAM lookup that matches the tag address, 
such as a load, dcbf, dcbi, or dcbst. If a line is to be cast out of the cache due to replacement or in response to a 
dcbf, dcbi, or dcbst,  and is determined to have a parity error of this type, no effort is made to prevent the 
erroneous data from being written onto the PLB. However, the write data on the PLB interface is accompanied by a 
signal indicating that the data has a parity error. 

The second type of parity error that may be detected is a multi-hit, also referred to as an MHIT. This type of error 
may occur when a tag address bit is corrupted, leaving two tags in the memory array that match the same input. 
This type of error may be detected on any CAM lookup cycle, such as for stores, loads, dcbf, dcbi, dcbst, dcbt, 
dcbtst, or dcbz instructions. Note that a parity error will not be signaled as a result of an dcread instruction.

If a parity error is detected and the MSR[ME] is asserted,  (i.e. Machine Check interrupts are enabled), the 
processor vectors to the Machine Check interrupt handler. As is the case for any machine check interrupt, after 
vectoring to the machine check handler, the MCSRR0 contains the value of the oldest “uncommitted” instruction in 
the pipeline at the time of the exception and MCSRR1 contains the old (MSR) context. The interrupt handler is able 
to query Machine Check Status Register (MCSR) to find out that it was called due to a D-cache parity error, and is 
then expected to either invalidate the data cache (using dccci), or to invoke the OS to abort the process or reset 
the processor, as appropriate. The handler returns to the interrupted process using the rfmci instruction.

If the interrupt handler is executed before a parity error is allowed to corrupt the state of the machine, the executing 
process is recoverable, and the interrupt handler can just invalidate the data cache and resume the process. In 
order to guarantee that all parity errors are recoverable, user code must have two characteristics: first, it must mark 
all cacheable data pages as “write-through” instead of “copy-back.” Second, the software-settable bit (CCR0[PRE]) 
must be set. This bit forces all load instructions to stall in the last stage of the load/store pipeline for one cycle, but 
only if needed to ensure that parity errors are recoverable. The pipeline stall guarantees that any parity error is 
detected and the resulting Machine Check interrupt taken before the load instruction completes and the target GPR 

24:27 D

Dirty Indicators
Bit 24 - Dirty bit for Doubleword 0
Bit 25 - Dirty bit for Doubleword 1
Bit 26 - Dirty bit for Doubleword 2
Bit 27 - Dirty bit for Doubleword 3

The “dirty” (modified) indicators for each of the four 
double words in the cache line read by dcread.

28 U0 U0 Storage Attribute The U0 storage attribute for the memory page 
associated with this cache line read by dcread.

29 U1 U1 Storage Attribute The U1 storage attribute for the memory page 
associated with this cache line read by dcread.

30 U2 U2 Storage Attribute The U2 storage attribute for the memory page 
associated with this cache line read by dcread.

31 U3 U3 Storage Attribute The U3 storage attribute for the memory page 
associated with this cache line read by dcread.
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is corrupted. Setting CCR0[PRE] degrades overall application performance. However, if the state of the load/store 
pipeline is such that a load instruction stalls in the last stage for some reason unrelated to parity recovery, then 
CCR0[PRE] does not cause an additional cycle stall.

Note that the Parity exception type Machine Check interrupt is asynchronous; that is, the return address in the 
MCSRR0 does not necessarily point at the instruction address that detected the parity error in the data cache. 
Rather, the Machine Check interrupt is taken as soon as the parity error is detected, and some instructions in 
progress may get flushed and re-executed after the interrupt, just as if the machine were responding to an external 
interrupt. 

MCSR[DCSP] and MCSR[DCFP] indicate what type of data cache operation caused a parity exception. One of the 
two bits will be set if a parity error is detected in the data cache, along with MCSR[MCS]. See Machine Check 
Interrupts on page 129.

MCSR[DCSP] is set if a parity error is detected during these search operations:

1. Multi-hit parity errors on any instruction that does a CAM lookup

2. Tag or data parity errors on load instructions

3. Tag parity errors on dcbf, dcbi, or dcbst instructions

MCSR[DCFP] is set if a parity error is detected during these flush operations:

1. Data, dirty, or user parity errors on dcbf or dcbst instructions

2. Tag, data, dirty, or user parity errors on a line that is cast out for replacement 

2. Tag, data, dirty, or user parity errors on a line that is cast out for replacement

3.3.3.7 D-Cache Parity Error Recovery Algorithm

The following recovery algorithm assumes the D-Cache is configured for write-back and CCR0[PRE]=1. When the 
D-Cache is configured for write-through and CCR0[PRE]=1, this algorithm is not needed.

Step 1. Using the DCDBTRL search the content of the D-Cache to find the parity error.

Step 2. Determine the best way to recover from the parity error. The DCDBTRL[ UPAR, TPAR, MPAR, DPAR, D] 
bitfields indicate where in the cache line the error occurred and if the data is dirty. When the data is dirty, the 
system may not be able to recover depending on the location of the error. If the data is not dirty, it is often possible 
to recover by writing the known good data back to cached memory.
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if( (TPAR>0 AND D>0 ) OR (DPAR AND D)>0 ) {

reboot

}

else if (TPAR>0 AND D==0) {

Let the cache line age out of the cache or set this cache line to be the next victim in the DNV0-DNV3 
registers.

}

else if (MPAR>0 AND DPAR==0) OR (UPAR > 0 AND ((DPAR AND D)==0)) ) {

Copy any modified double words to scratch memory/registers Use dcbi to invalidate the cache line.
Store the salvaged data to the original address.

}

3.3.3.8 Simulating Data Cache Parity Errors for Software Testing

Because parity errors occur in the cache infrequently and unpredictably, it is desirable to provide users with a way 
to simulate the effect of an data cache parity error so that interrupt handling software may be exercised. This is 
exactly the purpose of the CCR1[DCDPEI], CCR1[DCTPEI], CCR1[DCUPEI], CCR1[DCMPEI],and CCR1[FCOM] 
fields.

The 39 data cache parity bits in each cache line contain one parity bit per data byte (i.e. 32 parity bits per 32 byte 
line), plus 2 parity bits for the address tag (note that the valid (V) bit, is not included in the parity bit calculation for 
the tag), plus 1 parity bit for the 4-bit U field on the line, plus a parity bit for each of the 4 modified (dirty) bits on the 
line. (There are two parity bits for the tag data because the parity is calculated for alternating bits of the tag field, to 
guard against a single particle strike event that upsets two adjacent bits. The other data bits are physically 
interleaved in such a way as to allow the use of a single parity bit per data byte or other field.) All parity bits are 
calculated and stored as the line is initially filled into the cache. In addition, the data and modified (dirty) parity bits 
(but not the tag and user parity bits) are updated as the line is updated as the result of executing a store instruction 
or dcbz.

Usually parity is calculated as the even parity for each set of bits to be protected, which the checking hardware 
expects. However, if any of the CCR1[DCTPEI] bits are set, the calculated parity for the corresponding bits of the 
tag are inverted and stored as odd parity. Likewise, if the CCR1[DCUPEI] bit is set, the calculated parity for the 
user bits is inverted and stored as odd parity. Similarly, if the CCR1[DCDPEI] bit is set, the parity for any data bytes 
that are written, either during the process of a line fill or by execution of a store instruction, is set to odd parity. 
Then, when the data stored with odd parity is subsequently loaded, it will cause a Parity exception type Machine 
Check interrupt and exercise the interrupt handling software. The following pseudocode is an example of how to 
use the CCR1[DCDPEI] field to simulate a parity error on byte 0 of a target cache line:

dcbt <target line address> ; get the target line into the cache
msync ; wait for the dcbt
mtspr CCR1, Rx ; Set CCR1[DCDPEI]
isync ; wait for the CCR1 context to update
stb <target byte address> ; store some data at byte 0 of the target line
msync ; wait for the store to finish
mtspr CCR1, Rz ; Reset CCR1[ICDPEI0]
isync ; wait for the CCR1 context to update
lb <byte 0 of target line> ; load byte causes interrupt
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If the CCR1[DCMPEI] bit is set, the parity for any modified (dirty) bits that are written, either during the process of a 
line fill or by execution of a store instruction or dcbz, is set to odd parity. If the CCR1[FFF] bit is also set in addition 
to CCR1[DCMPEI], then the parity for all four modified (dirty) bits is set to odd parity. Store access to a cache line 
that is already in the cache and in a memory page for which the write-through storage attribute is set does not 
update the modified (dirty bits) nor the modified (dirty) parity bits, so for these accesses the CCR1[DCMPEI] setting 
has no effect.

The CCR1[FCOM] (Force Cache Operation Miss) bit enables the simulation of a multi-hit parity error. When set, it 
will cause an dcbt to appear to be a miss, initiating a line fill, even if the line is really already in the cache. Thus, 
this bit allows the same line to be filled to the cache multiple times, which will generate a multi-hit parity error when 
an attempt is made to read data from those cache lines. The following pseudocode is an example of how to use the 
CCR1[FCOM] field to simulate a multi-hit parity error in the data cache:

mtspr CCR0, Rx ; set CCR0[GDCBT]
dcbt <target line address> ; this dcbt fills a first copy of the target line, if necessary
msync ; wait for the fill to finish
mtspr CCR1, Ry ; set CCR1[FCOM]
isync ; wait for the CCR1 context to update
dcbt <target line address> ; fill a second copy of the target line
msync ; wait for the fill to finish
mtspr CCR1, Rz ; reset CCR1[FCOM]
isync ; wait for the CCR1 context to update
br <byte 0 of target line> ; load byte causes interrupt
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4. Memory Management
The PPC440 supports a uniform, 4GB effective address (EA) space, and a 64GB (36-bit) real address (RA) space. 
The PPC440 memory management unit (MMU) performs address translation between effective and real 
addresses, as well as protection functions. With appropriate system software, the MMU supports:

• Translation of effective addresses into real addresses

• Software control of the page replacement strategy

• Page-level access control for instruction and data accesses

• Page-level storage attribute control

4.1 MMU Overview

The PPC440 generates effective addresses for instruction fetches and data accesses. An effective address is a 
32-bit address formed by adding an index or displacement to a base address (see Effective Address Calculation on 
page 31). Instruction effective addresses are for sequential instruction fetches, and for fetches caused by changes 
in program flow (branches and interrupts). Data effective addresses are for load, store and cache management 
instructions. The MMU expands effective addresses into virtual addresses (VAs) and then translates them into real 
addresses (RAs); the instruction and data caches use real addresses to access memory.

The PPC440 MMU supports demand-paged virtual memory and other management schemes that depend on 
precise control of effective to real address mapping and flexible memory protection. Translation misses and 
protection faults cause precise interrupts. The hardware provides sufficient information to correct the fault and 
restart the faulting instruction.

The MMU divides storage into pages. The page represents the granularity of address translation, access control, 
and storage attribute control. PowerPC Book-E architecture defines 16 page sizes. Different PPC440 MMUs 
support different numbers and sizes of page sizes. The various page sizes supported are supported 
simultaneously. A valid entry for a page referenced by an effective address must be in the translation look aside 
buffer (TLB) in order for the address to be accessed. An attempt to access an address for which no TLB entry 
exists causes an Instruction or Data TLB Error interrupt, depending on the type of access (instruction or data). See 
Interrupts and Exceptions on page 127 for more information on these and other interrupt types.

The TLB is parity protected against soft errors. If such errors are detected, the CPU can be configured to vector to 
the machine check interrupt handler, where software can take appropriate action. The details of parity checking 
and suggested interrupt handling are described below. 

4.1.1 Support for PowerPC Book-E MMU Architecture

The Book-E Enhanced PowerPC Architecture defines specific requirements for MMU implementations, but also 
leaves the details of several features implementation-dependent. The PPC440 is fully compliant with the required 
MMU mechanisms defined by PowerPC Book-E, but a few optional mechanisms are not supported. These are:

• Memory coherence required (M) storage attribute

Because the PPC440 does not provide hardware support for multiprocessor coherence, the memory coher-
ence required storage attribute has no effect. If a TLB entry is created with M = 1, then any memory transac-
tions for the page associated with that TLB entry will be indicated as being memory coherence required via a 
corresponding transfer attribute interface signal, but the setting will have no effect on the operation within the 
PPC440.
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• TLB Invalidate virtual address (tlbiva) instruction

The tlbiva instruction is used to support the invalidation of TLB entries in a multiprocessor environment with 
hardware-enforced coherency, which is not supported by the PPC440. Consequently, the attempted execution 
of this instruction will cause an Illegal Instruction exception type Program interrupt. The tlbwe instruction may 
be used to invalidate TLB entries in a uniprocessor environment.

• TLB Synchronize (tlbsync) instruction

The tlbsync instruction is used to synchronize software TLB management operations in a multiprocessor envi-
ronment with hardware-enforced coherency, which is not supported by the PPC440. Consequently, this 
instruction is treated as a no-op.

• Page Sizes

PowerPC Book-E defines sixteen different page sizes, but does not require that an implementation support all 
of them. Furthermore, some of the page sizes are only applicable to 64-bit implementations, as they are larger 
than a 32-bit effective address space can support (4GB). Accordingly, the PPC440 supports eight of the six-
teen page sizes, from 1KB up to 256MB, as mentioned above and as listed in Table 4-2 Page Size and Effec-
tive Address to EPN Comparison on page 110.

• Address Space

Since the PPC440 is a 32-bit implementation of the 64-bit PowerPC Book-E architecture, there are differences 
in the sizes of some of the TLB fields. First, the Effective Page Number (EPN) field varies from 4 to 22 bits, 
depending on page size. Second, the page number portion of the real address is made up of a concatenation 
of two TLB fields, rather than a single Real Page Number (RPN) field as described in PowerPC Book-E. These 
fields are the RPN field (which can vary from 4 to 22 bits, depending on page size), and the Extended Real 
Page Number (ERPN) field, which is 4 bits, for a total of 36 bits of real address, when combined with the page 
offset portion of the real address. See Address Translation on page 110 for a more detailed explanation of 
these fields and the formation of the real address.

4.2 Translation Look Aside Buffer

The Translation Look Aside Buffer (TLB) is the hardware resource that controls translation, protection, and storage 
attributes. A single unified 64-entry, fully-associative TLB is used for both instruction and data accesses. In 
addition, the PPC440 implements two separate, smaller “shadow” TLB arrays, one for instruction fetch accesses 
and one for data accesses. These shadow TLBs improve performance by lowering the latency for address 
translation, and by reducing contention for the main unified TLB between instruction fetching and data storage 
accesses. See Shadow TLB Arrays on page 120 for additional information on the operation of the shadow TLB 
arrays.

Maintenance of TLB entries is under software control. System software determines the TLB entry replacement 
strategy and the format and use of any page table information. A TLB entry contains all of the information required 
to identify the page, to specify the address translation, to control the access permissions, and to designate the 
storage attributes.

A TLB entry is written by copying information from a GPR and the MMUCR[STID] field, using a series of three 
tlbwe instructions. A TLB entry is read by copying the information into a GPR and the MMUCR[STID] field, using a 
series of three tlbre instructions. Software can also search for specific TLB entries using the tlbsx[.] instruction. 
See TLB Management Instructions on page 121 for more information on these instructions.
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Each TLB entry identifies a page and defines its translation, access controls, and storage attributes. Accordingly, 
fields in the TLB entry fall into four categories:

• Page identification fields (information required to identify the page to the hardware translation mechanism).

• Address translation fields

• Access control fields

• Storage attribute fields

Table 4-1 summarizes the TLB entry fields for each of the categories. 

Table 4-1. TLB Entry Fields  

TLB Word Bit Field Description

Page Identification Fields

0 0:21 EPN

Effective Page Number (variable size, from 4 - 22 bits)
Bits 0:n–1 of the EPN field are compared to bits 0:n–1 of the effective address (EA) of the storage 
access (where n = 32–log2(page size in bytes) and page size is specified by the SIZE field of the TLB 
entry). See Table 4-2 on page 110.

0 22 V
Valid (1 bit)
This bit indicates that this TLB entry is valid and may be used for translation. The Valid bit for a given 
entry can be set or cleared with a tlbwe instruction.

0 23 TS

Translation Address Space (1 bit)
This bit indicates the address space this TLB entry is associated with. For instruction fetch accesses, 
MSR[IS] must match the value of TS in the TLB entry for that TLB entry to provide the translation. 
Likewise, for data storage accesses (including instruction cache management operations), MSR[DS] 
must match the value of TS in the TLB entry. For the tlbsx[.] instruction, the MMUCR[STS] field must 
match the value of TS.

0 24:27 SIZE
Page Size (4 bits)
The SIZE field specifies the size of the page associated with the TLB entry as 4SIZEKB, where 
SIZE ∈ {0, 1, 2, 3, 4, 5, 7, 9}. See Table 4-2 on page 110.

0 28:31 TPAR

Tag Parity (4 bits)
The TPAR field reads the parity bits associated with TLB word 0. These bits will be loaded into a 
GPR as a result of a tlbre, but are ignored when executing a tlbwe, since the parity to be written is 
calculated by the processor hardware.

0 32:39 TID
Translation ID (8 bits)
Field used to identify a globally shared page (TID=0) or the process ID of the owner of a private page 
(TID<>0). See Page Identification on page 107.

Address Translation Fields

1 0:21 RPN

Real Page Number (variable size, from 4 - 22 bits)
Bits 0:n–1 of the RPN field are used to replace bits 0:n–1 of the effective address to produce a por-
tion of the real address for the storage access (where n = 32–log2(page size in bytes) and page size 
is specified by the SIZE field of the TLB entry). Software must set unused low-order RPN bits (that is, 
bits n:21) to 0. See Address Translation on page 110 and Table 4-3 on page 111.

1 22:23 PAR1

Parity for TLB word 1 (2 bits)
The PAR1 field reads the parity bits associated with TLB word 1. These bits will be loaded into a 
GPR as a result of a tlbre, but are ignored when executing a tlbwe, since the parity to be written is 
calculated by the processor hardware.

1 28:31 ERPN
Extended Real Page Number (4 bits)
The 4-bit ERPN field are prepended to the rest of the translated address to form a total of a 36-bit (64 
GB) real address. See Address Translation on page 110 and Table 4-3 on page 111.
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Storage Attribute Fields

2 0:1 PAR2

Parity for TLB word 2 (2 bits)
The PAR2 field reads the parity bits associated with TLB word 2. These bits will be loaded into a 
GPR as a result of a tlbre, but are ignored when executing a tlbwe, since the parity to be written is 
calculated by the processor hardware.

2 16 U0
User-Definable Storage Attribute 0 (1 bit) See User-Definable (U0–U3) on page 116.
Specifies the U0 storage attribute for the page associated with the TLB entry. The function of this 
storage attribute is system-dependent, and has no effect within the PPC440.

2 17 U1

User-Definable Storage Attribute 1 (1 bit) See User-Definable (U0–U3) on page 116.
Specifies the U1 storage attribute for the page associated with the TLB entry. The function of this 
storage attribute is system-dependent, but the PPC440 can be programmed to use this attribute to 
designate a memory page as containing transient data and/or instructions (see Instruction and Data 
Caches on page 71).

2 18 U2

User-Definable Storage Attribute 2 (1 bit) See User-Definable (U0–U3) on page 116.
Specifies the U2 storage attribute for the page associated with the TLB entry. The function of this 
storage attribute is system-dependent, but the PPC440 can be programmed to use this attribute to 
specify whether or not stores that miss in the data cache should allocate the line in the data cache 
(see Instruction and Data Caches on page 71).

2 19 U3
User-Definable Storage Attribute 3 (1 bit) See User-Definable (U0–U3) on page 116.
Specifies the U3 storage attribute for the page associated with the TLB entry. The function of this 
storage attribute is system-dependent, and has no effect within the PPC440.

2 20 W

Write-Through (1 bit) See Write-Through (W) on page 114.

0 The page is not write-through (that is, the page is copy-back).

1 The page is write-through.

2 21 I

Caching Inhibited (1 bit) See Caching Inhibited (I) on page 115.

0 The page is not caching inhibited (that is, the page is cacheable).

1 The page is caching inhibited.

2 22 M

Memory Coherence Required (1 bit) See Memory Coherence Required (M) on page 115.

0 The page is not memory coherence required.

1 The page is memory coherence required.

Note that the PPC440 does not support multiprocessing, and thus all storage accesses will behave 
as if M=0. Setting M=1 in a TLB entry has no effect other than to cause any system interface transac-
tions to the corresponding page to be indicated as memory coherence required via the “transfer 
attributes” interface signals.

2 23 G

Guarded (1 bit) See Guarded (G) on page 115.

0 The page is not guarded.

1 The page is guarded.

2 24 E

Endian (1 bit) See Endian (E) on page 116.

0
All accesses to the page are performed with big-endian byte ordering, which means that the 
byte at the effective address is considered the most-significant byte of a multi-byte scalar (see 
Byte Ordering on page 32).

1
All accesses to the page are performed with little-endian byte ordering, which means that the 
byte at the effective address is considered the least-significant byte of a multi-byte scalar (see 
Byte Ordering on page 32).

Table 4-1. TLB Entry Fields (continued) 

TLB Word Bit Field Description
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4.3 Page Identification

The Valid (V), Effective Page Number (EPN), Translation Space Identifier (TS), Page Size (SIZE), and Translation 
ID (TID) fields of a particular TLB entry identify the page associated with that TLB entry. Except as noted, all 
comparisons must succeed to validate this entry for subsequent translation and access control processing. Failure 
to locate a matching TLB entry based on this criteria for instruction fetches will result in a TLB Miss exception type 
Instruction TLB Error interrupt. Failure to locate a matching TLB entry based on this criteria for data storage 
accesses will result in a TLB Miss exception which may result in a Data TLB Error interrupt, depending on the type 
of data storage access (certain cache management instructions do not result in an interrupt if they cause an 
exception; they simply no-op).

Access Control Fields

2 26 UX

User State Execute Enable (1 bit) See Execute Access on page 112.

0
Instruction fetch is not permitted from this page while MSR[PR]=1 and the attempt to execute 
an instruction from this page while MSR[PR] =1 will cause an Execute Access Control excep-
tion type Instruction Storage interrupt.

1 Instruction fetch and execution is permitted from this page while MSR[PR]=1.

2 27 UW

User State Write Enable (1 bit) See Write Access on page 112.

0 Store operations and the dcbz instruction are not permitted to this page when MSR[PR]=1 
and will cause a Write Access Control exception type Data Storage interrupt.

1 Store operations and the dcbz instruction are permitted to this page when MSR[PR]=1.

2 28 UR

User State Read Enable (1 bit) See Read Access on page 112.

0

Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions are not permit-
ted from this page when MSR[PR]=1 and will cause a Read Access Control exception. Except 
for the dcbt, dcbtst, and icbt instructions, a Data Storage interrupt will occur (see Table 4-4 
on page 114).

1 Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions are permitted 
from this page when MSR[PR]=1.

2 29 SX

Supervisor State Execute Enable (1 bit) See Execute Access on page 112.

0
Instruction fetch is not permitted from this page while MSR[PR]=0 and the attempt to execute 
an instruction from this page while MSR[PR] =0 will cause an Execute Access Control excep-
tion type Instruction Storage interrupt.

1 Instruction fetch and execution is permitted from this page while MSR[PR]=0.

2 30 SW

Supervisor State Write Enable (1 bit) See Write Access on page 112.

0 Store operations and the dcbz and dcbi instructions are not permitted to this page when 
MSR[PR]=0 and will cause a Write Access Control exception type Data Storage interrupt.

1 Store operations and the dcbz and dcbi instructions are permitted to this page when 
MSR[PR]=0.

2 31 SR

Supervisor State Read Enable (1 bit) See Read Access on page 112.

0

Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions are not permit-
ted from this page when MSR[PR]=0 and will cause a Read Access Control exception. Except 
for the dcbt, dcbtst, and icbt instructions, a Data Storage interrupt will occur (see Table 4-4 
on page 114).

1 Load operations and the dcbt, dcbtst, dcbst, dcbf, icbt, and icbi instructions are permitted 
from this page when MSR[PR]=0.

Table 4-1. TLB Entry Fields (continued) 

TLB Word Bit Field Description
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4.3.1 Virtual Address Formation

The first step in page identification is the expansion of the effective address into a virtual address. Again, the 
effective address is the 32-bit address calculated by a load, store, or cache management instruction, or as part of 
an instruction fetch. The virtual address is formed by prepending the effective address with a 1-bit address space 
identifier and an 8-bit process identifier. The process identifier is contained in the Process ID (PID) register. The 
address space identifier is provided by MSR[IS] for instruction fetches, and by MSR[DS] for data storage accesses 
and cache management operations, including instruction cache management operations. The resulting 41-bit 
value forms the virtual address, which is then compared to the virtual addresses contained in the TLB entries.

Note that the tlbsx[.] instruction also forms a virtual address, for software controlled search of the TLB. This 
instruction calculates the effective address in the same manner as a data access instruction, but the process 
identifier and address space identifier are provided by fields in the MMUCR, rather than by the PID and MSR, 
respectively (see TLB Search Instruction (tlbsx[.]) on page 121).

4.3.2 Address Space Identifier Convention

The address space identifier differentiates between two distinct virtual address spaces, one generally associated 
with interrupt-handling and other system-level code and/or data, and the other generally associated with 
application-level code and/or data.

Typically, user mode programs will run with MSR[IS,DS] both set to 1, allowing access to application-level code 
and data memory pages. Then, on an interrupt, MSR[IS,DS] are both automatically cleared to 0, so that the 
interrupt handler code and data areas may be accessed using system-level TLB entries (that is, TLB entries with 
the TS field = 0). It is also possible that an operating system could set up certain system-level code and data areas 
(and corresponding TLB entries with the TS field = 1) in the application-level address space, allowing user mode 
programs running with MSR[IS,DS] set to 1 to access them (system library routines, for example, which may be 
shared by multiple user mode and/or supervisor mode programs). System-level code wishing to use these areas 
would have to first set the corresponding MSR[IS,DS] field in order to use the application-level TLB entries, or there 
would have to be alternative system-level TLB entries set up.

The net of this is that the notion of application-level code running with MSR[IS,DS] set to 1 and using 
corresponding TLB entries with the TS=1, and conversely system-level code running with MSR[IS,DS] set to 0 and 
using corresponding TLB entries with TS=0, is by convention. It is possible to run in user mode with MSR[IS,DS] 
set to 0, and conversely to run in supervisor mode with MSR[IS,DS] set to 1, with the corresponding TLB entries 
being used. The only fixed requirement in this regard is the fact that MSR[IS,DS] are cleared on an interrupt, and 
thus there must be a TLB entry for the system-level interrupt handler code with TS=0 in order to be able to fetch 
and execute the interrupt handler itself. Whether or not other system-level code switches MSR[IS,DS] and creates 
corresponding system-level TLB entries depends upon the operating system environment.

Programming Note: Software must ensure that there is always a valid TLB entry with TS=0 and with 
supervisor mode execute access permission (SX=1) corresponding to the effective address of the interrupt 
handlers. Otherwise, an Instruction TLB Error interrupt could result upon the fetch of the interrupt handler for 
some other interrupt type, and the registers holding the state of the routine which was executing at the time of 
the original interrupt (SRR0/SRR1) could be corrupted. See Interrupts and Exceptions on page 127 for more 
information.

4.3.3 TLB Match Process

This virtual address is used to locate the associated entry in the TLB. The address space identifier, the process 
identifier, and a portion of the effective address of the storage access are compared to the TS, TID, and EPN fields, 
respectively, of each TLB entry.
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The virtual address matches a TLB entry if:

• The valid (V) field of the TLB entry is 1, and

• The value of the address space identifier is equal to the value of the TS field of the TLB entry, and

• Either the value of the process identifier is equal to the value of the TID field of the TLB entry (private page), or 
the value of the TID field is 0 (globally shared page), and

• The value of bits 0:n–1 of the effective address is equal to the value of bits 0:n-1 of the EPN field of the TLB 
entry (where n = 32–log2 (page size in bytes) and page size is specified by the value of the SIZE field of the 
TLB entry). See Table 4-2 Page Size and Effective Address to EPN Comparison on page 110.

A TLB Miss exception occurs if there is no matching entry in the TLB for the page specified by the virtual address 
(except for the tlbsx[.] instruction, which simply returns an undefined value to the GPR file and (for tlbsx.) sets 
CR[CR0]2 to 0). See TLB Search Instruction (tlbsx[.]) on page 121.

Programming Note: Although it is possible for software to create multiple TLB entries that match the same 
virtual address, doing so is a programming error and the results are undefined.

Figure 4-1 illustrates the criteria for a virtual address to match a specific TLB entry, while Table 4-2 defines the 
page sizes associated with each SIZE field value, and the associated comparison (==) of the effective address to 
the EPN field.

Figure 4-1. Virtual Address to TLB Entry Match Process 

TLB entry matches virtual address
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MSR[DS] for data storage accesses, or
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4.4 Address Translation

Once a TLB entry is found which matches the virtual address associated with a given storage access, as described 
in “Page Identification” on page 107, the virtual address is translated to a real address according to the procedures 
described in this section.

The Real Page Number (RPN) and Extended Real Page Number (ERPN) fields of the matching TLB entry provide 
the page number portion of the real address. Let n=32–log2(page size in bytes) where page size is specified by the 
SIZE field of the matching TLB entry. Bits n:31 of the effective address (the “page offset”) are appended to bits 0:n–
1 of the RPN field, and bits 0:3 of the ERPN field are prepended to this value to produce the 36-bit real address 
(that is, RA = ERPN0:3 || RPN0:n–1 || EAn:31).

Figure 4-2 illustrates the address translation process, while Table 4-3 defines the relationship between the different 
page sizes and the real address formation.

Table 4-2. Page Size and Effective Address to EPN Comparison 

Size Page Size EA to EPN Comparison

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

1KB
4KB

16KB
64KB

256KB
1MB

not supported
16MB

not supported
256MB

not supported
not supported
not supported
not supported
not supported
not supported

EPN0:21 == EA0:21
EPN0:19 == EA0:19
EPN0:17 == EA0:17
EPN0:15 == EA0:15
EPN0:13 == EA0:13
EPN0:11 == EA0:11

not supported
EPN0:7 == EA0:7

not supported
EPN0:3 == EA0:3

not supported
not supported
not supported
not supported
not supported
not supported
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4.5 Access Control

Once a matching TLB entry has been identified and the address has been translated, the access control 
mechanism determines whether the program has execute, read, and/or write access to the page referenced by the 
address, as described in the following sections.

Figure 4-2. Effective-to-Real Address Translation Flow  

Table 4-3. Page Size and Real Address Formation 

Size Page Size RPN bits required to be 0 Real Address

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

1KB
4KB

16KB
64KB

256KB
1MB

not supported
16MB

not supported
256MB

not supported
not supported
not supported
not supported
not supported
not supported

none
RPN20:21=0
RPN18:21=0
RPN16:21=0
RPN14:21=0
RPN12:21=0

not supported
RPN8:21=0

not supported
RPN4:21=0

not supported
not supported
not supported
not supported
not supported
not supported

RPN0:21 || EA22:31
RPN0:19 || EA20:31
RPN0:17 || EA18:31
RPN0:15 || EA16:31
RPN0:13 || EA14:31
RPN0:11 || EA12:31

not supported
RPN0:7 || EA8:31

not supported
RPN0:3 || EA4:31

not supported
not supported
not supported
not supported
not supported
not supported
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NOTE: n = 32–log2(page size)
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4.5.1 Execute Access

The UX or SX bit of a TLB entry controls execute access to a page of storage, depending on the operating mode, 
user or supervisor, of the processor.

Instructions may be fetched and executed from a page in storage while in supervisor mode if the SX access control 
bit for that page is equal to 1. If the SX access control bit is equal to 0, then instructions from that page will not be 
fetched, and will not be placed into any cache as the result of a fetch request to that page while in supervisor mode. 

Furthermore, if the sequential execution model calls for the execution in supervisor mode of an instruction from a 
page that is not enabled for execution in supervisor mode (that is, SX=0 when MSR[PR]=0), an Execute Access 
Control exception type Instruction Storage interrupt is taken (See “Interrupts and Exceptions” on page 127 for more 
information).

4.5.2 Write Access

The UW or SW bit of a TLB entry controls write access to a page, depending on the operating mode (user or 
supervisor) of the processor.

• User mode (MSR[PR] = 1)

Store operations (including the store-class cache management instruction dcbz) are permitted to a page in 
storage while in user mode if the UW access control bit for that page is equal to 1. If execution of a store oper-
ation is attempted in user mode to a page for which the UW access control bit is 0, then a Write Access Control 
exception occurs. If the instruction is an stswx with string length 0, then no interrupt is taken and no operation 
is performed (see “Access Control Applied to Cache Management Instructions” on page 113). For all other 
store operations, execution of the instruction is suppressed and a Data Storage interrupt is taken.

Note that although the dcbi cache management instruction is a store-class instruction, its execution is privi-
leged and thus will not cause a Data Storage interrupt if execution of it is attempted in user mode (a Privileged 
Instruction exception type Program interrupt will occur instead).

• Supervisor mode (MSR[PR] = 0)

Store operations (including the store-class cache management instructions dcbz and dcbi) are permitted to a 
page in storage while in supervisor mode if the SW access control bit for that page is equal to 1. If execution of 
a store operation is attempted in supervisor mode to a page for which the SW access control bit is 0, then a 
Write Access Control exception occurs. If the instruction is an stswx with string length 0, then no interrupt is 
taken and no operation is performed (see Access Control Applied to Cache Management Instructions on 
page 113). For all other store operations, execution of the instruction is suppressed and a Data Storage inter-
rupt is taken.

4.5.3 Read Access

The UR or SR bit of a TLB entry controls read access to a page, depending on the operating mode (user or 
supervisor) of the processor.

• User mode (MSR[PR] = 1)

Load operations (including the load-class cache management instructions dcbst, dcbf, dcbt, dcbtst, icbi, and 
icbt) are permitted from a page in storage while in user mode if the UR access control bit for that page is equal 
to 1. If execution of a load operation is attempted in user mode to a page for which the UR access control bit is 
0, then a Read Access Control exception occurs. If the instruction is a load (not including lswx with string 
length 0) or is a dcbst, dcbf, or icbi, then execution of the instruction is suppressed and a Data Storage inter-
rupt is taken. On the other hand, if the instruction is an lswx with string length 0, or is a dcbt, dcbtst, or icbt, 
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then no interrupt is taken and no operation is performed (see Access Control Applied to Cache Management 
Instructions below).

• Supervisor mode (MSR[PR] = 0)

Load operations (including the load-class cache management instructions dcbst, dcbf, dcbt, dcbtst, icbi, and 
icbt) are permitted from a page in storage while in supervisor mode if the SR access control bit for that page is 
equal to 1. If execution of a load operation is attempted in supervisor mode to a page for which the SR access 
control bit is 0, then a Read Access Control exception occurs. If the instruction is a load (not including lswx 
with string length 0) or is a dcbst, dcbf, or icbi, then execution of the instruction is suppressed and a Data 
Storage interrupt is taken. On the other hand, if the instruction is an lswx with string length 0, or is a dcbt, 
dcbtst, or icbt, then no interrupt is taken and no operation is performed (see Access Control Applied to Cache 
Management Instructions below).

4.5.4 Access Control Applied to Cache Management Instructions

This section summarizes how each of the cache management instructions is affected by the access control 
mechanism.

• dcbz instructions are treated as stores with respect to access control since they actually change the data in a 
cache block. As such, they can cause Write Access Control exception type Data Storage interrupts.

• dcbi instructions are treated as stores with respect to access control since they can change the value of a stor-
age location by invalidating the “current” copy of the location in the data cache, effectively “restoring” the value 
of the location to the “former” value which is contained in memory. As such, they can cause Write Access Con-
trol exception type Data Storage interrupts.

• dcba instructions are treated as no-ops by the PPC440 under all circumstances, and thus can not cause any 
form of Data Storage interrupt.

• icbi instructions are treated as loads with respect to access control. As such, they can cause Read Access 
Control exception type Data Storage interrupts. Note that this instruction may cause a Data Storage interrupt 
(and not an Instruction Storage interrupt), even though it otherwise would perform its operation on the instruc-
tion cache. Instruction storage interrupts are associated with exceptions which occur upon the fetch of an 
instruction, whereas Data storage interrupts are associated with exceptions which occur upon the execution of 
a storage access or cache management instruction.

• dcbt, dcbtst, and icbt instructions are treated as loads with respect to access control. As such, they can 
cause Read Access Control exceptions. However, because these instructions are intended to act merely as 
“hints” that the specified cache block will likely be accessed by the processor in the near future, such excep-
tions will not result in a Data Storage interrupt. Instead, if a Read Access Control exception occurs, the instruc-
tion is treated as a no-op.

• dcbf and dcbst instructions are treated as loads with respect to access control. As such, they can cause Read 
Access Control exception type Data Storage interrupts. Flushing or storing a dirty line from the cache is not 
considered a store since an earlier store operation has already updated the cache line, and the dcbf or dcbst 
instruction is simply causing the results of that earlier store operation to be propagated to memory.

• dccci and iccci instructions do not even generate an address, nor are they affected by the access control 
mechanism. They are privileged instructions, and if executed in supervisor mode they will flash invalidate the 
entire associated cache.
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Table 4-4 summarizes the effect of access control on each of the cache management instructions.  

4.6 Storage Attributes

Each TLB entry specifies a number of storage attributes for the memory page with which it is associated. Storage 
attributes affect the manner in which storage accesses to a given page are performed. The storage attributes (and 
their corresponding TLB entry fields) are:

• Write-through (W)

• Caching inhibited (I)

• Memory coherence required (M)

• Guarded (G)

• Endianness (E)

• User-definable (U0, U1, U2, U3)

All combinations of these attributes are supported except combinations which simultaneously specify a region as 
write-through and caching inhibited.

4.6.1 Write-Through (W)

If a memory page is marked as write-through (W=1), then the data for all store operations to that page are written 
to memory, as opposed to only being written into the data cache. If the referenced line also exists in the data cache 
(that is, the store operation is a “hit”), then the data will also be written into the data cache, although the cache line 
will not be marked as having been modified (that is, the “dirty” bit(s) will not be set).

See Instruction and Data Caches on page 71 for more information on the handling of accesses to write-through 
storage.

Table 4-4. Access Control Applied to Cache Management Instructions 

Instruction Read Protection Violation Exception Write Protection Violation Exception

dcba No No

dcbf Yes No

dcbi No Yes

dcbst Yes No

dcbt Yes1 No

dcbtst Yes1 No

dcbz No Yes

dccci No No

icbi Yes No

icbt Yes1 No

iccci No No

Note:  dcbt, dcbtst, or icbt may cause a Read Access Control exception but will not result in a Data 
Storage interrupt
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4.6.2 Caching Inhibited (I)

If a memory page is marked as caching inhibited (I=1), then all load, store, and instruction fetch operations perform 
their access in memory, as opposed to in the respective cache. If I=0, then the page is cacheable and the 
operations may be performed in the cache.

It is a programming error for the target location of a load, store, dcbz, or fetch access to caching inhibited storage 
to be in the respective cache; the results of such an access are undefined. It is not a programming error for the 
target locations of the other cache management instructions to be in the cache when the caching inhibited storage 
attribute is set. The behavior of these instructions is defined for both I=0 and I=1 storage. See the instruction 
descriptions in Instruction Set on page 209 for more information.

See Instruction and Data Caches on page 71 for more information on the handling of accesses to caching inhibited 
storage.

4.6.3 Memory Coherence Required (M)

The memory coherence required (M) storage attribute is defined by the architecture to support cache and memory 
coherency within multiprocessor shared memory systems. Because the PPC440 does not provide hardware 
support for multiprocessor coherence, the memory coherence required storage attribute has no effect. If a TLB 
entry is created with M = 1, any storage accesses to the page associated with that TLB entry are indicated, using 
the corresponding internal transfer attribute interface signal, as being memory coherence required, but the setting 
has no effect on the operation within the PPC440.

4.6.4 Guarded (G)

The guarded storage attribute is provided to control “speculative” access to “non-well-behaved” memory locations. 
Storage is said to be “well-behaved” if the corresponding real storage exists and is not defective, and if the effects 
of a single access to it are indistinguishable from the effects of multiple identical accesses to it. As such, data and 
instructions can be fetched out-of-order from well-behaved storage without causing undesired side effects.

In general, storage that is not well-behaved should be marked as guarded. Because such storage may represent a 
control register on an I/O device or may include locations that do not exist, an out-of-order access to such storage 
may cause an I/O device to perform unintended operations or may result in a Machine Check exception. For 
example, if the input buffer of a serial I/O device is memory-mapped, then an out-of-order or speculative access to 
that location could result in the loss of an item of data from the input buffer, if the instruction execution is interrupted 
and later re-attempted.

A data access to a guarded storage location is performed only if either the access is caused by an instruction that 
is known to be required by the sequential execution model, or the access is a load and the storage location is 
already in the data cache. Once a guarded data storage access is initiated, if the storage is also caching inhibited 
then only the bytes specifically requested are accessed in memory, according to the operand size for the 
instruction type. Data storage accesses to guarded storage which is marked as cacheable may access the entire 
cache block, either in the cache itself or in memory.

Instruction fetch is not affected by guarded storage. While the architecture does not prohibit instruction fetching 
from guarded storage, system software should generally prevent such instruction fetching by marking all guarded 
pages as “no-execute” (UX/SX = 0). Then, if an instruction fetch is attempted from such a page, the memory 
access will not occur and an Execute Access Control exception type Instruction Storage interrupt will result if and 
when execution is attempted for an instruction at any address within the page.

See Section 3 Instruction and Data Caches on page 71 for more information on the handling of accesses to 
guarded storage. Also see Partially Executed Instructions on page 131 for information on the relationship between 
the guarded storage attribute and instruction restart and partially executed instructions.
AMCC Proprietary       115



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
4.6.5 Endian (E)

The endian (E) storage attribute controls the byte ordering with which load, store, and fetch operations are 
performed. Byte ordering refers to the order in which the individual bytes of a multiple-byte scalar operand are 
arranged in memory. The operands in a memory page with E=0 are arranged with big-endian byte ordering, which 
means that the bytes are arranged with the most-significant byte at the lowest-numbered memory address. The 
operands in a memory page with E=1 are arranged with little-endian byte ordering, which means that the bytes are 
arranged with the least-significant byte at the lowest-numbered address.

See Byte Ordering on page 32 for a more detailed explanation of big-endian and little-endian byte ordering.

4.6.6 User-Definable (U0–U3)

The PPC440 provides four user-definable (U0–U3) storage attributes which can be used to control system-
dependent behavior of the storage system. By default, these storage attributes do not have any effect on the 
operation of the PPC440, although all storage accesses indicate to the memory subsystem the values of U0–U3 
using the corresponding transfer attribute interface signals. The specific system design may then take advantage 
of these attributes to control some system-level behaviors. As an example, one of the user-definable storage 
attributes could be used to enable code compression using the IBM CodePack core, if this function is included 
within a specific implementation incorporating the PPC440.

On the other hand, the PPC440 can be programmed to make specific use of two of the four user-definable storage 
attributes. Specifically, by enabling the function using a control bit in the MMUCR (see Memory Management Unit 
Control Register (MMUCR) on page 117), the U1 storage attribute can be used to designate whether storage 
accesses to the associated memory page should use the “normal” or “transient” region of the respective cache. 
Similarly, another control bit in the MMUCR can be set to enable the U2 storage attribute to be used to control 
whether or not store accesses to the associated memory page which miss in the data cache should allocate the 
line in the cache. The U1 or U2 storage attributes do not affect PPC440 operation unless they are enabled using 
the MMUCR to perform these specific functions. See Instruction and Data Caches on page 71 for more information 
on the mechanisms that can be controlled by the U1 and U2 storage attributes.

The U0 and U3 storage attributes have no such mechanism that enables them to control any specific function 
within the PPC440.

4.6.7 Supported Storage Attribute Combinations

Storage modes where both W = 1 and I = 1 (which would represent write-through but caching inhibited storage) 
are not supported. For all supported combinations of the W and I storage attributes, the G, E, and U0-U3 storage 
attributes may used in any combination.

4.7 Storage Control Registers

In addition to the two registers described below, the MSR[IS,DS] bits specify which of the two address spaces the 
respective instruction or data storage accesses are directed towards. Also, the MSR[PR] bit is used by the access 
control mechanism. See Machine State Register (MSR) on page 133 for more detailed information on the MSR 
and the function of each of its bits.
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4.7.1 Memory Management Unit Control Register (MMUCR)

The MMUCR is written from a GPR using mtspr, and can be read into a GPR using mfspr. In addition, the 
MMUCR[STID] is updated with the TID field of the selected TLB entry when a tlbre instruction is executed. 
Conversely, the TID field of the selected TLB entry is updated with the value of the MMUCR[STID] field when a 
tlbwe instruction is executed. Other functions associated with the STID and other fields of the MMUCR are 
described in more detail in the sections that follow.

   

Store Without Allocate (SWOA) Field

Performance for certain applications can be affected by the allocation of cache lines on store misses. If the store 
accesses for a particular application are distributed sparsely in memory, and if the data is typically not re-used after 
having been stored, then performance may be improved by avoiding the latency and bus bandwidth associated 
with filling the entire cache line containing the bytes being stored. On the other hand, if an application typically 
stores to contiguous locations, or tends to store repeatedly to the same locations or to re-access data after it has 
been stored, then performance would likely be improved by allocating the line in the cache upon the first miss so 
that subsequent accesses will hit in the cache.

Figure 4-3. Memory Management Unit Control Register (MMUCR) 

0:6 Reserved

7 SWOA

Store Without Allocate
0 Cacheable store misses allocate a line in the 

data cache.
1 Cacheable store misses do not allocate a line 

in the data cache.

If MMUCR[U2SWOAE] = 1, this field is ignored.

8 Reserved

9 U1TE

U1 Transient Enable
0 Disable U1 storage attribute as transient 

storage attribute.
1 Enable U1 storage attribute as transient 

storage attribute.

10 U2SWOAE

U2 Store without Allocate Enable
0 Disable U2 storage attribute control of store 

without allocate. 
1 Enable U2 storage attribute control of store 

without allocate.

If MMUCR[U2SWOAE] = 1, the U2 storage 
attribute overrides MMUCR[SWOA].

11 Reserved

12 DULXE
Data Cache Unlock Exception Enable
0 Data cache unlock exception is disabled.
1 Data cache unlock exception is enabled.

dcbf in user mode will cause Cache Locking 
exception type Data Storage interrupt when 
MMUCR[DULXE] is 1.

13 IULXE
Instruction Cache Unlock Exception Enable
0 Instruction cache unlock exception is disabled.
1 Instruction cache unlock exception is enabled.

icbi in user mode will cause Cache Locking 
exception type Data Storage interrupt when 
MMUCR[IULXE] is 1.

14 Reserved

15 STS Search Translation Space Specifies the value of the translation space (TS) 
field for the tlbsx[.] instruction

16:23 Reserved

24:31 STID Search Translation ID

Specifies the value of the process identifier to be 
compared against the TLB entry’s TID field for 
the tlbsx[.] instruction; also used to transfer a 
TLB entry’s TID value for the tlbre and tlbwe 
instructions.
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The SWOA field is one of two MMUCR fields which can control the allocation of cache lines upon store misses. 
The other is the U2SWOAE field, and if U2SWOAE is 1 then the U2 storage attribute controls the allocation and the 
SWOA field is ignored (see User-Definable (U0–U3) on page 116). However, if the U2SWOAE field is 0, then the 
SWOA field controls cache line allocation for all cacheable store misses. Specifically, if a cacheable store access 
misses in the data cache, then if SWOA is 0, then the cache line will be filled into the data cache, and the store 
data will be written into the cache (as well as to memory if the associated memory page is also marked as write-
through; see Write-Through (W) on page 114). Conversely, if SWOA is 1, then cacheable store misses will not 
allocate the line in the data cache, and the store data will be written to memory only, whether or not the write-
through attribute is set.

See Instruction and Data Caches on page 71 for more information on cache line allocation on store misses.

U1 Transient Enable (U1TE) Field

When U1TE is 1, then the U1 storage attribute is enabled to control the transient mechanism of the instruction and 
data caches (see “User-Definable (U0–U3)” on page 116). If the U1 field of the TLB entry for the memory page 
being accessed is 0, then the access will use the normal portion of the cache. If the U1 field is 1, then the transient 
portion of cache will be used.

If the U1TE field is 0, then the transient cache mechanism is disabled and all accesses use the normal portion of 
the cache.

See Instruction and Data Caches on page 71 for more information on the transient cache mechanism.

U2 Store Without Allocate Enable (U2SWOAE) Field

An explanation of the allocation of cache lines on store misses is provided in the section on the SWOA field above. 
The U2SWOAE field is the other mechanism which can control such allocation. If U2SWOAE is 0, then the SWOA 
field determines whether or not a cache line is allocated on a store miss.

When U2SWOAE is 1, then the U2 storage attribute is enabled to control the allocation on a memory page basis, 
and the SWOA field is ignored (see “User-Definable (U0–U3)” on page 116). If the U2 field of the TLB entry for the 
memory page containing the bytes being stored is 0, then the cache line will be allocated in the data cache on a 
store miss. If the U2 field is 0, then the cache line will not be allocated.

See Instruction and Data Caches on page 71 for more information on cache line allocation on store misses.

Data Cache Unlock Exception Enable (DULXE) Field

The DULXE field can be used to force a Cache Locking exception type Data Storage interrupt to occur if a dcbf 
instruction is executed in user mode (MSR[PR]=1). Since dcbf can be executed in user mode and since it causes 
a cache line to be flushed from the data cache, it has the potential for allowing an application program to remove a 
locked line from the cache. The locking and unlocking of cache lines is generally a supervisor mode function, as 
the supervisor has access to the various mechanisms which control the cache locking mechanism (e.g., the Data 
Cache Victim Limit (DVLIM) and Instruction Cache Victim Limit (IVLIM) registers, and the MMUCR). Therefore, the 
DULXE field provides a means to prevent any dcbf instructions executed while in user mode from flushing any 
cache lines.

Note that with the PPC440, the Cache Locking exception occurs independent of whether the target line is truly 
locked or not. This behavior is necessary because the instruction execution pipeline is such that the exception 
determination must be made before it is determined whether or not the target line is actually locked (or whether it is 
even a hit).

Software at the Data Storage interrupt handler can determine whether the target line is locked, and if so whether or 
not the application should be allowed to unlock it.
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If DULXE is 0, or if dcbf is executed while in supervisor mode, then the instruction execution is allowed to proceed 
and flush the target line, independent of whether it is locked or not.

See Instruction and Data Caches on page 71 for more information on cache locking.

Instruction Cache Unlock Exception Enable (IULXE) Field

The IULXE field can be used to force a Cache Locking exception type Data Storage interrupt to occur if an icbi 
instruction is executed in user mode (MSR[PR]=1). Since icbi can be executed in user mode and since it causes a 
cache line to be removed from the instruction cache, it has the potential for allowing an application program to 
remove a locked line from the cache. The locking and unlocking of cache lines is generally a supervisor mode 
function, as the supervisor has access to the various mechanisms which control the cache locking mechanism 
(e.g., the DVLIM and IVLIM registers, and the MMUCR). Therefore, the IULXE field provides a means to prevent 
any icbi instructions executed while in user mode from flushing any cache lines.

Note that with the PPC440, the Cache Locking exception occurs independent of whether the target line is truly 
locked or not. This behavior is necessary because the instruction execution pipeline is such that the exception 
determination must be made before it is determined whether or not the target line is actually locked (or whether it is 
even a hit).

Software at the Data Storage interrupt handler can determine whether the target line is locked, and if so whether or 
not the application should be allowed to unlock it.

If IULXE is 0, or if icbi is executed while in supervisor mode, then the instruction execution is allowed to proceed 
and flush the target line, independent of whether it is locked or not.

See Instruction and Data Caches on page 71 for more information on cache locking.

Search Translation Space (STS) Field

The STS field is used by the tlbsx[.] instruction to designate the value against which the TS field of the TLB entries 
is to be matched. For instruction fetch and data storage accesses, the TS field of the TLB entries is compared with 
the MSR[IS] bit or the MSR[DS] bit, respectively. For tlbsx[.] however, the MMUCR[STS] field is used, allowing the 
TLB to be searched for entries with a TS field which is references an address space other than the one being used 
by the currently executing process.

See “Address Space Identifier Convention” on page 108 for more information on the TLB entry TS field.

Search Translation ID (STID) Field

The STID field is used by the tlbsx[.] instruction to designate the process identifier value to be compared with the 
TID field of the TLB entries. For instruction fetch and data storage accesses and cache management operations, 
the TID field of the TLB entries is compared with the value in the PID register (see “Process ID (PID)” on 
page 120). For tlbsx[.] however, the MMUCR[STID] field is used, allowing the TLB to be searched for entries with 
a TID field which does not match the Process ID of the currently executing process.

The MMUCR[STID] field is also used to transfer the TLB entry’s TID field on tlbre and tlbwe instructions which 
target TLB word 0, as there are not enough bits in the GPR used for transferring the other fields such that it could 
hold this field as well.

See “TLB Match Process” on page 108 for more information on the TLB entry TID field and the address matching 
process. Also see “TLB Read/Write Instructions (tlbre/tlbwe)” on page 122 for more information on how the 
MMUCR[STID] field is used by these instructions.
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4.7.2 Process ID (PID)

The Process ID (PID) is a 32-bit register, although only the lower 8 bits are defined in the PPC440. The 8-bit PID 
value is used as a portion of the virtual address for accessing storage (see “Virtual Address Formation” on 
page 108). The PID value is compared against the TID field of a TLB entry to determine whether or not the entry 
corresponds to a given virtual address. If an entry’s TID field is 0 (signifying that the entry defines a “global” as 
opposed to “private” page), then the PID value is ignored when determining whether the entry corresponds to a 
given virtual address. See “TLB Match Process” on page 108 for a more detailed description of the use of the PID 
value in the TLB match process.

The PID is written from a GPR using mtspr, and can be read into a GPR using mfspr. 

  

4.8 Shadow TLB Arrays

The PPC440 implements two shadow TLB arrays, one for instruction fetches and one for data accesses. These 
arrays “shadow” the value of a subset of the entries in the main, unified TLB (the UTLB in the context of this 
discussion). The purpose of the shadow TLB arrays is to reduce the latency of the address translation operation, 
and to avoid contention for the UTLB array between instruction fetches and data accesses.

The instruction shadow TLB (ITLB) contains four entries, while the data shadow TLB (DTLB) contains eight. There 
is no latency associated with accessing the shadow TLB arrays, and instruction execution continues in a pipelined 
fashion as long as the requested address is found in the shadow TLB. If the requested address is not found in the 
shadow TLB, the instruction fetch or data storage access is automatically stalled while the address is looked up in 
the UTLB. If the address is found in the UTLB, the penalty associated with the miss in the shadow array is three 
cycles. If the address is also a miss in the UTLB, then an Instruction or Data TLB Miss exception is reported.

The replacement of entries in the shadow TLB’s is managed by hardware, in a round-robin fashion. Upon a 
shadow TLB miss which leads to a UTLB hit, the hardware will automatically cast-out the oldest entry in the 
shadow TLB and replace it with the new translation.

The hardware will also automatically invalidate all of the entries in both of the shadow TLB’s upon any context 
synchronization (see “Context Synchronization” on page 67). Context synchronizing operations include the 
following:

• Any interrupt (including Machine Check)

• Execution of isync

• Execution of rfi, rfci, or rfmci

• Execution of sc

Note that there are other “context changing” operations which do not cause automatic context synchronization in 
the hardware. For example, execution of a tlbwe instruction changes the UTLB contents but does not cause a 
context synchronization and thus does not invalidate or otherwise update the shadow TLB entries. In order for 
changes to the entries in the UTLB (or to other address-related resources such as the PID) to be reflected in the 
shadow TLB’s, software must ensure that a context synchronizing operation occurs prior to any attempt to use any 

Figure 4-4. Process ID (PID) 

0:23 Reserved

24:31 PID Process ID
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address associated with the updated UTLB entries (either the old or new contents of those entries). By invalidating 
the shadow TLB arrays, a context synchronizing operation forces the hardware to refresh the shadow TLB entries 
with the updated information in the UTLB as each memory page is accessed.

Note:  Of the items in the preceding list of shadow TLB invalidating operations, the Machine Check interrupt is not 
architecturally required to be context synchronizing, and thus is not guaranteed to cause invalidation of any 
shadow TLB arrays on implementations other than those using the PPC440 processor. Consequently, software 
which is intended to be portable to other implementations should not depend on this behavior, and should insert 
the appropriate architecturally-defined context synchronizing operation as necessary for desired operation.

4.9 TLB Management Instructions

The processor does not imply any format for the page tables or the page table entries. Software has significant 
flexibility in organizing the size, location, and format of the page table, and in implementing a custom TLB entry 
replacement strategy. For example, software can “lock” TLB entries that correspond to frequently used storage, so 
that those entries are never cast out of the TLB, and TLB Miss exceptions to those pages never occur.

In order to enable software to manage the TLB, a set of TLB management instructions is implemented within the 
PPC440. These instructions are described briefly in the sections which follow, and in detail in Instruction Set on 
page 209 In addition, the interrupt mechanism provides resources to assist with software handling of TLB-related 
exceptions. One such resource is Save/Restore Register 0 (SRR0), which provides the exception-causing address 
for Instruction TLB Error and Instruction Storage interrupts. Another resource is the Data Exception Address 
Register (DEAR), which provides the exception-causing address for Data TLB Error and Data Storage interrupts. 
Finally, the Exception Syndrome Register (ESR) provides bits to differentiate amongst the various exception types 
which may cause a particular interrupt type. See Interrupts and Exceptions on page 127 for more information on 
these mechanisms.

All of the TLB management instructions are privileged, in order to prevent user mode programs from affecting the 
address translation and access control mechanisms.

4.9.1 TLB Search Instruction (tlbsx[.]) 

The tlbsx[.] instruction can be used to locate an entry in the TLB which is associated with a particular virtual 
address. This instruction forms an effective address for which the TLB is to be searched, in the same manner by 
which data storage access instructions perform their address calculation, by adding the contents of registers RA 
(or the value 0 if RA=0) and RB together. The MMUCR[STID] and MMUCR[STS] fields then provide the process ID 
and address space portions of the virtual address, respectively. Next, the TLB is searched for this virtual address, 
with the searching process including the notion of disabling the comparison to the process ID if the TID field of a 
given TLB entry is 0 (see “TLB Match Process” on page 108). Finally, the TLB index of the matching entry is written 
into the target register (RT). This index value can then serve as the source value for a subsequent tlbre or tlbwe 
instruction, to read or update the entry. If no matching entry is found, then the target register contents are 
undefined.

The “record form” of the instruction (tlbsx.) updates CR[CR0]2 with the result of the search: if a match is found, 
then CR[CR0]2 is set to 1; otherwise it is set to 0.

When the TLB is searched using a tlbsx instruction, if a matching entry is found, the parity calculated for the tag is 
compared to the parity stored in the TPAR field. A mismatch causes a parity error exception. Parity errors in words 
1 and 2 of the entry will not cause parity error exceptions when executing a tlbsx instruction. 
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4.9.2 TLB Read/Write Instructions (tlbre/tlbwe)

TLB entries can be read and written by the tlbre and tlbwe instructions, respectively. Since a TLB entry contains 
more than 32 bits, multiple tlbre/tlbwe instructions must be executed in order to transfer all of the TLB entry 
information. A TLB entry is divided into three portions, TLB word 0, TLB word 1, and TLB word 2. The RA field of 
the tlbre and tlbwe instructions designates a GPR from which the low-order six bits are used to specify the TLB 
index of the TLB entry to be read or written. An immediate field (WS) designates which word of the TLB entry is to 
be transferred (that is, WS=0 specifies TLB word 0, and so on). Finally, the contents of the selected TLB word are 
transferred to or from a designated target or source GPR (and the MMUCR[STID] field, for TLB word 0; see below), 
respectively.

The fields in each TLB word are illustrated in Figure 4-5. The bit numbers indicate which bits of the target/source 
GPR correspond to each TLB field. Note that the TID field of TLB word 0 is transferred to/from the MMUCR[STID] 
field, rather than to/from the target/source GPR.

When executing a tlbre, the parity fields (TPAR, PAR1, and PAR2) are loaded if and only if the CCR0[CRPE] bit is 
set. Otherwise those fields are loaded with zeros. When the tlbre is executed, If the parity bits stored for the 
particular word that is read by the tlbre indicate a parity error, the parity error exception will be generated 
regardless of the state of the CCR0[CRPE] bit.

When executing a tlbwe, bits in the source GPR that correspond to the parity fields are ignored, as the hardware 
calculates the parity to be recorded in those fields of the entry.

4.9.3 TLB Sync Instruction (tlbsync)

The tlbsync instruction is used to synchronize software TLB management operations in a multiprocessor 
environment with hardware-enforced coherency, which is not supported by the PPC440. Consequently, this 
instruction is treated as a no-op. It is provided in support of software compatibility between PowerPC-based 
systems.

Figure 4-5. TLB Entry Word Definitions  
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4.10 Page Reference and Change Status Management

When performing page management, it is useful to know whether a given memory page has been referenced, and 
whether its contents have been modified. Note that this may be more involved than determining whether a given 
TLB entry has been used to reference or change memory, since multiple TLB entries may translate to the same 
memory page. If it is necessary to replace the contents of some memory page with other contents, a page which 
has been referenced (accessed for any purpose) is more likely to be maintained than a page which has never been 
referenced. If the contents of a given memory page are to be replaced and the contents of that page have been 
changed, then the current contents of that page must be written to backup physical storage (such as a hard disk) 
before replacement.

Similarly, when performing TLB management, it is useful to know whether a given TLB entry has been referenced. 
When making a decision about which entry of the TLB to replace in order to make room for a new entry, an entry 
which has never been referenced is a more likely candidate to be replaced.

The PPC440 does not automatically record references or changes to a page or TLB entry. Instead, the interrupt 
mechanism may be used by system software to maintain reference and change information for TLB entries and 
their associated pages, respectively.

Execute, Read and Write Access Control exceptions may be used to allow software to maintain reference and 
change information for a TLB entry and for its associated memory page. The following description explains one 
way in which system software can maintain such reference and change information.

The TLB entry is originally written into the TLB with its access control bits (UX, SX, UR, SR, UW, and SW) off. The 
first attempt of application code to use the page will therefore cause an Access Control exception and a 
corresponding Instruction or Data Storage interrupt. The interrupt handler records the reference to the TLB entry 
and to the associated memory page in a software table, and then turns on the appropriate access control bit, 
thereby indicating that the particular TLB entry has been referenced. An initial read from the page is handled by 
only turning on the appropriate UR or SR access control bit, leaving the page “read-only”. Subsequent read 
accesses to the page via that TLB entry will proceed normally.

If a write access is later attempted, a Write Access Control exception type Data Storage interrupt will occur. The 
interrupt handler records the change status to the memory page in a software table, and then turns on the 
appropriate UW or SW access control bit, thereby indicating that the memory page associated with the particular 
TLB entry has been changed. Subsequent write accesses to the page via that TLB entry will proceed normally.

4.11 TLB Parity Operations

The TLB is parity protected against soft errors in the TLB memory array that are caused by alpha particle impacts. 
If such errors are detected, the CPU can be configured to vector to the machine check interrupt handler, 
which can restore the corrupted state of the TLB from the page tables in system memory.

The TLB is a 64-entry CAM/RAM with 40 tag bits, 41 data bits, and 8 parity bits per entry. Tag and data bits are 
parity protected with four parity bits for the 40-bit tag, two parity bits for 26 bits of data (i.e. those read and written 
as word 1 by the tlbre and tlbwe instructions), and two more parity bits for the remaining 15 bits of data (i.e. word 
2). The parity bits are stored in the TLB entries in fields named TPAR, PAR1, and PAR2, respectively. See Figure 
4-5 TLB Entry Word Definitions

Unlike the instruction and data cache CAM/RAMs, the TLB does not detect multiple hits due to parity errors in the 
tags. The TLB is a relatively small memory array, and the reduction in Soft Error Rate (SER) provided by adding 
multi-hit detection to the circuit is small, and so, not worth the expense of the feature.
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TLB parity bits are set any time the TLB is updated, which is always done via a tlbwe instruction. TLB parity is
checked each time the TLB is searched or read, whether to re-fill the ITLB or DTLB, or as a result of a tlbsx or
tlbre instruction. When executing an ITLB or DTLB refill, parity is checked for the tag and both data words. When
executing a tlbsx, data output is not enabled for the translation and protection outputs of the TLB, so only the tag
parity is checked. When executing a tlbre, parity is checked only for the word specified in the WS field of the tlbre
instruction. Detection of a parity error causes a machine check exception. If MSR[ME] is set (which is the usual
case), the processor takes a machine check interrupt.

4.11.1 Reading TLB Parity Bits with tlbre
If CCR0[CRPE] is set, execution of a tlbre instruction updates the target register with parity values as well as the
tag or other data from the TLB. However, since a tlbre that detects a parity error will cause a machine check
exception, the target register can only be updated with a “bad” parity value if the MSR[ME] bit is cleared,
preventing the machine check interrupt. Thus the usual flow of code that detects a parity error in the TLB and then
finds out which entry is erroneous would proceed as:

1. A tlbre instruction is executed from normal OS code, resulting in a parity exception. The exception sets 
MCSR[TLBE]  and MCSR[MCS]. 

2. MSR[ME] = 1, so the CPU vectors to the machine check handler (i.e., takes the machine check interrupt) and 
resets the MSR[ME] bit. Note that even though the parity error causes an asynchronous interrupt, that interrupt 
is guaranteed to be taken before the tlbre instruction completes if the CCR0[PRE] (Parity Recovery Enable) is 
set, and so the target register (RT) of the tlbre will not be updated.

3. The Machine Check handler code includes a series of tlbre instructions to query the state of the TLB and find 
the erroneous entry. When a tlbre encounters an erroneous entry and MSR[ME] = 0, the parity exception still 
happens, setting the MCSR[MCS] and MCSR[TLBE] bits. Additionally, since MSR[ME] = 0, MCSR[IMCE] is 
set, indicating that an imprecise machine check was detected. Finally, the instruction completes, (since no 
interrupt is taken because MSR[ME} = 0), updating the target register with data from the TLB, including the 
parity information.

Note that the tlbre causes an exception when it detects a parity error, but the icread and dcread instructions do
not. This inconsistency is explained because OS code commonly uses a sequence of tlbsx and tlbre instructions
to update the “changed” bit in the page table entries (see Page Reference and Change Status Management on
page 123). Forcing the software to check the parity manually for each tlbre would be a performance limitation. No
such functional use exists for the icread and dcread instructions; they are used only in debugging contexts with no
significant performance requirements.

As is the case for any machine check interrupt, after vectoring to the machine check handler, the MCSRR0
contains the value of the oldest “uncommitted” instruction in the pipeline at the time of the exception and MCSRR1
contains the old (MSR) context. The interrupt handler is able to query Machine Check Status Register (MCSR) to
find out that it was called due to a TLB parity exception, and then use tlbre instructions to find the error in the TLB
and restore it from a known good copy in main memory. 

Note: A parity error on the TLB entry which maps the machine check exception handler code prevents 
recovery. In effect, one of the 64 TLB entries is unprotected, in that the machine cannot recover from an 
error in that entry. It is possible to add logic to get around this problem, but the reduction in SER achieved 
by protecting 63 out of 64 TLB entries is sufficient. Further, the software technique of simply dedicating a 
TLB entry to the page that contains the machine check handler and periodically refreshing that entry from 
a known good copy can reduce the probability that the entry will be used with a parity error to near zero.

As mentioned above, any tlbre or tlbsx instruction that causes a machine check interrupt will be flushed from the
pipeline before it completes. Further, any instruction that causes a DTLB or ITLB refill which causes a TLB parity
error will be flushed before it completes.
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4.11.2 Simulating TLB Parity Errors for Software Testing

Because parity errors occur in the TLB infrequently and unpredictably, it is desirable to provide users with a way to 
simulate the effect of a TLB parity error so that interrupt handling software may be exercised. This is exactly the 
purpose of the 4-bit CCR1[MMUPEI] field.

Usually, parity is calculated as the even parity for each set of bits to be protected, which the checking hardware 
expects. This calculation is done as the TLB data is stored with a tlbwe instruction. However, if any of the 
CCR1[MMUPEI] bits are set, the calculated parity for the corresponding bits of the data being stored are inverted 
and stored as odd parity. Then, when the data stored with odd parity is subsequently used to refill the DTLB or 
ITLB, or by a tlbsx or tlbre instruction, it will cause a Parity exception type Machine Check interrupt and exercise 
the interrupt handling software. The following pseudo-code is an example of how to use the CCR1[MMUPEI] field 
to simulate a parity error on a TLB entry:

mtspr CCR1, Rx ; Set some CCR1[MMUPEI] bits
isync ; wait for the CCR1 context to update
tlbwe Rs,Ra,0 ; write some data to the TLB with bad parity
tlbwe Rs,Ra,1 ; write some data to the TLB with bad parity
tlbwe Rs,Ra,2 ; write some data to the TLB with bad parity
isync ; wait for the tlbwe(s) to finish
mtspr CCR1, Rz ; Reset CCR1[MMUPEI]
isync ; wait for the CCR1 context to update
tlbre RT,RA,WS ; tlbre with bad parity causes interrupt
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5. Interrupts and Exceptions
This chapter begins by defining the terminology and classification of interrupts and exceptions in Overview and 
Interrupt Classes.

Interrupt Processing on page 130 explains in general how interrupts are processed, including the requirements for 
partial execution of instructions.

Several registers support interrupt handling and control. Interrupt Processing Registers on page 133 describes 
these registers.

Table 5-2 Interrupt and Exception Types on page 141 lists the interrupts and exceptions handled by the PPC405, 
in the order of Interrupt Vector Offset Register (IVOR) usage. Detailed descriptions of each interrupt type follow, in 
the same order.

Finally, Interrupt Ordering and Masking on page 162 and Exception Priorities on page 165 define the priority order 
for the processing of simultaneous interrupts and exceptions.

5.1 Overview

An interrupt is the action in which the processor saves its old context (Machine State Register (MSR) and next 
instruction address) and begins execution at a pre-determined interrupt-handler address, with a modified MSR. 
Exceptions are the events that may cause the processor to take an interrupt, if the corresponding interrupt type is 
enabled.

Exceptions may be generated by the execution of instructions, or by signals from devices external to the PPC440, 
the internal timer facilities, debug events, or error conditions.

5.2 Interrupt Classes

All interrupts, except for Machine Check, can be categorized according to two independent characteristics of the 
interrupt:

• Asynchronous or synchronous

• Critical or non-critical

5.2.1 Asynchronous Interrupts

Asynchronous interrupts are caused by events that are independent of instruction execution. For asynchronous 
interrupts, the address reported to the interrupt handling routine is the address of the instruction that would have 
executed next, had the asynchronous interrupt not occurred.

5.2.2 Synchronous Interrupts

Synchronous interrupts are those that are caused directly by the execution (or attempted execution) of instructions, 
and are further divided into two classes, precise and imprecise.

Synchronous, precise interrupts are those that precisely indicate the address of the instruction causing the 
exception that generated the interrupt; or, for certain synchronous, precise interrupt types, the address of the 
immediately following instruction.
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Synchronous, imprecise interrupts are those that may indicate the address of the instruction which caused the 
exception that generated the interrupt, or the address of some instruction after the one which caused the 
exception.

5.2.2.1 Synchronous, Precise Interrupts

When the execution or attempted execution of an instruction causes a synchronous, precise interrupt, the following 
conditions exist when the associated interrupt handler begins execution:

• SRR0 (see Save/Restore Register 0 (SRR0) on page 134) or CSRR0 (see Critical Save/Restore Register 0 
(CSRR0) on page 135) addresses either the instruction which caused the exception that generated the inter-
rupt, or the instruction immediately following this instruction. Which instruction is addressed can be determined 
from a combination of the interrupt type and the setting of certain fields of the ESR (see Exception Syndrome 
Register (ESR) on page 138).

• The interrupt is generated such that all instructions preceding the instruction which caused the exception 
appear to have completed with respect to the executing processor. However, some storage accesses associ-
ated with these preceding instructions may not have been performed with respect to other processors and 
mechanisms.

• The instruction which caused the exception may appear not to have begun execution (except for having 
caused the exception), may have been partially executed, or may have completed, depending on the interrupt 
type (see Partially Executed Instructions on page 131).

• Architecturally, no instruction beyond the one which caused the exception has executed.

5.2.2.2 Synchronous, Imprecise Interrupts

When the execution or attempted execution of an instruction causes a synchronous, imprecise interrupt, the 
following conditions exist when the associated interrupt handler begins execution:

• SRR0 or CSRR0 addresses either the instruction which caused the exception that generated the interrupt, or 
some instruction following this instruction.

• The interrupt is generated such that all instructions preceding the instruction addressed by SRR0 or CSRR0 
appear to have completed with respect to the executing processor.

• If the imprecise interrupt is forced by the context synchronizing mechanism, due to an instruction that causes 
another exception that generates an interrupt (for example, Alignment, Data Storage), then SRR0 addresses 
the interrupt-forcing instruction, and the interrupt-forcing instruction may have been partially executed (see 
Partially Executed Instructions on page 131).

• If the imprecise interrupt is forced by the execution synchronizing mechanism, due to executing an execution 
synchronizing instruction other than msync or isync, then SRR0 or CSRR0 addresses the interrupt-forcing 
instruction, and the interrupt-forcing instruction appears not to have begun execution (except for its forcing the 
imprecise interrupt). If the imprecise interrupt is forced by an msync or isync instruction, then SRR0 or 
CSRR0 may address either the msync or isync instruction, or the following instruction.

• If the imprecise interrupt is not forced by either the context synchronizing mechanism or the execution synchro-
nizing mechanism, then the instruction addressed by SRR0 or CSRR0 may have been partially executed (see 
Partially Executed Instructions on page 131).

• No instruction following the instruction addressed by SRR0 or CSRR0 has executed.

The only synchronous, imprecise interrupts in the PPC440 are the “special cases” of “delayed” interrupts, which 
can result when certain kinds of exceptions occur while the corresponding interrupt type is disabled. The first of 
these is the Floating-Point Enabled exception type Program interrupt. For this type of interrupt to occur, a floating-
point unit must be attached to the auxiliary processor interface of the PPC440, and the Floating-point Enabled 
Exception Summary bit of the Floating-Point Status and Control Register (FPSCR[FEX]) must be set while 
128       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
Floating-point Enabled exception type Program interrupts are disabled due to MSR[FE0,FE1] both being 0. If and 
when such interrupts are subsequently enabled, by setting one or the other (or both) of MSR[FE0,FE1] to 1 while 
FPSCR[FEX] is still 1, then a synchronous, imprecise form of Floating-Point Enabled exception type Program 
interrupt will occur, and SRR0 will be set to the address of the instruction which would have executed next (that is, 
the instruction after the one which updated MSR[FE0,FE1]). If the MSR was updated by an rfi, rfci, or rfmci 
instruction, then SRR0 will be set to the address to which the rfi, rfci, or rfmci was returning, and not to the 
instruction address which is sequentially after the rfi, rfci, or rfmci.

The second type of delayed interrupt which may be handled as a synchronous, imprecise interrupt is the Debug 
interrupt. Similar to the Floating-Point Enabled exception type Program interrupt, the Debug interrupt can be 
temporarily disabled by an MSR bit, MSR[DE]. Accordingly, certain kinds of Debug exceptions may occur and be 
recorded in the DBSR while MSR[DE] is 0, and later lead to a delayed Debug interrupt if MSR[DE] is set to 1 while 
a Debug exception is still set in the DBSR. If and when this occurs, the interrupt will either be synchronous and 
imprecise, or it will be asynchronous, depending on the type of Debug exception causing the interrupt. In either 
case, CSRR0 is set to the address of the instruction which would have executed next (that is, the instruction after 
the one which set MSR[DE] to 1). If MSR[DE] is set to 1 by rfi, rfci, or rfmci, then CSRR0 is set to the address to 
which the rfi, rfci, or rfmci was returning, and not to the address of the instruction which was sequentially after the 
rfi, rfci, or rfmci.

Besides these special cases of Program and Debug interrupts, all other synchronous interrupts are handled 
precisely by the PPC440, including FP Enabled exception type Program interrupts even when the processor is 
operating in one of the architecturally-defined imprecise modes (MSR[FE0,FE1] = 0b01 or 0b10).

See Program Interrupt on page 151 and Debug Interrupt on page 159 for a more detailed description of these 
interrupt types, including both the precise and imprecise cases.

5.2.3 Critical and Non-Critical Interrupts

Interrupts can also be classified as critical or noncritical interrupts. Certain interrupt types demand immediate 
attention, even if other interrupt types are currently being processed and have not yet had the opportunity to save 
the state of the machine (that is, return address and captured state of the MSR). To enable taking a critical interrupt 
immediately after a non-critical interrupt has occurred (that is, before the state of the machine has been saved), 
two sets of Save/Restore Register pairs are provided. Critical interrupts use the Save/Restore Register pair 
CSRR0/CSRR1. Non-Critical interrupts use Save/Restore Register pair SRR0/SRR1.

5.2.4 Machine Check Interrupts

Machine Check interrupts are a special case. They are typically caused by some kind of hardware or storage 
subsystem failure, or by an attempt to access an invalid address. A Machine Check may be caused indirectly by 
the execution of an instruction, but not be recognized and/or reported until after the processor has executed past 
the instruction that caused the Machine Check. As such, Machine Check interrupts cannot be classified as either 
synchronous or asynchronous, nor as precise or imprecise. They also do not belong to either the critical or the non-
critical interrupt class, but instead have associated with them a unique pair of save/restore registers, Machine 
Check Save/Restore Registers 0/1 (MCSRR0/1). 

Architecturally, the following general rules apply for Machine Check interrupts:

1. No instruction after the one whose address is reported to the Machine Check interrupt handler in MCSRR0 has 
begun execution.

2. The instruction whose address is reported to the Machine Check interrupt handler in MCSRR0, and all prior 
instructions, may or may not have completed successfully. All those instructions that are ever going to com-
plete appear to have done so already, and have done so within the context existing prior to the Machine Check 
interrupt. No further interrupt (other than possible additional Machine Check interrupts) will occur as a result of 
those instructions.
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With the PPC440, Machine Check interrupts can be caused by Machine Check exceptions on a memory access for 
an instruction fetch, for a data access, or for a TLB access. Some of the interrupts generated behave as 
synchronous, precise interrupts, while other are handled in an asynchronous fashion. 

In the case of an Instruction Synchronous Machine Check exception, the PPC440 will handle the interrupt as a 
synchronous, precise interrupt, assuming Machine Check interrupts are enabled (MSR[ME] = 1). That is, if a 
Machine Check exception is detected during an instruction fetch, the exception will not be reported to the interrupt 
mechanism unless and until execution is attempted for the instruction address at which the Machine Check 
exception occurred. If, for example, the direction of the instruction stream is changed (perhaps due to a branch 
instruction), such that the instruction at the address associated with the Machine Check exception will not be 
executed, then the exception will not be reported and no interrupt will occur. If and when an Instruction Machine 
Check exception is reported, and if Machine Check interrupts are enabled at the time of the reporting of the 
exception, then the interrupt will be synchronous and precise and MCSRR0 will be set to the instruction address 
which led to the exception. If Machine Check interrupts are not enabled at the time of the reporting of an Instruction 
Machine Check exception, then a Machine Check interrupt will not be generated (ever, even if and when MSR[ME] 
is subsequently set to 1), although the ESR[MCI] field will be set to 1 to indicate that the exception has occurred 
and that the instruction associated with the exception has been executed.

Instruction Asynchronous Machine Check, Data Asynchronous Machine Check, and TLB Asynchronous Machine 
Check exceptions, on the other hand, are handled in an “asynchronous” fashion. That is, the address reported in 
MCSRR0 may not be related to the instruction which prompted the access which led, directly or indirectly, to the 
Machine Check exception. The address may be that of an instruction before or after the exception-causing 
instruction, or it may reference the exception causing instruction, depending on the nature of the access, the type 
of error encountered, and the circumstances of the instruction’s execution within the processor pipeline. If 
MSR[ME] is 0 at the time of a Machine Check exception that is handled in this asynchronous way, a Machine 
Check interrupt will subsequently occur if and when MSR[ME] is set to 1.

See Machine Check Interrupt on page 144 for more detailed information on Machine Check interrupts.

5.3 Interrupt Processing

Associated with each kind of interrupt is an interrupt vector, that is, the address of the initial instruction that is 
executed when the corresponding interrupt occurs.

Interrupt processing consists of saving a small part of the processor state in certain registers, identifying the cause 
of the interrupt in another register, and continuing execution at the corresponding interrupt vector location. When 
an exception exists and the corresponding interrupt type is enabled, the following actions are performed, in order:

1. SRR0 (for non-critical class interrupts) or CSRR0 (for critical class interrupts) or MCSRR0 (for Machine Check 
interrupts) is loaded with an instruction address that depends on the type of interrupt; see the specific interrupt 
description for details.

2. The ESR is loaded with information specific to the exception type. Note that many interrupt types can only be 
caused by a single type of exception, and thus do not need nor use an ESR setting to indicate the cause of the 
interrupt. Machine Check interrupts load the MCSR

3. SRR1 (for non-critical class interrupts) or CSRR1 (for critical class interrupts) or MCSRR1 (for Machine Check 
interrupts) is loaded with a copy of the contents of the MSR.
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4. The MSR is updated as described below. The new values take effect beginning with the first instruction follow-
ing the interrupt.

• MSR[WE,EE,PR,FP,FE0,DWE,FE1,IS,DS] are set to 0 by all interrupts.

• MSR[CE,DE] are set to 0 by all critical class interrupts and left unchanged by all non-critical class inter-
rupts.

• MSR[ME] is set to 0 by Machine Check interrupts and left unchanged by all other interrupts.

See Machine State Register (MSR) on page 133 for more detail on the definition of the MSR.

5. Instruction fetching and execution resumes, using the new MSR value, at the interrupt vector address, which is 
specific to the interrupt type, and is determined as follows:

IVPR0:15 || IVORn16:27 || 0b0000

where n specifies the IVOR register to be used for a particular interrupt type (see Interrupt Vector Offset Reg-
isters (IVOR0:IVOR15) on page 137).

At the end of a non-critical interrupt handling routine, execution of an rfi causes the MSR to be restored from the 
contents of SRR1 and instruction execution to resume at the address contained in SRR0. Likewise, execution of an 
rfci performs the same function at the end of a critical interrupt handling routine, using CSRR0 instead of SRR0 
and CSRR1 instead of SRR1. rfmci uses MCSRR0 and MCSRR1 in the same manner.

Programming Note: In general, at process switch, due to possible process interlocks and possible 
data availability requirements, the operating system needs to consider 
executing the following instructions.

• stwcx., to clear the reservation if one is outstanding, to ensure that a lwarx in the 
“old” process is not paired with a stwcx. in the “new” process. See the instruction 
descriptions for lwarx and stwcx. in Instruction Set on page 209 for more 
information on storage reservations.

• msync, to ensure that all storage operations of an interrupted process are complete 
with respect to other processors before that process begins executing on another 
processor. 

• isync, rfi, rfci, or rfmci, to ensure that the instructions in the “new” process execute 
in the “new” context.

5.3.1 Partially Executed Instructions

In general, the architecture permits load and store instructions to be partially executed, interrupted, and then to be 
restarted from the beginning upon return from the interrupt. In order to guarantee that a particular load or store 
instruction will complete without being interrupted and restarted, software must mark the storage being referred to 
as Guarded, and must use an elementary (not a string or multiple) load or store that is aligned on an operand-sized 
boundary.

In order to guarantee that load and store instructions can, in general, be restarted and completed correctly without 
software intervention, the following rules apply when an instruction is partially executed and then interrupted:

• For an elementary load, no part of the target register (GPR(RT), FPR(FRT), or auxiliary processor register) will 
have been altered.

• For the “update” forms of load and store instructions, the update register, GPR(RA), will not have been altered.
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On the other hand, the following effects are permissible when certain instructions are partially executed and then 
restarted:

• For any store instruction, some of the bytes at the addressed storage location may have been accessed and/or 
updated (if write access to that page in which bytes were altered is permitted by the access control mecha-
nism). In addition, for the stwcx. instruction, if the address is not aligned on a word boundary, then the value in 
CR[CR0] is undefined, as is whether or not the reservation (if one existed) has been cleared.

• For any load, some of the bytes at the addressed storage location may have been accessed (if read access to 
that page in which bytes were accessed is permitted by the access control mechanism). In addition, for the 
lwarx instruction, if the address is not aligned on a word boundary, it is undefined whether or not a reservation 
has been set.

• For load multiple and load string instructions, some of the registers in the range to be loaded may have been 
altered. Including the addressing registers (GPR(RA), and possibly GPR(RB)) in the range to be loaded is an 
invalid form of these instructions (and a programming error), and thus the rules for partial execution do not pro-
tect against overwriting of these registers. Such possible overwriting of the addressing registers makes these 
invalid forms of load multiple and load strings inherently non-restartable.

In no case will access control be violated.

As previously stated, the only load or store instructions that are guaranteed to not be interrupted after being 
partially executed are elementary, aligned, guarded loads and stores. All others may be interrupted after being 
partially executed. The following list identifies the specific instruction types for which interruption after partial 
execution may occur, as well as the specific interrupt types that could cause the interruption:

1. Any load or store (except elementary, aligned, guarded):

Critical Input

Machine Check

External Input

Program (Imprecise Mode Floating-Point Enabled) 

Note that this type of interrupt can lead to partial execution of a load or store instruction under the architec-
tural definition only; the PPC440 handles the imprecise modes of the Floating-Point Enabled exceptions 
precisely, and hence this type of interrupt will not lead to partial execution.

Decrementer

Fixed-Interval Timer

Watchdog Timer

Debug (Unconditional Debug Event)

2. Unaligned elementary load or store, or any load or store multiple or string:

All of the above listed under item 1, plus the following:

Alignment

Data Storage (if the access crosses a memory page boundary)

Debug (Data Address Compare, Data Value Compare)
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5.4 Interrupt Processing Registers

The interrupt processing registers include the Save/Restore Registers (SRR0–SRR1), Critical Save/Restore 
Registers (CSRR0–CSRR1), Data Exception Address Register (DEAR), Interrupt Vector Offset  Registers 
(IVOR0–IVOR15), Interrupt Vector Prefix Register (IVPR), and Exception Syndrome Register (ESR). Also 
described in this section is the Machine State Register (MSR), which belongs to the category of processor control 
registers.

5.4.1 Machine State Register (MSR)

The MSR is a register of its own unique type that controls important chip functions, such as the enabling or 
disabling of various interrupt types.

The MSR can be written from a GPR using the mtmsr instruction. The contents of the MSR can be read into a 
GPR using the mfmsr instruction. The MSR[EE] bit can be set or cleared atomically using the wrtee or wrteei 
instructions. The MSR contents are also automatically saved, altered, and restored by the interrupt-handling 
mechanism.

  

Figure 5-1. Machine State Register (MSR) 

0:12 Reserved

13 WE
Wait State Enable
0 The processor is not in the wait state.
1 The processor is in the wait state. 

If MSR[WE] = 1, the processor remains in the wait 
state until an interrupt is taken, a reset occurs, or 
an external debug tool clears WE.

14 CE

Critical Interrupt Enable
0 Critical Input and Watchdog Timer interrupts are 

disabled.
1 Critical Input and Watchdog Timer interrupts are 

enabled.

15 Reserved

16 EE

External Interrupt Enable
0 External Input, Decrementer, and Fixed Interval 

Timer interrupts are disabled.
1 External Input, Decrementer, and Fixed Interval 

Timer interrupts are enabled.

17 PR

Problem State
0 Supervisor state (privileged instructions can be 

executed)
1 Problem state (privileged instructions can not be 

executed)

18 FP

Floating Point Available
0 The processor cannot execute floating-point 

instructions
1 The processor can execute floating-point 

instructions

19 ME
Machine Check Enable
0 Machine Check interrupts are disabled
1 Machine Check interrupts are enabled.

20 FE0

Floating-point exception mode 0
0 If MSR[FE1] = 0, ignore exceptions mode; if 

MSR[FE1] = 1, imprecise nonrecoverable mode
1 If MSR[FE1] = 0, imprecise recoverable mode; if 

MSR[FE1] = 1, precise mode
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5.4.2 Save/Restore Register 0 (SRR0)

SRR0 is an SPR that is used to save machine state on non-critical interrupts, and to restore machine state when 
an rfi is executed. When a non-critical interrupt occurs, SRR0 is set to an address associated with the process 
which was executing at the time. When rfi is executed, instruction execution returns to the address in SRR0.

In general, SRR0 contains the address of the instruction that caused the non-critical interrupt, or the address of the 
instruction to return to after a non-critical interrupt is serviced. See the individual descriptions under Interrupt 
Definitions on page 141 for an explanation of the precise address recorded in SRR0 for each non-critical interrupt 
type.

SRR0 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

     

5.4.3 Save/Restore Register 1 (SRR1)

SRR1 is an SPR that is used to save machine state on non-critical interrupts, and to restore machine state when 
an rfi is executed. When a non-critical interrupt is taken, the contents of the MSR (prior to the MSR being cleared 
by the interrupt) are placed into SRR1. When rfi is executed, the MSR is restored with the contents of SRR1.

Bits of SRR1 that correspond to reserved bits in the MSR are also reserved.

21 DWE
Debug Wait Enable
0 Disable debug wait mode.
1 Enable debug wait mode.

22 DE
Debug interrupt Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23 FE1

Floating-point exception mode 1
0 If MSR[FE0] = 0, ignore exceptions mode; if 

MSR[FE0] = 1, imprecise recoverable mode
1 If MSR[FE0] = 0, imprecise non-recoverable 

mode; if MSR[FE0] = 1, precise mode

24:25 Reserved

26 IS

Instruction Address Space
0 All instruction storage accesses are directed to 

address space 0 (TS = 0 in the relevant TLB 
entry).

1 All instruction storage accesses are directed to 
address space 1 (TS = 1 in the relevant TLB 
entry).

27 DS

Data Address Space
0 All data storage accesses are directed to 

address space 0 (TS = 0 in the relevant TLB 
entry).

1 All data storage accesses are directed to 
address space 1 (TS = 1 in the relevant TLB 
entry).

28:31 Reserved

Figure 5-2. Save/Restore Register 0 (SRR0) 

0:29 Return address for non-critical interrupts

30:31 Reserved
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Programming Note: An MSR bit that is reserved may be altered by rfi, consistent with the value 
being restored from SRR1.

SRR1 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

    

5.4.4 Critical Save/Restore Register 0 (CSRR0)

CSRR0 is an SPR that is used to save machine state on critical interrupts, and to restore machine state when an 
rfci is executed. When a critical interrupt occurs, CSRR0 is set to an address associated with the process which 
was executing at the time. When rfci is executed, instruction execution returns to the address in CSRR0.

In general, CSRR0 contains the address of the instruction that caused the critical interrupt, or the address of the 
instruction to return to after a critical interrupt is serviced. See the individual descriptions under Interrupt Definitions 
on page 141 for an explanation of the precise address recorded in CSRR0 for each critical interrupt type.

CSRR0 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

 

5.4.5 Critical Save/Restore Register 1 (CSRR1)

CSRR1 is an SPR that is used to save machine state on critical interrupts, and to restore machine state when an 
rfci is executed. When a critical interrupt is taken, the contents of the MSR (prior to the MSR being cleared by the 
interrupt) are placed into CSRR1. When rfci is executed, the MSR is restored with the contents of CSRR1.

Bits of CSRR1 that correspond to reserved bits in the MSR are also reserved.

Programming Note: An MSR bit that is reserved may be altered by rfci, consistent with the value 
being restored from CSRR1.

CSRR1 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

 

5.4.6 Machine Check Save/Restore Register 0 (MCSRR0) 

MCSRR0 is an SPR that is used to save machine state on Machine Check interrupts, and to restore machine state 
when an rfmci is executed. When a machine check interrupt occurs, MCSRR0 is set to an address associated with 
the process which was executing at the time. When rfmci is executed, instruction execution returns to the address 
in MCSRR0.

Figure 5-3. Save/Restore Register 1 (SRR1) 

0:31 Copy of the MSR at the time of a non-critical inter-
rupt.

Figure 5-4. Critical Save/Restore Register 0 (CSRR0) 

0:29 Return address for critical interrupts

30:31 Reserved

Figure 5-5. Critical Save/Restore Register 1 (CSRR1) 

0:31 Copy of the MSR when a critical interrupt is taken
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In general, MCSRR0 contains the address of the instruction that caused the Machine Check interrupt, or the 
address of the instruction to return to after a machine check interrupt is serviced. See the individual descriptions 
under Interrupt Definitions on page 141 for an explanation of the precise address recorded in MCSRR0 for each 
Machine Check interrupt type.

MCSRR0 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

 

5.4.7 Machine Check Save/Restore Register 1 (MCSRR1) 

MCSRR1 is an SPR that is used to save machine state on Machine Check interrupts, and to restore machine state 
when an rfmci is executed. When a machine check interrupt is taken, the contents of the MSR (prior to the MSR 
being cleared by the interrupt) are placed into MCSRR1. When rfmci is executed, the MSR is restored with the 
contents of MCSRR1.

Bits of MCSRR1 that correspond to reserved bits in the MSR are also reserved.

Programming Note: An MSR bit that is reserved may be altered by rfmci, consistent with the value 
being restored from MCSRR1.

MCSRR1 can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

 

5.4.8 Data Exception Address Register (DEAR)    

The DEAR contains the address that was referenced by a load, store, or cache management instruction that 
caused an Alignment, Data TLB Miss, or Data Storage exception.

The DEAR can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

  

Figure 5-6. Machine Check Save/Restore Register 0 (MCSRR0) 

0:29 Return address for machine check interrupts

30:31 Reserved

Figure 5-7. Machine Check Save/Restore Register 1 (MCSRR1)  

0:31 Copy of the MSR at the time of a machine check interrupt.

Figure 5-8. Data Exception Address Register (DEAR) 

0:31 Address of data exception for Data Storage, Align-
ment, and Data TLB Error interrupts
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5.4.9 Interrupt Vector Offset Registers (IVOR0:IVOR15)

An IVOR specifies the quad word (16 byte)-aligned interrupt vector offset from the base address provided by the 
IVPR (see Interrupt Vector Prefix Register (IVPR) on page 138) for its respective interrupt type. IVOR0:IVOR15 are 
provided for the defined interrupt types. The interrupt vector effective address is formed as follows:

IVPR0:15 || IVORn16:27 || 0b0000

where n specifies the IVOR register to be used for the particular interrupt type.

Any IVOR can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

The following figure shows the IVOR field definitions, while Table 5-1 identifies the specific IVOR register 
associated with each interrupt type.

  

   

Figure 5-9. Interrupt Vector Offset Registers (IVOR0:IVOR15) 

0:15 Reserved

16:27 IVO Interrupt Vector Offset

28:31 Reserved

Table 5-1. Interrupt Types Associated with each IVOR 

IVOR Interrupt Type

IVOR0 Critical Input

IVOR1 Machine Check

IVOR2 Data Storage

IVOR3 Instruction Storage

IVOR4 External Input

IVOR5 Alignment

IVOR6 Program

IVOR7 Floating Point Unavailable

IVOR8 System Call

IVOR9 Auxiliary Processor Unavailable

IVOR10 Decrementer

IVOR11 Fixed Interval Timer

IVOR12 Watchdog Timer

IVOR13 Data TLB Error

IVOR14 Instruction TLB Error

IVOR15 Debug
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5.4.10 Interrupt Vector Prefix Register (IVPR)

The IVPR provides the high-order 16 bits of the effective address of the interrupt vectors, for all interrupt types. The 
interrupt vector effective address is formed as follows:

IVPR0:15 || IVORn16:27 || 0b0000

where n specifies the IVOR register to be used for the particular interrupt type.

The IVPR can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

   

5.4.11 Exception Syndrome Register (ESR)

The ESR provides a syndrome to differentiate between the different kinds of exceptions that can generate the 
same interrupt type. Upon the generation of one of these types of interrupt, the bit or bits corresponding to the 
specific exception that generated the interrupt is set, and all other ESR bits are cleared. Other interrupt types do 
not affect the contents of the ESR. Figure 5-11 provides a summary of the fields of the ESR along with their 
definitions. See the individual interrupt descriptions under “Interrupt Definitions” on page 141 for an explanation of 
the ESR settings for each interrupt type, as well as a more detailed explanation of the function of certain ESR 
fields.

The ESR can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

  

Figure 5-10. Interrupt Vector Prefix Register (IVPR) 

0:15 IVP Interrupt Vector Prefix

16:31 Reserved

Figure 5-11. Exception Syndrome Register (ESR) 

0 MCI

Machine Check—Instruction Fetch Exception
0  Instruction Machine Check exception did not 

occur.
1 Instruction Machine Check exception occurred.

This is an implementation-dependent field of the 
ESR and is not part of the PowerPC Book-E Archi-
tecture.

1:3 Reserved

4 PIL
Program Interrupt—Illegal Instruction Exception
0 Illegal Instruction exception did not occur.
1 Illegal Instruction exception occurred.

5 PPR

Program Interrupt—Privileged Instruction Excep-
tion
0  Privileged Instruction exception did not occur.
1  Privileged Instruction exception occurred.

6 PTR
Program Interrupt—Trap Exception
0 Trap exception did not occur.
1 Trap exception occurred.

7 FP

Floating Point Operation
0 Exception was not caused by a floating point 

instruction.
1 Exception was caused by a floating point 

instruction.
138       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
8 ST

Store Operation
0 Exception was not caused by a store-type 

storage access or cache management 
instruction.

1 Exception was caused by a store-type storage 
access or cache management instruction.

9 Reserved

10:11 DLK

Data Storage Interrupt—Locking Exception
00 Locking exception did not occur.
01 Locking exception was caused by dcbf.
10 Locking exception was caused by icbi.
11 Reserved

12 AP

AP Operation
0 Exception was not caused by an auxiliary 

processor instruction.
1 Exception was caused by an auxiliary processor 

instruction.

13 PUO

Program Interrupt—Unimplemented Operation 
Exception
0 Unimplemented Operation exception did not 

occur.
1 Unimplemented Operation exception occurred.

14 BO
Byte Ordering Exception
0 Byte Ordering exception did not occur.
1 Byte Ordering exception occurred.

15 PIE

Program Interrupt—Imprecise Exception
0 Exception occurred precisely; SRR0 contains 

the address of the instruction that caused the 
exception.

1 Exception occurred imprecisely; SRR0 contains 
the address of an instruction after the one which 
caused the exception.

This field is only set for a Floating-Point Enabled 
exception type Program interrupt, and then only 
when the interrupt occurs imprecisely due to 
MSR[FE0,FE1] being set to a non-zero value when 
an attached floating-point unit is already signaling 
the Floating-Point Enabled exception (that is, 
FPSCR[FEX] is already 1).

16:26 Reserved

27 PCRE

Program Interrupt—Condition Register Enable
0 Instruction which caused the exception is not a 

floating-point CR-updating instruction.
1 Instruction which caused the exception is a 

floating-point CR-updating instruction.

This is an implementation-dependent field of the 
ESR and is not part of the PowerPC Book-E Archi-
tecture.

This field is only defined for a Floating-Point 
Enabled exception type Program interrupt, and 
then only when ESR[PIE] is 0. 

28 PCMP

Program Interrupt—Compare
0 Instruction which caused the exception is not a 

floating-point compare type instruction
1 Instruction which caused the exception is a 

floating-point compare type instruction.

This is an implementation-dependent field of the 
ESR and is not part of the PowerPC Book-E Archi-
tecture.

This field is only defined for a Floating-Point 
Enabled exception type Program interrupt, and 
then only when ESR[PIE] is 0. 

29:31 PCRF

Program Interrupt—Condition Register Field
If ESR[PCRE]=1, this field indicates which CR field 
was to be updated by the floating-point instruction 
which caused the exception.

This is an implementation-dependent field of the 
ESR and is not part of the PowerPC Book-E Archi-
tecture.

This field is only defined for a Floating-Point 
Enabled exception type Program interrupt, and 
then only when ESR[PIE] is 0. 
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5.4.12 Machine Check Status Register (MCSR)

The MCSR contains status to allow the Machine Check interrupt handler software to determine the cause of a 
machine check exception. Any Machine Check exception that is handled as an asynchronous interrupt sets 
MCSR[MCS] and other appropriate bits of the MCSR. If MSR[ME] and MCSR[MCS] are both set, the machine will 
take a Machine Check interrupt. See Machine Check Interrupt on page 144.

The MCSR is read into a GPR using mfspr. Clearing the MCSR is performed using mtspr by placing a 1 in the 
GPR source register in all bit positions which are to be cleared in the MCSR, and a 0 in all other bit positions. The 
data written from the GPR to the MCSR is not direct data, but a mask. A 1 clears the bit and a 0 leaves the 
corresponding MCSR bit unchanged.

 

Figure 5-12. Machine Check Status Register (MCSR) 

0 MCS
Machine Check Summary
0 No asynchronous machine check exception pending
1 Asynchronous machine check exception pending

Set when a machine check exception occurs 
that is handled in the asynchronous fashion. 
One of MCSR bits 1:7 will be set simulta-
neously to indicate the exception type. When 
MSR[ME] and this bit are both set, Machine 
Check interrupt is taken. 

1 IB

Instruction PLB Error
0 Exception not caused by Instruction Read PLB 

interrupt request (IRQ)
1 Exception caused by Instruction Read PLB interrupt 

request (IRQ)

2 DRB

Data Read PLB Error
0 Exception not caused by Data Read PLB interrupt 

request (IRQ)
1 Exception caused by Data Read PLB interrupt 

request (IRQ)

3 DWB

Data Write PLB Error
0 Exception not caused by Data Write PLB interrupt 

request (IRQ)
1 Exception caused by Data Write PLB interrupt 

request (IRQ)

4 TLBP
Translation Look Aside Buffer Parity Error
0 Exception not caused by TLB parity error
1 Exception caused by TLB parity error

5 ICP
Instruction Cache Parity Error
0 Exception not caused by I-cache parity error
1 Exception caused by I-cache parity error

6 DCSP
Data Cache Search Parity Error
0 Exception not caused by DCU Search parity error
1 Exception caused by DCU Search parity error

Set if and only If the DCU parity error was dis-
covered during a DCU Search operation.
See Data Cache Parity Operations on 
page 98.

7 DCFP
Data Cache Flush Parity Error
0 Exception not caused by DCU Flush parity error
1 Exception caused by DCU Flush parity error

Set if and only If the DCU parity error was dis-
covered during a DCU Flush operation.
See Data Cache Parity Operations on 
page 98.

8 IMPE
Imprecise Machine Check Exception
0 No imprecise machine check exception occurred.
1 Imprecise machine check exception occurred.

Set if a machine check exception occurs that 
sets MCSR[MCS] (or would if it were not 
already set) and MSR[ME] = 0. 

9:31 Reserved
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5.5 Interrupt Definitions

Table 5-2 provides a summary of each interrupt type, in the order corresponding to their associated IVOR register. 
The table also summarizes the various exception types that may cause that interrupt type; the classification of the 
interrupt; which ESR bit(s) can be set, if any; and which mask bit(s) can mask the interrupt type, if any.

Detailed descriptions of each of the interrupt types follow the table.

. 

Table 5-2. Interrupt and Exception Types  

IVOR Interrupt Type Exception Type
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IVOR0 Critical Input Critical Input x x  CE 1

IVOR1 Machine Check

Instruction Machine Check [MCI] ME 2

Data Machine Check ME 2

TLB Machine Check ME 2

IVOR2 Data Storage

Read Access Control x [FP,AP]

Write Access Control x ST,[FP,AP]

Cache Locking x {DLK0,DLK1}

Byte Ordering x BO,[ST],[FP,AP] 5

IVOR3 Instruction Storage
Execute Access Control x

Byte Ordering x BO 6

IVOR4 External Input External Input x EE 1

IVOR5 Alignment Alignment x [ST],[FP,AP]

IVOR6 Program 

Illegal Instruction x PIL

Privileged Instruction x PPR,[AP]

Trap x PTR

FP Enabled x x
FP,[PIE],[PCRE]
{PCMP,PCRF}

FE0
FE1 8

AP Enabled x AP 8

Unimplemented Operations x PUO,[FP,AP] 7

IVOR7 FP Unavailable FP Unavailable x 8

IVOR8 System Call System Call x

IVOR9 AP Unavailable AP Unavailable x 8

IVOR10 Decrementer Decrementer x EE DIE

IVOR11 Fixed Interval Timer Fixed Interval Timer x EE FIE
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IVOR12 Watchdog Timer Watchdog Timer x x CE WIE

IVOR13 Data TLB Error Data TLB Miss x [ST],[FP,AP]

IVOR14 Instruction TLB Error Instruction TLB Miss x

IVOR15 Debug

Trap x x x DE IDM 3

Instruction Address Compare x x x DE IDM 3

Data Address Compare x x x x DE IDM 3

Data Value Compare x x x x DE IDM 3

Instruction Complete x x x DE IDM 3

Branch Taken x x DE IDM 3

Return x x x DE IDM 3

Interrupt x x DE IDM

Unconditional x x DE IDM

Table 5-2. Interrupt and Exception Types (continued) 

IVOR Interrupt Type Exception Type
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5.5.1 Critical Input Interrupt

A Critical Input interrupt occurs when no higher priority exception exists, a Critical Input exception is presented to 
the interrupt mechanism, and MSR[CE] = 1. A Critical Input exception is caused by the activation of an 
asynchronous input to the PPC440. Although the only mask for this interrupt type within the core is the MSR[CE] 
bit, system implementations typically provide an alternative means for independently masking the interrupt 
requests from the various devices which collectively may activate the processor core Critical Input interrupt request 
input.

Note:  MSR[CE] also enables the Watchdog Timer interrupt.

When a Critical Input interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR0[IVO] || 
0b0000.

Table Notes
1. Although it is not specified as part of Book E, it is common for system implementations to provide, as part of the interrupt controller, 

independent mask and status bits for the various sources of Critical Input and External Input interrupts.

2. Machine Check interrupts are not classified as asynchronous nor synchronous. They are also not classified as critical or non-
critical, because they use their own unique set to Save/Restore Registers, MCSRR0/1. See Machine Check Interrupts on 
page 129, and Machine Check Interrupt on page 144.

3. Debug exceptions have special rules regarding their interrupt classification (synchronous or asynchronous, and precise or 
imprecise), depending on the particular debug mode being used and other conditions (see Debug Interrupt on page 159).

4. In general, when an interrupt causes a particular ESR bit or bits to be set as indicated in the table, it also causes all other ESR 
bits to be cleared. Special rules apply to the ESR[MCI] field; see Machine Check Interrupt on page 144. If no ESR setting is 
indicated for any of the exception types within a given interrupt type, then the ESR is unchanged for that interrupt type.

The syntax for the ESR setting indication is as follows:

[xxx] means ESR[xxx] may be set

[xxx,yyy,zzz] means any one (or none) of ESR[xxx] or ESR[yyy] or ESR[zzz] may be set, but never more than one

{xxx,yyy,zzz} means that any combination of ESR[xxx], ESR[yyy], and ESR[zzz] may be set, including all or none

xxx means ESR[xxx] will be set
5. Byte Ordering exception type Data Storage interrupts can only occur when the PPC440 is connected to a floating-point unit or 

auxiliary processor, and then only when executing FP or AP load or store instructions. See Data Storage Interrupt on page 146 
for more detailed information on these kinds of exceptions.

6. Byte Ordering exception type Instruction Storage interrupts are defined by the PowerPC Book-E architecture, but cannot occur 
within the PPC440. The core is capable of executing instructions from both big endian and little endian code pages.

7. Unimplemented Operation exception type Program interrupts can only occur when the PPC440 is connected to a floating-point 
unit or auxiliary processor, and then only when executing instruction opcodes which are recognized by the floating-point unit or 
auxiliary processor but are not implemented within the hardware.

8. Floating-Point Unavailable and Auxiliary Processor Unavailable interrupts, as well as Floating-Point Enabled and Auxiliary 
Processor Enabled exception type Program interrupts, can only occur when the PPC440 is connected to a floating-point unit 
or auxiliary processor, and then only when executing instruction opcodes which are recognized by the floating-point unit or 
auxiliary processor, respectively.

Table 5-2. Interrupt and Exception Types (continued) 

IVOR Interrupt Type Exception Type
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Critical Save/Restore Register 0 (CSRR0): Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1 (CSRR1): Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR): ME: Unchanged. All other MSR bits set to 0.

Programming Note: Software is responsible for taking any action(s) that are required by the 
implementation in order to clear any Critical Input exception status (such that 
the Critical Input interrupt request input signal is deasserted) before reenabling 
MSR[CE], in order to avoid another, redundant Critical Input interrupt.

5.5.2 Machine Check Interrupt

A Machine Check interrupt occurs when no higher priority exception exists, a Machine Check exception is 
presented to the interrupt mechanism, and MSR[ME] = 1. The PowerPC architecture specifies Machine Check 
interrupts as neither synchronous nor asynchronous, and indeed the exact causes and details of handling such 
interrupts are implementation dependent. Regardless, for this particular processor core, it is useful to describe the 
handling of interrupts caused by various types of Machine Check exceptions in those terms. The processor core 
includes four types of Machine Check exceptions. They are:

Instruction Synchronous Machine Check exception
An Instruction Synchronous Machine Check exception is caused when timeout or read error is sig-
naled on the instruction read PLB interface during an instruction fetch operation.
Such an exception is not presented to the interrupt handling mechanism, however, unless and until
such time as the execution is attempted of an instruction at an address associated with the instruction
fetch for which the Instruction Machine Check exception was asserted. When the exception is pre-
sented, the ESR[MCI] bit will be set to indicated the type of exception, regardless of the state of the
MSR[ME] bit.
If MSR[ME] is 1 when the Instruction Machine Check exception is presented to the interrupt mecha-
nism, then execution of the instruction associated with the exception will be suppressed, a Machine
Check interrupt will occur, and the interrupt processing registers will be updated as described on
page 145. If MSR[ME] is 0, however, then the instruction associated with the exception will be pro-
cessed as though the exception did not exist and a Machine Check interrupt will not occur (ever, even
if and when MSR[ME] is subsequently set to 1), although the ESR will still be updated as described on
page 145.

Instruction Asynchronous Machine Check exception
An Instruction Asynchronous Machine Check exception is caused when either:

• an instruction cache parity error is detected
• the read interrupt request is asserted on the instruction read PLB interface. 

Data Asynchronous Machine Check exception
A Data Asynchronous Machine Check exception is caused when one of the following occurs:

• a timeout, read error, or read interrupt request is signaled on the data read PLB interface, during a data 
read operation

• a timeout, write error, or write interrupt request is signaled on the data write PLB interface, during a data 
write operation

• a parity error is detected on an access to the data cache.
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TLB Asynchronous Machine Check exception

A TLB Asynchronous Machine Check exception is caused when a parity error is detected on an access to the 
TLB.

When any Machine Check exception which is handled as an asynchronous interrupt occurs, it is immediately 
presented to the interrupt handling mechanism. MCSR[MCS] is set, as are other bits of the MCSR as appropri-
ate. A Machine Check interrupt will occur immediately if MSR[ME] is 1, and the interrupt processing registers 
will be updated as described below. If MSR[ME] is 0, however, then the exception will be “recorded” by the set-
ting of the MCSR[MCS] bit, and deferred until such time as MSR[ME] is subsequently set to 1. Any time the 
MCSR[MCS] and MSR[ME] are both set to 1, the Machine Check interrupt will be taken. Therefore, 
MCSR[MCS] must be cleared by software in the Machine Check interrupt handler before executing an rfmci to 
return to processing with MSR[ME] set to 1.

When a Machine Check interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR1[IVO] || 
0b0000.

Machine Check Save/Restore Register 0 (MCSRR0)
For an Instruction Synchronous Machine Check exception, set to the effective address of the instruc-
tion presenting the exception. For an Instruction Asynchronous Machine Check, Data Asynchronous
Machine Check, or TLB Asynchronous Machine Check exception, set to the effective address of the
next instruction to be executed.

Machine Check Save/Restore Register 1 (MCSRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
All MSR bits set to 0.

Exception Syndrome Register (ESR)
MCI Set to 1 for an Instruction Machine Check exception; otherwise left unchanged.
All other defined ESR bits are set to 0 for an Instruction Machine Check exception; otherwise they are
left unchanged.

Programming Note: If an Instruction Synchronous Machine Check exception is associated with an 
instruction, and execution of that instruction is attempted while MSR[ME] is 0, 
then no Machine Check interrupt will occur, but ESR[MCI] will still be set to 1 
when the instruction actually executes. Once set, ESR[MCI] cannot be cleared 
except by software, using the mtspr instruction. When processing a Machine 
Check interrupt handler, software should query ESR[MCI] to determine the type 
of Machine Check exception, and then clear ESR[MCI]. Then, prior to re-
enabling Machine Check interrupts by setting MSR[ME] to 1, software should 
query the status of ESR[MCI] again to determine whether any additional 
Instruction Machine Check exceptions have occurred while MSR[ME] was 
disabled.

Machine Check Status Register (MCSR)
The MCSR collects status for the Machine Check exceptions that are handled as asynchronous inter-
rupts. MCSR[MCS] is set by any Instruction Asynchronous Machine Check exception, Data
Asynchronous Machine Check exception, or TLB Asynchronous Machine Check exception. Other bits
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in the MCSR are set to indicate the exact type of Machine Check exception.
MCS Set to 1.
IB Set to 1 if Instruction Read PLB Interrupt Request (IRQ) is asserted; otherwise set to 0.
DRB Set to 1 if Data Read PLB Interrupt Request (IRQ) is asserted; otherwise set to 0.
DWB Set to 1 if Data Write PLB Interrupt Request (IRQ) is asserted; otherwise set to 0.
TLBP Set to 1 if the exception is a TLB parity error; otherwise set to 0.
ICP Set to 1 if the exception is an instruction cache parity error; otherwise set to 0.
DCSP Set to 1 if the exception is a data cache parity error that resulted during a DCU Search 

operation; otherwise set to 0. See Data Cache Parity Operations on page 98.
DCFP Set to 1 if the exception is a data cache parity error that resulted during a DCU Flush 

operation; otherwise set to 0. See Data Cache Parity Operations on page 98.
IMPE Set to 1 if MCSR[MCS] is set (or would be, if it were not already set) and MSR[ME] = 0; 

otherwise set to 0. When set, this bit indicates that a Machine Check exception happened 
while Machine Check interrupts were disabled.

See “Machine Check Interrupts” on page 129 for more information on the handling of Machine Check
interrupts within the PPC440.

Programming Note: If an Instruction Synchronous Machine Check exception occurs (i.e. an error 
occurs on the PLB transfer that is intended to fill a line in the instruction cache, 
any data associated with the exception will not be placed into the instruction 
cache. On the other hand, if a Data Asynchronous Machine Check exception 
occurs due to a PLB error during a cacheable read operation, the data 
associated with the exception will be placed into the data cache, and could 
subsequently be loaded into a register. Similarly, if a Data Asynchronous 
Machine Check exception due to a PLB error occurs during a caching inhibited 
read operation, the data associated with the exception will be read into a 
register. Data Asynchronous Machine Check exceptions resulting from parity 
errors may or may not corrupt a GPR value, depending on the setting of the 
CCR0[PRE] field. See Data Cache Parity Operations on page 98.

Since a dcbz instruction establishes a real address in the data cache without actually 
reading the block of data from memory, it is possible for a delayed Data Machine Check 
exception to occur if and when a line established by a dcbz instruction is cast-out of the 
data cache and written to memory, if the address of the cache line is not valid within the 
system implementation.

5.5.3 Data Storage Interrupt

A Data Storage interrupt may occur when no higher priority exception exists and a Data Storage exception is 
presented to the interrupt mechanism. The PPC440 includes four types of Data Storage exception. They are:

Read Access Control exception
A Read Access Control exception is caused by one of the following:

• While in user mode (MSR[PR] = 1), a load, icbi, icbt, dcbst, dcbf, dcbt, or dcbtst instruction attempts to 
access a location in storage that is not enabled for read access in user mode (that is, the TLB entry asso-
ciated with the memory page being accessed has UR=0).

• While in supervisor mode (MSR[PR] = 0), a load, icbi, icbt, dcbst, dcbf, dcbt, or dcbtst instruction 
attempts to access a location in storage that is not enabled for read access in supervisor mode (that is, the 
TLB entry associated with the memory page being accessed has SR=0).
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Programming Note: The instruction cache management instructions icbi and icbt are treated as 
“loads” from the addressed byte with respect to address translation and 
protection. These instruction cache management instructions use MSR[DS] 
rather than MSR[IS] to determine translation for their target effective address. 
Similarly, they use the read access control field (UR or SR) rather than the 
execute access control field (UX or SX) of the TLB entry to determine whether 
a Data Storage exception should occur. Instruction Storage exceptions and 
Instruction TLB Miss exceptions are associated with the fetching of instructions 
not with the execution of instructions. Data Storage exceptions and Data TLB 
Miss exceptions are associated with the execution of instruction cache 
management instructions, as well as with the execution of load, store, and data 
cache management instructions.

Write Access Control exception
A Write Access Control exception is caused by one of the following:

• While in user mode (MSR[PR] = 1), a store, dcbz, or dcbi instruction attempts to access a location in stor-
age that is not enabled for write access in user mode (that is, the TLB entry associated with the memory 
page being accessed has UW=0).

• While in supervisor mode (MSR[PR] = 0), a store, dcbz, or dcbi instruction attempts to access a location 
in storage that is not enabled for write access in supervisor mode (that is, the TLB entry associated with 
the memory page being accessed has SW=0).

Byte Ordering exception
A Byte Ordering exception will occur when a floating-point unit or auxiliary processor is attached to the
PPC440, and a floating-point or auxiliary processor load or store instruction attempts to access a mem-
ory page with a byte order which is not supported by the attached processor. Whether or not a given
load or store instruction type is supported for a given byte order is dependent on the implementation of
the floating-point or auxiliary processor. All integer load and store instructions supported by the
PPC440 are supported for both big endian and little endian memory pages.

Cache Locking exception
A Cache Locking exception is caused by one of the following:

• While in user mode (MSR[PR] = 1) with MMUCR[IULXE]=1, execution of an icbi instruction is attempted. 
The exception occurs whether or not the cache line targeted by the icbi instruction is actually locked in the 
instruction cache.

• While in user mode (MSR[PR] = 1) with MMUCR[DULXE]=1, execution of a dcbf instruction is attempted. 
The exception occurs whether or not the cache line targeted by the dcbf instruction is actually locked in 
the data cache.

See Instruction and Data Caches on page 71 and Memory Management Unit Control Register
(MMUCR) on page 117 for more information on cache locking and Cache Locking exceptions,
respectively.

If a stwcx. instruction causes a Write Access Control exception, but the processor does not have the reservation 
from a lwarx instruction, then a Data Storage interrupt does not occur and the instruction completes, updating 
CR[CR0] to indicate the failure of the store due to the lost reservation.
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If a Data Storage exception occurs on any of the following instructions, then the instruction is treated as a no-op, 
and a Data Storage interrupt does not occur.

• lswx or stswx with a length of zero (although the target register of lswx will still be undefined, as it is whether 
or not a Data Storage exception occurs)

• icbt
• dcbt
• dcbtst

For all other instructions, if a Data Storage exception occurs, then execution of the instruction causing the 
exception is suppressed, a Data Storage interrupt is generated, the interrupt processing registers are updated as 
indicated below (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || 
IVOR2[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction causing the Data Storage interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Data Exception Address Register (DEAR)
If the instruction causing the Data Storage exception does so with respect to the memory page tar-
geted by the initial effective address calculated by the instruction, then the DEAR is set to this
calculated effective address. On the other hand, if the Data Storage exception only occurs due to the
instruction causing the exception crossing a memory page boundary, in that the exception is with
respect to the attributes of the page accessed after crossing the boundary, then the DEAR is set to the
address of the first byte within that page.
For example, consider a misaligned load word instruction that targets effective address 0x00000FFF,
and that the page containing that address is a 4KB page. The load word will thus cross the page
boundary, and access the next page starting at address 0x00001000. If a Read Access Control excep-
tion exists within the first page (because the Read Access Control field for that page is 0), the DEAR
will be set to 0x00000FFF. On the other hand, if the Read Access Control field of the first page is 1, but
the same field is 0 for the next page, then the Read Access Control exception exists only for the sec-
ond page and the DEAR will be set to 0x00001000. Furthermore, the load word instruction in this latter
scenario will have been partially executed (see “Partially Executed Instructions” on page 131). 

Exception Syndrome Register (ESR)
FP Set to 1 if the instruction causing the interrupt is a floating-point load or store; otherwise set to 

0.
ST Set to 1 if the instruction causing the interrupt is a store, dcbz, or dcbi instruction; otherwise 

set to 0.
DLK0:1 Set to 0b10 if an icbi instruction caused a Cache Locking exception; set to 0b01 if a dcbf 

instruction caused a Cache Locking exception; otherwise set to 0b00. Note that a Read 
Access Control exception may occur in combination with a Cache Locking exception, in which 
case software would need to examine the TLB entry associated with the address reported in 
the DEAR to determine whether both exceptions had occurred, or just a Cache Locking 
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exception.
AP Set to 1 if the instruction causing the interrupt is an auxiliary processor load or store; 

otherwise set to 0.
BO Set to 1 if the instruction caused a Byte Ordering exception; otherwise set to 0. Note that a 

Read or Write Access Control exception may occur in combination with a Byte Ordering 
exception, in which case software would need to examine the TLB entry associated with the 
address reported in the DEAR to determine whether both exceptions had occurred, or just a 
Byte Ordering exception.

MCI Unchanged.
All other defined ESR bits are set to 0.

5.5.4 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no higher priority exception exists and an Instruction Storage 
exception is presented to the interrupt mechanism. Note that although an Instruction Storage exception may occur 
during an attempt to fetch an instruction, such an exception is not actually presented to the interrupt mechanism 
until an attempt is made to execute that instruction. The PPC440 includes one type of Instruction Storage 
exception. That is:

Execute Access Control exception
An Execute Access Control exception is caused by one of the following:

• While in user mode (MSR[PR] = 1), an instruction fetch attempts to access a location in storage that is not 
enabled for execute access in user mode (that is, the TLB entry associated with the memory page being 
accessed has UX = 0).

• While in supervisor mode (MSR[PR] = 0), an instruction fetch attempts to access a location in storage that 
is not enabled for execute access in supervisor mode (that is, the TLB entry associated with the memory 
page being accessed has SX = 0).

Architecture Note: The PowerPC Book-E architecture defines an additional Instruction Storage 
exception -- the Byte Ordering exception. This exception is defined to assist 
implementations that cannot support dynamically switching byte ordering 
between consecutive instruction fetches and/or cannot support a given byte 
order at all. The PPC440 however supports instruction fetching from both big 
endian and little endian memory pages, so this exception cannot occur.

When an Instruction Storage interrupt occurs, the processor suppresses the execution of the instruction causing 
the Instruction Storage exception, the interrupt processing registers are updated as indicated below (all registers 
not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR3[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction causing the Instruction Storage interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.
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Exception Syndrome Register (ESR)
BO Set to 0.
MCI Unchanged.
All other defined ESR bits are set to 0.

5.5.5 External Input Interrupt 

An External Input interrupt occurs when no higher priority exception exists, an External Input exception is 
presented to the interrupt mechanism, and MSR[EE] = 1. An External Input exception is caused by the activation of 
an asynchronous input to the PPC440. Although the only mask for this interrupt type within the core is the 
MSR[EE] bit, system implementations typically provide an alternative means for independently masking the 
interrupt requests from the various devices which collectively may activate the core’s External Input interrupt 
request input.

Note:  MSR[EE] also enables the External Input and Fixed-Interval Timer interrupts.

When an External Input interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR4[IVO] || 
0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Programming Note: Software is responsible for taking any action(s) that are required by the 
implementation in order to clear any External Input exception status (such that 
the External Input interrupt request input signal is deasserted) before 
reenabling MSR[EE], in order to avoid another, redundant External Input 
interrupt.

5.5.6 Alignment Interrupt

An Alignment interrupt occurs when no higher priority exception exists and an Alignment exception is presented to 
the interrupt mechanism. An Alignment exception occurs if execution of any of the following is attempted:

• An integer load or store instruction that references a data storage operand that is not aligned on an operand-
sized boundary, when CCR0[FLSTA] is 1. Load and store multiple instructions are considered to reference 
word operands, and hence word-alignment is required for the target address of these instructions when 
CCR0[FLSTA] is 1. Load and store string instructions are considered to reference byte operands, and hence 
they cannot cause an Alignment exception due to CCR0[FLSTA] being 1, regardless of the target address 
alignment.

• A floating-point or auxiliary processor load or store instruction that references a data storage operand that 
crosses a quad word (16 byte) boundary.

• A floating-point or auxiliary processor load or store instruction that references a data storage operand that is 
not aligned on an operand-sized boundary, when the attached processing unit indicates to the PPC440 that the 
instruction requires operand-alignment.
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• A floating-point or auxiliary processor load or store instruction that references a data storage operand that is 
not aligned on a word boundary, when the attached processing unit indicates to the PPC440 that the instruc-
tion requires word-alignment.

• A dcbz instruction that targets a memory page that is either write-through required or caching inhibited.

If a stwcx. instruction causes an Alignment exception, and the processor does not have the reservation from a 
lwarx instruction, then an Alignment interrupt still occurs.

Programming Note: The architecture does not support the use of an unaligned effective address by 
the lwarx and stwcx. instructions. If an Alignment interrupt occurs due to the 
attempted execution of one of these instructions, the Alignment interrupt 
handler must not attempt to emulate the instruction, but instead should treat the 
instruction as a programming error.

When an Alignment interrupt occurs, the processor suppresses the execution of the instruction causing the 
Alignment exception, the interrupt processing registers are updated as indicated below (all registers not listed are 
unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR5[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction causing the Alignment interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Data Exception Address Register (DEAR)
Set to the effective address of the target data operand as calculated by the instruction causing the
Alignment exception. Note that for dcbz, this effective address is not necessarily the address of the
first byte of the targeted cache block, but could be the address of any byte within the block (it will be
the address calculated by the dcbz instruction).

Exception Syndrome Register (ESR)
FP Set to 1 if the instruction causing the interrupt is a floating-point load or store; otherwise set 

to 0.
ST Set to 1 if the instruction causing the interrupt is a store, dcbz, or dcbi instruction; otherwise 

set to 0.
AP Set to 1 if the instruction causing the interrupt is an auxiliary processor load or store; 

otherwise set to 0.
All other defined ESR bits are set to 0.

5.5.7 Program Interrupt

A Program interrupt occurs when no higher priority exception exists, a Program exception is presented to the 
interrupt mechanism, and -- for the Floating-Point Enabled form of Program exception only -- MSR[FE0,FE1] is 
non-zero. The PPC440 includes six types of Program exception. They are:
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Illegal Instruction exception
An Illegal Instruction exception occurs when execution is attempted of any of the following kinds of
instructions:

• A reserved-illegal instruction

• When MSR[PR] = 1 (user mode), an mtspr or mfspr that specifies an SPRN value with SPRN5 = 0 (user-
mode accessible) that represents an unimplemented Special Purpose Register. For mtspr, this includes 
any SPR number other than the XER, LR, CTR, or USPRG0. For mfspr, this includes any SPR number 
other than the ones listed for mtspr, plus SPRG4-7, TBH, and TBL.

• A defined instruction which is not implemented within the PPC440, and which is not a floating-point instruc-
tion. This includes all instructions that are defined for 64-bit implementations only, as well as tlbiva and 
mfapidi (see the PowerPC Book-E specification)

• A defined floating-point instruction that is not recognized by an attached floating-point unit (or when no 
such floating-point unit is attached)

• An allocated instruction that is not implemented within the PPC440 and which is not recognized by an 
attached auxiliary processor (or when no such auxiliary processor is attached)

See Instruction Classes on page 41 for more information on the PPC440’s support for defined and allo-
cated instructions.

Privileged Instruction exception
A Privileged Instruction exception occurs when MSR[PR] = 1 and execution is attempted of any of the
following kinds of instructions:

• a privileged instruction

• an mtspr or mfspr instruction that specifies an SPRN value with SPRN5 = 1 (a Privileged Instruction 
exception occurs regardless of whether or not the SPR referenced by the SPRN value is defined)

Trap exception
A Trap exception occurs when any of the conditions specified in a tw or twi instruction are met. How-
ever, if Trap debug events are enabled (DBCR0[TRAP]=1), internal debug mode is enabled
(DBCR0[IDM]=1), and Debug interrupts are enabled (MSR[DE]=1), then a Trap exception will cause a
Debug interrupt to occur, rather than a Program interrupt.
See Debug Facilities on page 181 for more information on Trap debug events.

Unimplemented Operation exception
An Unimplemented Operation exception occurs when execution is attempted of any of the following
kinds of instructions:

• a defined floating-point instruction that is recognized but not supported by an attached floating-point unit, 
when floating-point instruction processing is enabled (MSR[FP]=1).

• an allocated instruction that is not implemented within the PPC440, and is recognized but not supported by 
an attached auxiliary processor, when auxiliary processor instruction processing is enabled. The enabling 
of auxiliary processor instruction processing is implementation-dependent.

Floating-Point Enabled exception
A Floating-Point Enabled exception occurs when the execution or attempted execution of a defined
floating-point instruction causes FPSCR[FEX] to be set to 1, in an attached floating-point unit.
FPSCR[FEX] is the Floating-Point Status and Control Register Floating-Point Enabled Exception Sum-
mary bit (see the user’s manual for the floating-point unit implementation for more details). 
If MSR[FE0,FE1] is non-zero when the Floating-Point Enabled exception is presented to the interrupt
mechanism, then a Program interrupt will occur, and the interrupt processing registers will be updated
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as described below. If MSR[FE0,FE1] are both 0, however, then a Program interrupt will not occur and
the instruction associated with the exception will execute according to the definition of the floating-point
unit (see the user’s manual for the floating-point unit implementation). If and when MSR[FE0,FE1] are
subsequently set to a non-zero value, and the Floating-Point Enabled exception is still being pre-
sented to the interrupt mechanism (that is, FPSCR[FEX] is still set), then a “delayed” Program interrupt
will occur, updating the interrupt processing registers as described below.
See “Synchronous, Imprecise Interrupts” on page 128 for more information on this special form of
“delayed” Floating-Point Enabled exception.

Auxiliary Processor Enabled exception
An Auxiliary Processor Enabled exception may occur due to the execution or attempted execution of
an allocated instruction that is not implemented within the PPC440, but is recognized and supported by
an attached auxiliary processor. The cause of such an exception is implementation-dependent. See the
user’s manual for the auxiliary processor implementation for more details.
When a Program interrupt occurs, the processor suppresses the execution of the instruction causing
the Program exception (for all cases except the “delayed” form of Floating-Point Enabled exception
described above), the interrupt processing registers are updated as indicated below (all registers not
listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR6[IVO] ||
0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction causing the Program interrupt, for all cases except the
“delayed” form of Floating-Point Enabled exception described above. 
For the special case of the delayed Floating-Point Enabled exception, where the exception was already
being presented to the interrupt mechanism at the time MSR[FE0,FE1] was changed from 0 to a non-
zero value, SRR0 is set to the address of the instruction that would have executed after the MSR-
changing instruction. If the instruction which set MSR[FE0,FE1] was rfi, rfci, or rfmci, then CSRR0 is
set to the address to which the rfi, rfci, or rfmci was returning, and not to the address of the instruc-
tion which was sequentially after the rfi, rfci, or rfmci.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Exception Syndrome Register (ESR)
PIL Set to 1 for an Illegal Instruction exception; otherwise set to 0
PPR Set to 1 for a Privileged Instruction exception; otherwise set to 0
PTR Set to 1 for a Trap exception; otherwise set to 0
PUO Set to 1 for an Unimplemented Operation exception; otherwise set to 0
FP Set to 1 if the instruction causing the interrupt is a floating-point instruction; otherwise set to 0.
AP Set to 1 if the instruction causing the interrupt is an auxiliary processor instruction; otherwise 

set to 0.
PIE Set to 1 if a “delayed” form of Floating-point Enabled exception type Program interrupt; 

otherwise set to 0. The setting of ESR[PIE] to 1 indicates to the Program interrupt handler that 
the interrupt was imprecise due to being caused by the changing of MSR[FE0,FE1] and not 
directly by the execution of the floating-point instruction which caused the exception by setting 
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FPSCR[FEX]. Thus the Program interrupt handler can recognize that SRR0 contains the 
address of the instruction after the MSR-changing instruction, and not the address of the 
instruction that caused the Floating-Point Enabled exception.

PCRE Set to 1 if a Floating-Point Enabled exception and the floating-point instruction which caused 
the exception was a CR-updating instruction. Note that ESR[PCRE] is undefined if ESR[PIE] 
is 1.

PCMP Set to 1 if a Floating-Point Enabled exception and the instruction which caused the exception 
was a floating-point compare instruction. Note that ESR[PCMP] is undefined if ESR[PIE] is 1.

PCRF Set to the number of the CR field (0 - 7) which was to be updated, if a Floating-Point Enabled 
exception and the floating-point instruction which caused the exception was a CR-updating 
instruction. Note that ESR[PCRF] is undefined if ESR[PIE] is 1.

All other defined ESR bits are set to 0.

Programming Note: The ESR[PCRE,PCMP,PCRF] fields are provided to assist the Program 
interrupt handler with the emulation of part of the function of the various 
floating-point CR-updating instructions, when any of these instructions cause a 
precise (“non-delayed”) Floating-Point Enabled exception type Program 
interrupt. The PowerPC Book-E floating-point architecture defines that when 
such exceptions occur, the CR is to be updated even though the rest of the 
instruction execution may be suppressed. The PPC440, however, does not 
support such CR updates when the instruction which is supposed to cause the 
update is being suppressed due to the occurrence of a synchronous, precise 
interrupt. Instead, the PPC440 records in the ESR[PCRE,PCMP,PCRF] fields 
information about the instruction causing the interrupt, to assist the Program 
interrupt handler software in performing the appropriate CR update manually.

5.5.8 Floating-Point Unavailable Interrupt

A Floating-Point Unavailable interrupt occurs when no higher priority exception exists, an attempt is made to 
execute a floating-point instruction which is recognized by an attached floating-point unit, and MSR[FP]=0.

When a Floating-Point Unavailable interrupt occurs, the processor suppresses the execution of the instruction 
causing the Floating-Point Unavailable exception, the interrupt processing registers are updated as indicated 
below (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || 
IVOR7[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the next instruction causing the Floating-Point Unavailable interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

5.5.9 System Call Interrupt

A System Call interrupt occurs when no higher priority exception exists and a system call (sc) instruction is 
executed. 
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When a System Call interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR8[IVO] || 
0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction after the system call instruction.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

5.5.10 Auxiliary Processor Unavailable Interrupt

An Auxiliary Processor Unavailable interrupt occurs when no higher priority exception exists, an attempt is made to 
execute an auxiliary processor instruction which is not implemented within the PPC440 but which is recognized by 
an attached auxiliary processor, and auxiliary processor instruction processing is not enabled. The enabling of 
auxiliary processor instruction processing is implementation-dependent. See the user’s manual for the attached 
auxiliary processor.

When an Auxiliary Processor Unavailable interrupt occurs, the processor suppresses the execution of the 
instruction causing the Auxiliary Processor Unavailable exception, the interrupt processing registers are updated 
as indicated below (all registers not listed are unchanged), and instruction execution resumes at address 
IVPR[IVP] || IVOR9[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the next instruction causing the Auxiliary Processor Unavailable
interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

5.5.11 Decrementer Interrupt

A Decrementer interrupt occurs when no higher priority exception exists, a Decrementer exception exists 
(TSR[DIS] = 1), and the interrupt is enabled (TCR[DIE] = 1 and MSR[EE] = 1). See Timer Facilities on page 173 
for more information on Decrementer exceptions.

Note: MSR[EE] also enables the External Input and Fixed-Interval Timer interrupts.

When a Decrementer interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR10[IVO] || 
0b0000.
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Save/Restore Register 0 (SRR0)
Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Programming Note: Software is responsible for clearing the Decrementer exception status by 
writing to TSR[DIS], prior to reenabling MSR[EE], in order to avoid another, 
redundant Decrementer interrupt.

5.5.12 Fixed-Interval Timer Interrupt

A Fixed-Interval Timer interrupt occurs when no higher priority exception exists, a Fixed-Interval Timer exception 
exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] = 1 and MSR[EE]=1). See Timer Facilities on 
page 173 for more information on Fixed Interval Timer exceptions.

Note: MSR[EE] also enables the External Input and Decrementer interrupts.

When a Fixed interval Timer interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR11[IVO] || 
0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the next instruction to be executed.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Programming Note: Software is responsible for clearing the Fixed Interval Timer exception status by 
writing to TSR[FIS], prior to reenabling MSR[EE], in order to avoid another, 
redundant Fixed Interval Timer interrupt.

5.5.13 Watchdog Timer Interrupt

A Watchdog Timer interrupt occurs when no higher priority exception exists, a Watchdog Timer exception exists 
(TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and MSR[CE] = 1). See Timer Facilities on page 173 
for more information on Watchdog Timer exceptions.

Note:  MSR[CE] also enables the Critical Input interrupt.

When a Watchdog Timer interrupt occurs, the interrupt processing registers are updated as indicated below (all 
registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR12[IVO] || 
0b0000.
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Critical Save/Restore Register 0 (CSRR0)
Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1 (CSRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
ME  Unchanged.
All other MSR bits set to 0.

Programming Note: Software is responsible for clearing the Watchdog Timer exception status by 
writing to TSR[WIS], prior to reenabling MSR[CE], in order to avoid another, 
redundant Watchdog Timer interrupt.

5.5.14 Data TLB Error Interrupt

A Data TLB Error interrupt may occur when no higher priority exception exists and a Data TLB Miss exception is 
presented to the interrupt mechanism. A Data TLB Miss exception occurs when a load, store, icbi, icbt, dcbst, 
dcbf, dcbz, dcbi, dcbt, or dcbtst instruction attempts to access a virtual address for which a valid TLB entry does 
not exist. See Memory Management on page 103 for more information on the TLB.

Programming Note: The instruction cache management instructions icbi and icbt are treated as 
“loads” from the addressed byte with respect to address translation and 
protection, and therefore use MSR[DS] rather than MSR[IS] as part of the 
calculated virtual address when searching the TLB to determine translation for 
their target storage address. Instruction TLB Miss exceptions are associated 
with the fetching of instructions not with the execution of instructions. Data TLB 
Miss exceptions are associated with the execution of instruction cache 
management instructions, as well as with the execution of load, store, and data 
cache management instructions.

If a stwcx. instruction causes a Data TLB Miss exception, and the processor does not have the reservation from a 
lwarx instruction, then a Data TLB Error interrupt still occurs.

If a Data TLB Miss exception occurs on any of the following instructions, then the instruction is treated as a no-op, 
and a Data TLB Error interrupt does not occur.

• lswx or stswx with a length of zero (although the target register of lswx will be undefined)
• icbt
• dcbt
• dcbtst

For all other instructions, if a Data TLB Miss exception occurs, then execution of the instruction causing the 
exception is suppressed, a Data TLB Error interrupt is generated, the interrupt processing registers are updated as 
indicated below (all registers not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || 
IVOR13[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction causing the Data TLB Error interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.
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Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

Data Exception Address Register (DEAR)
If the instruction causing the Data TLB Miss exception does so with respect to the memory page tar-
geted by the initial effective address calculated by the instruction, then the DEAR is set to this
calculated effective address. On the other hand, if the Data TLB Miss exception only occurs due to the
instruction causing the exception crossing a memory page boundary, in that the missing TLB entry is
for the page accessed after crossing the boundary, then the DEAR is set to the address of the first byte
within that page.
As an example, consider a misaligned load word instruction that targets effective address
0x00000FFF, and that the page containing that address is a 4KB page. The load word will thus cross
the page boundary, and attempt to access the next page starting at address 0x00001000. If a valid
TLB entry does not exist for the first page, then the DEAR will be set to 0x00000FFF. On the other
hand, if a valid TLB entry does exist for the first page, but not for the second, then the DEAR will be set
to 0x00001000. Furthermore, the load word instruction in this latter scenario will have been partially
executed (see “Partially Executed Instructions” on page 131). 

Exception Syndrome Register (ESR)
FP Set to 1 if the instruction causing the interrupt is a floating-point load or store; otherwise set to 

0.
ST Set to 1 if the instruction causing the interrupt is a store, dcbz, or dcbi instruction; otherwise 

set to 0.
AP Set to 1 if the instruction causing the interrupt is an auxiliary processor load or store; 

otherwise set to 0.
MCI Unchanged.
All other defined ESR bits are set to 0.

5.5.15 Instruction TLB Error Interrupt

An Instruction TLB Error interrupt occurs when no higher priority exception exists and an Instruction TLB Miss 
exception is presented to the interrupt mechanism. Note that although an Instruction TLB Miss exception may 
occur during an attempt to fetch an instruction, such an exception is not actually presented to the interrupt 
mechanism until an attempt is made to execute that instruction. An Instruction TLB Miss exception occurs when an 
instruction fetch attempts to access a virtual address for which a valid TLB entry does not exist. See Memory 
Management on page 103 for more information on the TLB.

When an Instruction TLB Error interrupt occurs, the processor suppresses the execution of the instruction causing 
the Instruction TLB Miss exception, the interrupt processing registers are updated as indicated below (all registers 
not listed are unchanged), and instruction execution resumes at address IVPR[IVP] || IVOR14[IVO] || 0b0000.

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction causing the Instruction TLB Error interrupt.

Save/Restore Register 1 (SRR1)
Set to the contents of the MSR at the time of the interrupt.
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Machine State Register (MSR)
CE, ME, DE Unchanged.
All other MSR bits set to 0.

5.5.16 Debug Interrupt

A Debug interrupt occurs when no higher priority exception exists, a Debug exception exists in the Debug Status 
Register (DBSR), the processor is in internal debug mode (DBCR0[IDM]=1), and Debug interrupts are enabled 
(MSR[DE] = 1). A Debug exception occurs when a debug event causes a corresponding bit in the DBSR to be set.

There are several types of Debug exception, as follows:

Instruction Address Compare (IAC) exception
An IAC Debug exception occurs when execution is attempted of an instruction whose address matches
the IAC conditions specified by the various debug facility registers. This exception can occur regard-
less of debug mode, and regardless of the value of MSR[DE].

Data Address Compare (DAC) exception
A DAC Debug exception occurs when the DVC mechanism is not enabled, and execution is attempted
of a load, store, icbi, icbt, dcbst, dcbf, dcbz, dcbi, dcbt, or dcbtst instruction whose target storage
operand address matches the DAC conditions specified by the various debug facility registers. This
exception can occur regardless of debug mode, and regardless of the value of MSR[DE].

Programming Note: The instruction cache management instructions icbi and icbt are treated as 
“loads” from the addressed byte with respect to Debug exceptions. IAC Debug 
exceptions are associated with the fetching of instructions not with the 
execution of instructions. DAC Debug exceptions are associated with the 
execution of instruction cache management instructions, as well as with the 
execution of load, store, and data cache management instructions.

Data Value Compare (DVC) exception
A DVC Debug exception occurs when execution is attempted of a load, store, or dcbz instruction
whose target storage operand address matches the DAC and DVC conditions specified by the various
debug facility registers. This exception can occur regardless of debug mode, and regardless of the
value of MSR[DE].

Branch Taken (BRT) exception
A BRT Debug exception occurs when BRT debug events are enabled (DBCR0[BRT]=1) and execution
is attempted of a branch instruction for which the branch conditions are met. This exception cannot
occur in internal debug mode when MSR[DE]=0, unless external debug mode or debug wait mode is
also enabled.

Trap (TRAP) exception
A TRAP Debug exception occurs when TRAP debug events are enabled (DBCR0[TRAP]=1) and exe-
cution is attempted of a tw or twi instruction that matches any of the specified trap conditions. This
exception can occur regardless of debug mode, and regardless of the value of MSR[DE].
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Return (RET) exception
A RET Debug exception occurs when RET debug events are enabled (DBCR0[RET]=1) and execution
is attempted of an rfi, rfci, or rfmci instruction. For rfi, the RET Debug exception can occur regardless
of debug mode and regardless of the value of MSR[DE]. For rfci or rfmci, the RET Debug exception
cannot occur in internal debug mode when MSR[DE]=0, unless external debug mode or debug wait
mode is also enabled.

Instruction Complete (ICMP) exception
An ICMP Debug exception occurs when ICMP debug events are enabled (DBCR0[ICMP]=1) and exe-
cution of any instruction is completed. This exception cannot occur in internal debug mode when
MSR[DE]=0, unless external debug mode or debug wait mode is also enabled.

Interrupt (IRPT) exception
An IRPT Debug exception occurs when IRPT debug events are enabled (DBCR0[IRPT]=1) and an
interrupt occurs. For non-critical class interrupt types, the IRPT Debug exception can occur regardless
of debug mode and regardless of the value of MSR[DE]. For critical class interrupt types, the IRPT
Debug exception cannot occur in internal debug mode (regardless of the value of MSR[DE]), unless
external debug mode or debug wait mode is also enabled.

Unconditional Debug Event (UDE) exception
A UDE Debug exception occurs when an Unconditional Debug Event is signaled over the JTAG inter-
face to the PPC440. This exception can occur regardless of debug mode, and regardless of the value
of MSR[DE].

There are four debug modes supported by the PPC440. They are: internal debug mode, external debug mode, 
debug wait mode, and trace mode. Debug exceptions and interrupts are affected by the debug mode(s) which are 
enabled at the time of the Debug exception. Debug interrupts occur only when internal debug mode is enabled, 
although it is possible for external debug mode and/or debug wait mode to be enabled as well. The remainder of 
this section assumes that internal debug mode is enabled and that external debug mode and debug wait mode are 
not enabled, at the time of a Debug exception.

See Debug Facilities on page 181 for more information on the different debug modes and the behavior of each of 
the Debug exception types when operating in each of the modes.

Programming Note: It is a programming error for software to enable internal debug mode (by setting 
DBCR0[IDM] to 1) while Debug exceptions are already present in the DBSR. 
Software must first clear all DBSR Debug exception status (that is, all fields 
except IDE, MRR, IAC12ATS, and IAC34ATS) before setting DBCR0[IDM] to 1.

If a stwcx. instruction causes a DAC or DVC Debug exception, but the processor does not have the reservation 
from a lwarx instruction, then the Debug exception is not recorded in the DBSR and a Debug interrupt does not 
occur. Instead, the instruction completes and updates CR[CR0] to indicate the failure of the store due to the lost 
reservation.

If a DAC exception occurs on an lswx or stswx with a length of zero, then the instruction is treated as a no-op, the 
Debug exception is not recorded in the DBSR, and a Debug interrupt does not occur.

If a DAC exception occurs on an icbt, dcbt, or dcbtst instruction which is being no-op’ed due to some other 
reason (either the referenced cache block is in a caching inhibited memory page, or a Data Storage or Data TLB 
Miss exception occurs), then the Debug exception is not recorded in the DBSR and a Debug interrupt does not 
occur. On the other hand, if the icbt, dcbt, or dcbtst instruction is not being no-op’ed for one of these other 
reasons, the DAC Debug exception does occur and is handled in the same fashion as other DAC Debug 
exceptions (see below).
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For all other cases, when a Debug exception occurs, it is immediately presented to the interrupt handling 
mechanism. A Debug interrupt will occur immediately if MSR[DE] is 1, and the interrupt processing registers will be 
updated as described below. If MSR[DE] is 0, however, then the exception condition remains set in the DBSR. If 
and when MSR[DE] is subsequently set to 1, and the exception condition is still present in the DBSR, a “delayed” 
Debug interrupt will then occur either as a synchronous, imprecise interrupt, or as an asynchronous interrupt, 
depending on the type of Debug exception.

When a Debug interrupt occurs, the interrupt processing registers are updated as indicated below (all registers not 
listed are unchanged) and instruction execution resumes at address IVPR[IVP] || IVOR15[IVO] || 0b0000.

Critical Save/Restore Register 0 (CSRR0)
For Debug exceptions that occur while Debug interrupts are enabled (MSR[DE] = 1), CSRR0 is set as
follows:

• For IAC, BRT, TRAP, and RET Debug exceptions, set to the address of the instruction causing the Debug 
interrupt. Execution of the instruction causing the Debug exception is suppressed, and the interrupt is syn-
chronous and precise.

• For DAC and DVC Debug exceptions, if DBCR2[DAC12A] is 0, set to the address of the instruction caus-
ing the Debug interrupt. Execution of the instruction causing the Debug exception is suppressed, and the 
interrupt is synchronous and precise. 

If DBCR2[DAC12A] is 1, however, then DAC and DVC Debug exceptions are handled asynchronously, 
and CSRR0 is set to the address of the instruction that would have executed next had the Debug interrupt 
not occurred. This could either be the address of the instruction causing the DAC or DVC Debug excep-
tion, or the address of a subsequent instruction.

• For ICMP Debug exceptions, set to the address of the next instruction to be executed (the instruction after 
the one whose completion caused the ICMP Debug exception). The interrupt is synchronous and precise.

Since the ICMP Debug exception does not suppress the execution of the instruction causing the excep-
tion, but rather allows it to complete before causing the interrupt, the behavior of the interrupt is different in 
the special case where the instruction causing the ICMP Debug exception is itself setting MSR[DE] to 0. In 
this case, the interrupt will be delayed and will occur if and when MSR[DE] is again set to 1, assuming 
DBSR[ICMP] is still set. If the Debug interrupt occurs in this fashion, it will be synchronous and imprecise, 
and CSRR0 will be set to the address of the instruction after the one which set MSR[DE] to 1 (not the one 
which originally caused the ICMP Debug exception and in so doing set MSR[DE] to 0). If the instruction 
which set MSR[DE] to 1 was rfi, rfci, or rfmci, then CSRR0 is set to the address to which the rfi, rfci, or 
rfmci was returning, and not to the address of the instruction which was sequentially after the rfi, rfci, or 
rfmci.

• For IRPT Debug exceptions, set to the address of the first instruction in the interrupt handler associated 
with the interrupt type that caused the IRPT Debug exception. The interrupt is asynchronous.

• For UDE Debug exceptions, set to the address of the instruction that would have executed next if the 
Debug interrupt had not occurred. The interrupt is asynchronous.

For all Debug exceptions that occur while Debug interrupts are disabled (MSR[DE] = 0), the Debug interrupt 
will be delayed and will occur if and when MSR[DE] is again set to 1, assuming the Debug exception status is 
still set in the DBSR. If the Debug interrupt occurs in this fashion, CSRR0 is set to the address of the instruction 
after the one which set MSR[DE]. If the instruction which set MSR[DE] was rfi, rfci, or rfmci, then CSRR0 is 
set to the address to which the rfi, rfci, or rfmci was returning, and not to the address of the instruction which 
was sequentially after the rfi, rfci, or rfmci. The interrupt is either synchronous and imprecise, or asynchro-
nous, depending on the type of Debug exception, as follows:

• For IAC and RET Debug exceptions, the interrupt is synchronous and imprecise.
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• For BRT Debug exceptions, this scenario cannot occur. BRT Debug exceptions are not recognized when 
MSR[DE]=0 if operating in internal debug mode.

• For TRAP Debug exceptions, the Debug interrupt is synchronous and imprecise. However, under these 
conditions (TRAP Debug exception occurring while MSR[DE] is 0), the attempted execution of the trap 
instruction for which one or more of the trap conditions is met will itself lead to a Trap exception type Pro-
gram interrupt. The corresponding Debug interrupt which will occur later if and when Debug interrupts are 
enabled will be in addition to the Program interrupt.

• For DAC and DVC Debug exceptions, if DBCR2[DAC12A] is 0, then the interrupt is synchronous and 
imprecise. If DBCR2[DAC12A] is 1, then the interrupt is asynchronous.

• For ICMP Debug exceptions, this scenario cannot occur in this fashion. ICMP Debug exceptions are not 
recognized when MSR[DE]=0 if operating in internal debug mode. However, a similar scenario can occur 
when MSR[DE] is 1 at the time of the ICMP Debug exception, but the instruction whose completion is 
causing the exception is itself setting MSR[DE] to 0. This scenario is described above in the subsection on 
the ICMP Debug exception for which MSR[DE] is 1 at the time of the exception. In that scenario, the inter-
rupt is synchronous and imprecise.

• For IRPT and UDE Debug exceptions, the interrupt is asynchronous.

Critical Save/Restore Register 1 (CSRR1)
Set to the contents of the MSR at the time of the interrupt.

Machine State Register (MSR)
ME Unchanged.
All other MSR bits set to 0.

5.6 Interrupt Ordering and Masking

It is possible for multiple exceptions to exist simultaneously, each of which could cause the generation of an 
interrupt. Furthermore, the PowerPC Book-E architecture does not provide for the generation of more than one 
interrupt of the same class (critical or non-critical) at a time. Therefore, the architecture defines that interrupts are 
ordered with respect to each other, and provides a masking mechanism for certain persistent interrupt types.

When an interrupt type is masked (disabled), and an event causes an exception that would normally generate an 
interrupt of that type, the exception persists as a status bit in a register (which register depends upon the exception 
type). However, no interrupt is generated. Later, if the interrupt type is enabled (unmasked), and the exception 
status has not been cleared by software, the interrupt due to the original exception event will then finally be 
generated.

All asynchronous interrupt types can be masked. Machine Check interrupts can be masked, as well. In addition, 
certain synchronous interrupt types can be masked. The two synchronous interrupt types which can be masked 
are the Floating-Point Enabled exception type Program interrupt (masked by MSR[FE0,FE1), and the IAC, DAC, 
DVC, RET, and ICMP exception type Debug interrupts (masked by MSR[DE]). 

Architecture Note: When an otherwise synchronous, precise interrupt type is “delayed” in this 
fashion via masking, and the interrupt type is later enabled, the interrupt that is 
then generated due to the exception event that occurred while the interrupt 
type was disabled is then considered a synchronous, imprecise class of 
interrupt.

In order to prevent a subsequent interrupt from causing the state information (saved in SRR0/SRR1, 
CSRR0/CSRR1, or MCSRR0/MCSRR1) from a previous interrupt to be overwritten and lost, the PPC440 performs 
certain functions. As a first step, upon any non-critical class interrupt, the processor automatically disables any 
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further asynchronous, non-critical class interrupts (External Input, Decrementer, and Fixed Interval Timer) by 
clearing MSR[EE]. Likewise, upon any critical class interrupt, hardware automatically disables any further 
asynchronous interrupts of either class (critical and non-critical) by clearing MSR[CE] and MSR[DE], in addition to 
MSR[EE]. The additional interrupt types that are disabled by the clearing of MSR[CE,DE] are the Critical Input, 
Watchdog Timer, and Debug interrupts. For machine check interrupts, the processor automatically disables all 
maskable interrupts by clearing MSR[ME] as well as MSR[EE,CE,DE]. 

This first step of clearing MSR[EE] (and MSR[CE,DE] for critical class interrupts, and MSR[ME] for machine 
checks) prevents any subsequent asynchronous interrupts from overwriting the relevant save/restore registers 
(SRR0/SRR1, CSRR0/CSRR1, or MCSRR0/MCSRR1), prior to software being able to save their contents. The 
processor also automatically clears, on any interrupt, MSR[WE,PR,FP,FE0,FE1,IS,DS]. The clearing of these bits 
assists in the avoidance of subsequent interrupts of certain other types. However, guaranteeing that these interrupt 
types do not occur and thus do not overwrite the save/restore registers also requires the cooperation of system 
software. Specifically, system software must avoid the execution of instructions that could cause (or enable) a 
subsequent interrupt, if the contents of the save/restore registers have not yet been saved.

5.6.1 Interrupt Ordering Software Requirements

The following list identifies the actions that system software must avoid, prior to having saved the save/restore 
registers’ contents:

• Reenabling of MSR[EE] (or MSR[CE,DE] in critical class interrupt handlers)

This prevents any asynchronous interrupts, as well as (in the case of MSR[DE]) any Debug interrupts (which 
include both synchronous and asynchronous types).

• Branching (or sequential execution) to addresses not mapped by the TLB, or mapped without execute access 
permission

This prevents Instruction Storage and Instruction TLB Error interrupts.

• Load, store, or cache management instructions to addresses not mapped by the TLB or not having the neces-
sary access permission (read or write)

This prevents Data Storage and Data TLB Error interrupts.

• Execution of system call (sc) or trap (tw, twi) instructions 

This prevents System Call and Trap exception type Program interrupts.

• Execution of any floating-point instructions

This prevents Floating-Point Unavailable interrupts. Note that this interrupt would occur upon the execution of 
any floating-point instruction, due to the automatic clearing of MSR[FP]. However, even if software were to re-
enable MSR[FP], floating-point instructions must still be avoided in order to prevent Program interrupts due to 
the possibility of Floating-Point Enabled and/or Unimplemented Operation exceptions.

• Reenabling of MSR[PR]

This prevents Privileged Instruction exception type Program interrupts. Alternatively, software could re-enable 
MSR[PR], but avoid the execution of any privileged instructions.

• Execution of any Auxiliary Processor instructions that are not implemented in the PPC440

This prevents Auxiliary Processor Unavailable interrupts, as well as Auxiliary Processor Enabled and Unimple-
mented Operation exception type Program interrupts. Note that the auxiliary processor instructions that are 
implemented within the PPC440 do not cause any of these types of exceptions, and can therefore be executed 
prior to software having saved the save/restore registers’ contents.
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• Execution of any illegal instructions, or any defined instructions not implemented within the PPC440 (64-bit 
instructions, tlbiva, mfapidi)

This prevents Illegal Instruction exception type Program interrupts.

• Execution of any instruction that could cause an Alignment interrupt

This prevents Alignment interrupts. See “Alignment Interrupt” on page 150 for a complete list of instructions 
that may cause Alignment interrupts.

• In the Machine Check handler, use of the caches and TLBs until any detected parity errors have been cor-
rected. 

This will avoid additional parity errors. 

It is not necessary for hardware or software to avoid critical class interrupts from within non-critical class interrupt 
handlers (and hence the processor does not automatically clear MSR[CE,ME,DE] upon a non-critical interrupt), 
since the two classes of interrupts use different pairs of save/restore registers to save the instruction address and 
MSR. The converse, however, is not true. That is, hardware and software must cooperate in the avoidance of both 
critical and non-critical class interrupts from within critical class interrupt handlers, even though the two classes of 
interrupts use different save/restore register pairs. This is because the critical class interrupt may have occurred 
from within a non-critical class interrupt handler, prior to the non-critical class interrupt handler having saved SRR0 
and SRR1. Therefore, within the critical class interrupt handler, both pairs of save/restore registers may contain 
data that is necessary to the system software.

Similarly, the Machine Check handler must avoid further machine checks, as well as both critical and non-critical 
interrupts, since the machine check handler may have been called from within a critical or non-critical interrupt 
handler.

5.6.2 Interrupt Order

The following is a prioritized listing of the various enabled interrupt types for which exceptions might exist 
simultaneously:

1. Synchronous (non-debug) interrupts: 

1. Data Storage

2. Instruction Storage

3. Alignment

4. Program

5. Floating-Point Unavailable

6. System Call

7. Auxiliary Processor Unavailable

8. Data TLB Error

9. Instruction TLB Error

Only one of the above types of synchronous interrupts may have an existing exception generating it at any 
given time. This is guaranteed by the exception priority mechanism (see “Exception Priorities” on page 165) 
and the requirements of the sequential execution model defined by the PowerPC Book-E architecture.

2. Machine Check

3. Debug

4. Critical Input
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5. Watchdog Timer

6. External Input

7. Fixed-Interval Timer

8. Decrementer

Even though, as indicated above, the non-critical, synchronous exception types listed under item 1 are generated 
with higher priority than the critical interrupt types listed in items 2-5, the fact is that these non-critical interrupts will 
immediately be followed by the highest priority existing critical interrupt type, without executing any instructions at 
the non-critical interrupt handler. This is because the non-critical interrupt types do not automatically clear 
MSR[ME,DE,CE] and hence do not automatically disable the critical interrupt types. In all other cases, a particular 
interrupt type from the above list will automatically disable any subsequent interrupts of the same type, as well as 
all other interrupt types that are listed below it in the priority order.

5.7 Exception Priorities

PowerPC Book-E requires all synchronous (precise and imprecise) interrupts to be reported in program order, as 
implied by the sequential execution model. The one exception to this rule is the case of multiple synchronous 
imprecise interrupts. Upon a synchronizing event, all previously executed instructions are required to report any 
synchronous imprecise interrupt-generating exceptions, and the interrupt(s) will then be generated according to the 
general interrupt ordering rules outlined in “Interrupt Order” on page 164. For example, if a mtmsr instruction 
causes MSR[FE0,FE1,DE] to all be set, it is possible that a previous Floating-Point Enabled exception and a 
previous Debug exception both are still being presented (in the FPSCR and DBSR, respectively). In such a 
scenario, a Floating-Point Enabled exception type Program interrupt will occur first, followed immediately by a 
Debug interrupt.

For any single instruction attempting to cause multiple exceptions for which the corresponding synchronous 
interrupt types are enabled, this section defines the priority order by which the instruction will be permitted to cause 
a single enabled exception, thus generating a particular synchronous interrupt. Note that it is this exception priority 
mechanism, along with the requirement that synchronous interrupts be generated in program order, that 
guarantees that at any given time there exists for consideration only one of the synchronous interrupt types listed in 
item 1 of “Interrupt Order” on page 164. The exception priority mechanism also prevents certain debug exceptions 
from existing in combination with certain other synchronous interrupt-generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the corresponding interrupt types 
are disabled. The generation of exceptions for which the corresponding interrupt types are disabled will have no 
effect on the generation of other exceptions for which the corresponding interrupt types are enabled. Conversely, if 
a particular exception for which the corresponding interrupt type is enabled is shown in the following sections to be 
of a higher priority than another exception, the occurrence of that enabled higher priority exception will prevent the 
setting of the other exception, independent of whether that other exception’s corresponding interrupt type is 
enabled or disabled.

Except as specifically noted below, only one of the exception types listed for a given instruction type will be 
permitted to be generated at any given time, assuming the corresponding interrupt type is enabled. The priority of 
the exception types are listed in the following sections ranging from highest to lowest, within each instruction type.

Finally, note that Machine Check exceptions are defined by the PowerPC architecture to be neither synchronous 
nor asynchronous. As such, Machine Check exceptions are not considered in the remainder of this section, which 
is specifically addressing the priority of synchronous interrupts. 
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5.7.1 Exception Priorities for Integer Load, Store, and Cache Management Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of any integer load, store, or cache management instruction. Included in this category is 
the former opcode for the icbt instruction, which is an allocated opcode still supported by the PPC440.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception) 

Only applies to the defined 64-bit load, store, and cache management instructions, which are not recognized 
by the PPC440.

5. Program (Privileged Instruction) 

Only applies to the dcbi instruction, and only occurs if MSR[PR]=1.

6. Data TLB Error (Data TLB Miss exception)

7. Data Storage (all exception types except Byte Ordering exception)

8. Alignment (Alignment exception)

9. Debug (DAC or DVC exception)

10. Debug (ICMP exception)

5.7.2 Exception Priorities for Floating-Point Load and Store Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of any floating-point load or store instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception) 

This exception will occur if no floating-point unit is attached to the PPC440, or if the particular floating-point 
load or store instruction is not recognized by the attached floating-point unit.

5. Floating-Point Unavailable (Floating-Point Unavailable exception)

This exception will occur if an attached floating-point unit recognizes the instruction, but floating-point instruc-
tion processing is disabled (MSR[FP]=0).

6. Program (Unimplemented Operation exception)

This exception will occur if an attached floating-point unit recognizes but does not support the instruction, and 
floating-point instruction processing is enabled (MSR[FP]=1).

7. Data TLB Error (Data TLB Miss exception)

8. Data Storage (all exception types except Cache Locking exception)

9. Alignment (Alignment exception)

10. Debug (DAC or DVC exception)

11. Debug (ICMP exception)
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5.7.3 Exception Priorities for Allocated Load and Store Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of any allocated load or store instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception) 

This exception will occur if no auxiliary processor unit is attached to the PPC440, or if the particular allocated 
load or store instruction is not recognized by the attached auxiliary processor.

5. Program (Privileged Instruction exception)

This exception will occur if an attached auxiliary processor unit recognizes the instruction and indicates that the 
instruction is privileged, but MSR[PR]=1.

6. Auxiliary Processor Unavailable (Auxiliary Processor Unavailable exception)

This exception will occur if an attached auxiliary processor recognizes the instruction, but indicates that auxil-
iary processor instruction processing is disabled (whether or not auxiliary processor instruction processing is 
enabled is implementation-dependent).

7. Program (Unimplemented Operation exception)

This exception will occur if an attached auxiliary processor recognizes but does not support the instruction, and 
also indicates that auxiliary processor instruction processing is enabled (whether or not auxiliary processor 
instruction processing is enabled is implementation-dependent).

8. Data TLB Error (Data TLB Miss exception)

9. Data Storage (all exception types except Cache Locking exception)

10. Alignment (Alignment exception)

11. Debug (DAC or DVC exception)

12. Debug (ICMP exception)

5.7.4 Exception Priorities for Floating-Point Instructions (Other)

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of any floating-point instruction other than a load or store.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception) 

This exception will occur if no floating-point unit is attached to the PPC440, or if the particular floating-point 
instruction is not recognized by the attached floating-point unit.

5. Floating-Point Unavailable (Floating-Point Unavailable exception)

This exception will occur if an attached floating-point unit recognizes the instruction, but floating-point instruc-
tion processing is disabled (MSR[FP]=0).

6. Program (Unimplemented Operation exception)
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This exception will occur if an attached floating-point unit recognizes but does not support the instruction, and 
floating-point instruction processing is enabled (MSR[FP]=1).

7. Program (Floating-Point Enabled exception)

This exception will occur if an attached floating-point unit recognizes and supports the instruction, floating-point 
instruction processing is enabled (MSR[FP]=1), and the instruction sets FPSCR[FEX] to 1.

8. Debug (ICMP exception)

5.7.5 Exception Priorities for Allocated Instructions (Other)

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of any allocated instruction other than a load or store, and which is not one of the 
allocated instructions implemented within the PPC440.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception) 

This exception will occur if no auxiliary processor unit is attached to the PPC440, or if the particular allocated 
instruction is not recognized by the attached auxiliary processor and is not one of the allocated instructions 
implemented within the PPC440.

5. Program (Privileged Instruction exception)

This exception will occur if an attached auxiliary processor unit recognizes the instruction and indicates that the 
instruction is privileged, but MSR[PR]=1.

6. Auxiliary Processor Unavailable (Auxiliary Processor Unavailable exception)

This exception will occur if an attached auxiliary processor recognizes the instruction, but indicates that auxil-
iary processor instruction processing is disabled (whether or not auxiliary processor instruction processing is 
enabled is implementation-dependent).

7. Program (Unimplemented Operation exception)

This exception will occur if an attached auxiliary processor recognizes but does not support the instruction, and 
also indicates that auxiliary processor instruction processing is enabled (whether or not auxiliary processor 
instruction processing is enabled is implementation-dependent).

8. Program (Auxiliary Processor Enabled exception)

This exception will occur if an attached auxiliary processor recognizes and supports the instruction, indicates 
that auxiliary processor instruction processing is enabled, and the instruction execution results in an Auxiliary 
Processor Enabled exception. Whether or not auxiliary processor instruction processing is enabled is imple-
mentation-dependent, as is whether or not a given auxiliary processor instruction results in an Auxiliary Pro-
cessor Enabled exception.

9. Debug (ICMP exception)

5.7.6 Exception Priorities for Privileged Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of any privileged instruction other than dcbi, rfi, rfci, rfmci, or any allocated instruction 
not implemented within the PPC440 (all of which are covered elsewhere). This list does cover, however, the dccci, 
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dcread, iccci, and icread instructions, which are privileged, allocated instructions that are implemented within the 
PPC440. This list also covers the defined 64-bit privileged instructions, the tlbiva instruction, and the mfapidi 
instruction, all of which are not implemented by the PPC440.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception) 

Only applies to the defined 64-bit privileged instructions, the tlbiva instruction, and the mfapidi instruction.

5. Program (Privileged Instruction exception) 

Does not apply to the defined 64-bit privileged instructions, the tlbiva instruction, nor the mfapidi instruction.

6. Debug (ICMP exception)

Does not apply to the defined 64-bit privileged instructions, the tlbiva instruction, nor the mfapidi instruction.

5.7.7 Exception Priorities for Trap Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of a trap (tw, twi) instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Debug (TRAP exception)

5. Program (Trap exception)

6. Debug (ICMP exception)

5.7.8 Exception Priorities for System Call Instruction

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of a system call (sc) instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. System Call (System Call exception)

5. Debug (ICMP exception)

Since the System Call exception does not suppress the execution of the sc instruction, but rather the exception 
occurs once the instruction has completed, it is possible for an sc instruction to cause both a System Call 
exception and an ICMP Debug exception at the same time. In such a case, the associated interrupts will occur in 
the order indicated in “Interrupt Order” on page 164.

5.7.9 Exception Priorities for Branch Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of a branch instruction.
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1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Debug (BRT exception)

5. Debug (ICMP exception)

5.7.10 Exception Priorities for Return From Interrupt Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of an rfi, rfci, or rfmci instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Debug (RET exception)

5. Debug (ICMP exception)

5.7.11 Exception Priorities for Preserved Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of a preserved instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception)

Applies to all preserved instructions except the mftb instruction, which is the only preserved class instruction 
implemented within the PPC440.

5. Debug (ICMP exception)

Only applies to the mftb instruction, which is the only preserved class instruction implemented within the 
PPC440.

5.7.12 Exception Priorities for Reserved Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of a reserved instruction.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception)

Applies to all reserved instruction opcodes except the reserved-nop instruction opcodes.

5. Debug (ICMP exception)

Only applies to the reserved-nop instruction opcodes.
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5.7.13 Exception Priorities for All Other Instructions

The following list identifies the priority order of the exception types that may occur within the PPC440 as the result 
of the attempted execution of all other instructions (that is, those not covered by one of the sections 5.7.1 through 
5.7.12). This includes both defined instructions and allocated instructions implemented within the PPC440.

1. Debug (IAC exception)

2. Instruction TLB Error (Instruction TLB Miss exception)

3. Instruction Storage (Execute Access Control exception)

4. Program (Illegal Instruction exception)

Applies only to the defined 64-bit instructions, as these are not implemented within the PPC440.

5. Debug (ICMP exception)

Does not apply to the defined 64-bit instructions, as these are not implemented by the PPC440.
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6. Timer Facilities
The PPC440 provides four timer facilities: a time base, a Decrementer (DEC), a Fixed Interval Timer (FIT), and a 
Watchdog Timer. These facilities, which share the same source clock frequency, can support:

• Time-of-day functions

• General software timing functions

• Peripherals requiring periodic service

• General system maintenance

• System error recovery

Figure 6-1 shows the relationship between these facilities and the clock source.

Figure 6-1. Relationship of Timer Facilities to the Time Base 
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Note: CCR1[TCS] selects the Reference Clock Source. When TCS = 0, the internal CPU Clock
is the clock source. When TSC = 1,  the external timer clock (TmrClk) is the clock source.
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6.1 Time Base

The time base is a 64-bit register which increments once during each period of the source clock, and provides a 
time reference. Access to the time base is via two Special Purpose Registers (SPRs). The Time Base Upper (TBU) 
SPR contains the high-order 32 bits of the time base, while the Time Base Lower (TBL) SPR contains the low-
order 32 bits.

Software access to TBU and TBL is non-privileged for read but privileged for write, and hence different SPR 
numbers are used for reading than for writing. TBU and TBL are written using mtspr and read using mfspr. 

The period of the 64-bit time base is approximately 5849 years for a 100MHz clock source. The time base value 
itself does not generate any exceptions, even when it wraps. For most applications, the time base is set once at 
system reset and only read thereafter. Note that Fixed Interval Timer and Watchdog Timer exceptions (discussed 
below) are caused by 0→1 transitions of selected bits from the time base. Transitions of these bits caused by 
software alteration of the time base have the same effect as transitions caused by normal incrementing of the time 
base

      

         

6.1.1 Reading the Time Base

The following code provides an example of reading the time base.
loop:
mfsprRx,TBU# read TBU into GPR Rx
mfsprRy,TBL# read TBL into GPR Ry
mfsprRz,TBU# read TBU again, this time into GPR Rz
cmpwRz, Rx# see if old = new
bneloop# loop/reread if rollover occurred

The comparison and loop ensure that a consistent pair of values is obtained.

6.1.2 Writing the Time Base

The following code provides an example of writing the time base.
lwz Rx, upper # load 64-bit time base value into GPRs Rx and Ry
lwz Ry, lower
li Rz, 0 # set GPR Rz to 0
mtspr TBL,Rz # force TBL to 0 (thereby preventing wrap into TBU)
mtspr TBU,Rx # set TBU to initial value
mtspr TBL,Ry # set TBL to initial value

Figure 6-2. Time Base Lower (TBL) 

0:31 Time Base Lower Low-order 32 bits of time base.

Figure 6-3. Time Base Upper (TBU) 

0:31 Time Base Upper High-order 32 bits of time base.
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6.2 Decrementer (DEC)

The DEC is a 32-bit privileged SPR that decrements at the same rate that the time base increments. The DEC is 
read and written using mfspr and mtspr, respectively. When a non-zero value is written to the DEC, it begins to 
decrement with the next time base clock. A Decrementer exception is signalled when a decrement occurs on a 
DEC count of 1, and the Decrementer Interrupt Status field of the Timer Status Register (TSR[DIS]; see page 179) 
is set. A Decrementer interrupt will occur if it is enabled by both the Decrementer Interrupt Enable field of the Timer 
Control Register (TCR[DIE]; see page 178) and by the External Interrupt Enable field of the Machine State 
Register (MSR[EE]; see “Machine State Register (MSR)” on page 133). “Interrupts and Exceptions” on page 127 
provides more information on the handling of Decrementer interrupts.

The Decrementer interrupt handler software should clear TSR[DIS] before re-enabling MSR[EE], in order to avoid 
another Decrementer interrupt due to the same exception (unless TCR[DIE] is cleared instead).

The behavior of the DEC itself upon a decrement from a DEC value of 1 depends on which of two modes it is 
operating in -- normal, or auto-reload. The mode is controlled by the Auto-Reload Enable (ARE) field of the TCR. 
When operating in normal mode (TCR[ARE]=0), the DEC simply decrements to the value 0 and then stops 
decrementing until it is re-initialized by software.

When operating in auto-reload mode (TCR[ARE]=1), however, instead of decrementing to the value 0, the DEC is 
reloaded with the value in the Decrementer Auto-Reload (DECAR) register (see Figure 6-5), and continues to 
decrement with the next time base clock (assuming the DECAR value was non-zero). The DECAR register is a 32-
bit privileged, write-only SPR, and is written using mtspr.

The auto-reload feature of the DEC is disabled upon reset, and must be enabled by software.

  

    

Using mtspr to force the DEC to 0 does not cause a Decrementer exception and thus does not cause TSR[DIS] to 
be set. However, if a time base clock causes a decrement from a DEC value of 1 to occur simultaneously with the 
writing of the DEC by a mtspr instruction, then the Decrementer exception will occur, TSR[DIS] will be set, and the 
DEC will be written with the value from the mtspr.

In order for software to quiesce the activity of the DEC and eliminate all DEC exceptions, the following procedure 
should be followed:

Figure 6-4. Decrementer (DEC) 

0:31 Decrement value

Figure 6-5. Decrementer Auto-Reload (DECAR) 

0:31 Decrementer auto-reload value
Copied to DEC at next time base clock when 
DEC = 1 and auto-reload is enabled 
(TCR[ARE] = 1).
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1. Write 0 to TCR[DIE]. This prevents a Decrementer exception from causing a Decrementer interrupt.

2. Write 0 to TCR[ARE]. This disables the DEC auto-reload feature.

3. Write 0 to the DEC to halt decrementing. Although this action does not itself cause a Decrementer exception, it 
is possible that a decrement from a DEC value of 1 has occurred since the last time that TSR[DIS] was 
cleared.

4. Write 1 to TSR[DIS] (DEC Interrupt Status bit). This clears the Decrementer exception by setting TSR[DIS] to 
0. Because the DEC is no longer decrementing (due to having been written with 0 in step 3), no further Decre-
menter exceptions are possible.

6.3 Fixed Interval Timer (FIT)

The FIT provides a mechanism for causing periodic exceptions with a regular period. The FIT would typically be 
used by system software to invoke a periodic system maintenance function, executed by the Fixed Interval Timer 
interrupt handler.

A Fixed Interval Timer exception occurs on a 0→1 transition of a selected bit from the time base. Note that a Fixed 
Interval Timer exception will also occur if the selected time base bit transitions from 0→1 due to a mtspr 
instruction that writes 1 to that time base bit when its previous value was 0.

The Fixed Interval Timer Period (FP) field of the TCR selects one of four bits from the time base, as shown in 
Table 6-1.  

When a Fixed Interval Timer exception occurs, the exception status is recorded by setting the Fixed interval Timer 
Interrupt Status (FIS) field of the TSR to 1. A Fixed Interval Timer interrupt will occur if it is enabled by both the 
Fixed Interval Timer Interrupt Enable (FIE) field of the TCR and by MSR[EE]. “Fixed-Interval Timer Interrupt” on 
page 156 provides more information on the handling of Fixed Interval Timer interrupts.

The Fixed Interval Timer interrupt handler software should clear TSR[FIS] before re-enabling MSR[EE], in order to 
avoid another Fixed Interval Timer interrupt due to the same exception (unless TCR[FIE] is cleared instead).

6.4 Watchdog Timer

The Watchdog Timer provides a mechanism for system error recovery in the event that the program running on the 
PPC440 has stalled and cannot be interrupted by the normal interrupt mechanism. The Watchdog Timer can be 
configured to cause a critical-class Watchdog Timer interrupt upon the expiration of a single period of the 
Watchdog Timer. It can also be configured to invoke a processor-initiated reset upon the expiration of a second 
period of the Watchdog Timer.

A Watchdog Timer exception occurs on a 0→1 transition of a selected bit from the time base. Note that a 
Watchdog Timer exception will also occur if the selected time base bit transitions from 0→1 due to a mtspr 
instruction that writes 1 to that time base bit when its previous value was 0.

Table 6-1. Fixed Interval Timer Period Selection  
TCR[FP] Time Base Bit Period (Time Base Clocks) Period (400 Mhz Clock)

0b00 TBL19 213 clocks 20.48 μs

0b01 TBL15 217 clocks 327.68 μs

0b10 TBL11 221 clocks 5.2 ms

0b11 TBL7 225 clocks 83.9 ms
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The Watchdog Timer Period (WP) field of the TCR selects one of four bits from the time base, as shown in 
Table 6-2.  

The action taken upon a Watchdog Timer exception depends upon the status of the Enable Next Watchdog (ENW) 
and Watchdog Timer Interrupt Status (WIS) fields of the TSR at the time of the exception. When TSR[ENW] = 0, 
the next Watchdog Timer exception is “disabled”, and the only action to be taken upon the exception is to set 
TSR[ENW] to 1. By clearing TSR[ENW], software can guarantee that the time until the next enabled Watchdog 
Timer exception will be at least one full Watchdog Timer period (and a maximum of two full Watchdog Timer 
periods).

When TSR[ENW] = 1, the next Watchdog Timer exception is enabled, and the action to be taken upon the 
exception depends on the value of TSR[WIS] at the time of the exception. If TSR[WIS] = 0, then the action is to set 
TSR[WIS] to 1, at which time a Watchdog Timer interrupt will occur if enabled by both the Watchdog Timer 
Interrupt Enable (WIE) field of the TCR and by the Critical Interrupt Enable (CE) field of the MSR. The Watchdog 
Timer interrupt handler software should clear TSR[WIS] before re-enabling MSR[CE], in order to avoid another 
Watchdog Timer interrupt due to the same exception (unless TCR[WIE] is cleared instead). “Watchdog Timer 
Interrupt” on page 156 provides more information on the handling of Watchdog Timer interrupts. 

If TSR[WIS] is already 1 at the time of the next Watchdog Timer exception, then the action to take depends on the 
value of the Watchdog Reset Control (TRC) field of the TCR. If TCR[WRC] is non-zero, then the value of the 
TCR[WRC] field will be copied into TSR[WRS], TCR[WRC] will be cleared, and a core reset will occur (see 
Processor Core State After Reset in the chip user’s manual for more information on core behavior when reset).

Note that once software has set TCR[WRC] to a non-zero value, it cannot be reset by software; this feature 
prevents errant software from disabling the Watchdog Timer reset capability.

Table 6-3 summarizes the action to be taken upon a Watchdog Timer exception according to the values of 
TSR[ENW] and TSR[WIS].  

A typical system usage of the Watchdog Timer function is to enable the Watchdog Timer interrupt and the 
Watchdog Timer reset function in the TCR (and MSR), and to start out with both TSR[ENW] and TSR[WIS] clear. 
Then, a recurring software loop of reliable duration (or perhaps the interrupt handler for a periodic interrupt such as 
the Fixed Interval Timer interrupt) performs a periodic check of system integrity. Upon successful completion of the 

Table 6-2. Watchdog Timer Period Selection  
TCR[WP] Time Base Bit Period (Time Base Clocks) Period (400 MHz Clock)

0b00 TBL11 221 clocks 5.2 ms

0b01 TBL7 225 clocks 83.9 ms

0b10 TBL3 229 clocks 1.34 s

0b11 TBU31 233 clocks 21.47 s

Table 6-3. Watchdog Timer Exception Behavior 

TSR[ENW] TSR[WIS] Action upon Watchdog Timer exception

0 0 Set TSR[ENW] to 1

0 1 Set TSR[ENW] to 1

1 0 Set TSR[WIS] to 1. If Watchdog Timer interrupts are enabled (TCR[WIE]=1 and MSR[CE]=1), then 
interrupt.

1 1
Cause Watchdog Timer reset action specified by TCR[WRC].
Reset will copy pre-reset TCR[WRC] into TSR[WRS], then clear TCR[WRC].
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system check, software clears TSR[ENW], thereby ensuring that a minimum of one full Watchdog Timer period and 
a maximum of two full Watchdog Timer periods must expire before an enabled Watchdog Timer exception will 
occur.

If for some reason the recurring software loop is not successfully completed (and TSR[ENW] thus not cleared) 
during this period of time, then an enabled Watchdog Timer exception will occur. This will set TSR[WIS] and a 
Watchdog Timer interrupt will occur (if enabled by both TCR[WIE] and MSR[CE]). The occurrence of a Watchdog 
Timer interrupt in this kind of system is interpreted as a “system error”, insofar as the system was for some reason 
unable to complete the periodic system integrity check in time to avoid the enabled Watchdog Timer exception. 
The action taken by the Watchdog Timer interrupt handler is of course system-dependent, but typically the 
software will attempt to determine the nature of the problem and correct it if possible. If and when the system 
attempts to resume operation, the software would typically clear both TSR[WIS] and TSR[ENW], thus providing a 
minimum of another full Watchdog Timer period for a new system integrity check to occur.

Finally, if for some reason the Watchdog Timer interrupt is disabled, and/or the Watchdog Timer interrupt handler 
is unsuccessful in clearing TSR[WIS] and TSR[ENW] prior to another Watchdog Timer exception, then the next 
exception will cause a processor reset operation to occur, according to the value of TCR[WRC].

Figure 6-6 illustrates the sequence of Watchdog Timer events which occurs according to this typical system usage.

6.5 Timer Control Register (TCR)

The TCR is a privileged SPR that controls DEC, FIT, and Watchdog Timer operation. The TCR is read into a GPR 
using mfspr, and is written from a GPR using mtspr.

Figure 6-6. Watchdog State Machine 
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The Watchdog Timer Reset Control (WRC) field of the TCR is cleared to 0 by processor reset (see Reset and 
Initialization in the chip user’s manual). Each bit of this 2-bit field is set only by software and is cleared only by 
hardware. For each bit of the field, once software has written it to 1, that bit remains 1 until processor reset occurs. 
This is to prevent errant code from disabling the Watchdog Timer reset function.

The Auto-Reload Enable (ARE) field of the TCR is also cleared to zero by processor reset. This disables the 
auto-reload feature of the DEC.

    

6.6 Timer Status Register (TSR)

The TSR is a privileged SPR that records the status of DEC, FIT, and Watchdog Timer events. The fields of the 
TSR are generally set to 1 only by hardware and cleared to 0 only by software. Hardware cannot clear any fields in 
the TSR, nor can software set any fields. Software can read the TSR into a GPR using mfspr. Clearing the TSR is 
performed using mtspr by placing a 1 in the GPR source register in all bit positions which are to be cleared in the 
TSR, and a 0 in all other bit positions. The data written from the GPR to the TSR is not direct data, but a mask. A 1 
clears the bit and a 0 leaves the corresponding TSR bit unchanged.

Figure 6-7. Timer Control Register (TCR) 

0:1 WP

Watchdog Timer Period
00 221 time base clocks
01 225 time base clocks
10 229 time base clocks
11 233 time base clocks

2:3 WRC

Watchdog Timer Reset Control
00 No Watchdog Timer reset will occur.
01 Core reset
10 Chip reset
11 System reset

TCR[WRC] resets to 0b00.
Type of reset to cause upon Watchdog Timer 
exception with TSR[ENW,WIS]=0b11.
This field can be set by software, but cannot be 
cleared by software, except by a software-induced 
reset.

4 WIE
Watchdog Timer Interrupt Enable
0 Disable Watchdog Timer interrupt.
1 Enable Watchdog Timer interrupt.

5
DIE Decrementer Interrupt Enable

0 Disable Decrementer interrupt.
1 Enable Decrementer interrupt.

6:7 FP

Fixed Interval Timer (FIT) Period
00 213 time base clocks
01 217 time base clocks
10 221 time base clocks
11 225 time base clocks

8 FIE
FIT Interrupt Enable
0 Disable Fixed Interval Timer interrupt.
1 Enable Fixed Interval Timer interrupt.

9 ARE
Auto-Reload Enable
0 Disable auto reload.
1 Enable auto reload.

TCR[ARE] resets to 0b0.

10:31 Reserved
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6.7 Freezing the Timer Facilities

The debug mechanism provides a means for temporarily “freezing” the timers upon a debug exception. 
Specifically, the time base and Decrementer can be prevented from incrementing and decrementing, respectively, 
whenever a debug exception is recorded in the Debug Status Register (DBSR). This allows a debugger to simulate 
the appearance of “real time”, even though the application has been temporarily “halted” to service the debug 
event.

See Debug Facilities on page 181 for more information on freezing the timers.

6.8 Selection of the Timer Clock Source

The source clock of the timers is selected by the Timer Clock Select (TCS) field of the Core Configuration Register 
1 (CCR1). When set to zero, CCR1[TCS] selects the CPU clock. This is the highest frequency timer clock source.

When set to one, CCR1[TCS] selects an input to the CPU core as the timer clock (TmrClk).

Figure 6-8. Timer Status Register (TSR) 

0 ENW

Enable Next Watchdog Timer Exception
0 Action on next Watchdog Timer exception is to set 

TSR[ENW] = 1. 
1 Action on next Watchdog Timer exception is governed 

by TSR[WIS].

1 WIS
Watchdog Timer Interrupt Status
0 Watchdog Timer exception has not occurred.
1 Watchdog Timer exception has occurred.

2:3 WRS

Watchdog Timer Reset Status
00 No Watchdog Timer reset has occurred.
01 Core reset was forced by Watchdog Timer.
10 Chip reset was forced by Watchdog Timer.
11 System reset was forced by Watchdog Timer.

4 DIS
Decrementer Interrupt Status
0 Decrementer exception has not occurred.
1 Decrementer exception has occurred.

5 FIS
Fixed Interval Timer (FIT) Interrupt Status
0 Fixed Interval Timer exception has not occurred.
1 Fixed Interval Timer exception has occurred.

6:31 Reserved
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7. Debug Facilities
The debug facilities of the PPC440 include support for several debug modes for debugging during hardware and 
software development, as well as debug events that allow developers to control the debug process. Debug 
registers control these debug modes and debug events. The debug registers may be accessed either through 
software running on the processor or through the JTAG debug port of the PPC440. Access to the debug facilities 
through the JTAG debug port is typically provided by a debug tool such as the RISCWatch™ development tool. A 
trace port, which enables the tracing of code running in real time, is also provided.

7.1 Support for Development Tools

The RISCWatch product is an example of a development tool that uses external debug mode, debug events, and 
the JTAG debug port to implement a hardware and software development tool. The RISCTrace™ feature of 
RISCWatch is an example of a development tool that uses the real-time instruction trace capability of the PPC440.

7.2 Debug Interfaces

The PPC440 provides JTAG and trace interfaces to support hardware and software test and debug. Typically, the 
JTAG interface connects to a debug port external to the PPC440; the JTAG debug port is typically connected to a 
JTAG connector on a processor board. The trace interface connects to a trace port external to the PPC440; the 
trace port is typically connected to a trace connector on a processor board.

7.2.1 IEEE 1149.1 Test Access Port (JTAG Debug Port)

The IEEE 1149.1 Test Access Port (TAP), commonly called the JTAG (Joint Test Action Group) debug port, is an 
architectural standard described in IEEE Standard 1149.1–1990, IEEE Standard Test Access Port and 
Boundary Scan Architecture. The standard describes a method for accessing internal chip facilities using a four- 
or five-signal interface.

The JTAG debug port, originally designed to support scan-based board testing, is enhanced to support the 
attachment of debug tools. The enhancements, which comply with the IEEE 1149.1 specifications for vendor-
specific extensions, are compatible with standard JTAG hardware for boundary-scan system testing. 

7.2.1.1 JTAG Connector

The PPC440 implements a JTAG interface to support system debugging. The interface enables the connection of 
an external debug tool, such as RISCWatch. Detailed information on JTAG capabilities and how to connect an 
external debug tool is available in RISCWatch Debugger User’s Guide.

JTAG Signals The JTAG debug port implements the four required JTAG signals: TCK, 
TMS, TDI, and TDO, and the optional TRST signal.

JTAG Clock 
Requirements

The frequency of the TCK signal can range from DC to one-half of the 
internal chip clock frequency.

JTAG Reset 
Requirements

The JTAG debug port logic is reset at the same time as a system reset. 
Upon receiving TRST, the JTAG debug port returns to the Test-Logic Reset 
state.
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7.2.1.2 JTAG Instructions

The JTAG debug port provides the standard extest, idcode, sample/preload, and bypass instructions and the 
optional highz and clamp instructions. Invalid instructions behave as the bypass instruction.

7.2.1.3 JTAG Boundary Scan

Boundary Scan Description Language (BSDL), IEEE 1149.1b-1994, is a supplement to IEEE 1149.1-1990 and 
IEEE 1149.1a-1993 Standard Test Access Port and Boundary-Scan Architecture. BSDL, a subset of the IEEE 
1076-1993 Standard VHSIC Hardware Description Language (VHDL), allows a rigorous description of testability 
features in components which comply with the standard. BSDL is used by automated test pattern generation tools 
for package interconnect tests and by electronic design automation (EDA) tools for synthesized test logic and 
verification. BSDL supports robust extensions that can be used for internal test generation and to write software for 
hardware debug and diagnostics.

The primary components of BSDL include the logical port description, the physical pin map, the instruction set, and 
the boundary register description.

The logical port description assigns symbolic names to the pins of a chip. Each pin has a logical type of in, out, 
inout, buffer, or linkage that defines the logical direction of signal flow.

The physical pin map correlates the logical ports of the chip to the physical pins of a specific package. A BSDL 
description can have several physical pin maps; each map is given a unique name.

Instruction set statements describe the bit patterns that must be shifted into the Instruction Register to place the 
chip in the various test modes defined by the standard. Instruction set statements also support descriptions of 
instructions that are unique to the chip. 

The boundary register description lists each cell or shift stage of the Boundary Register. Each cell has a unique 
number: the cell numbered 0 is the closest to the Test Data Out (TDO) pin; the cell with the highest number is 
closest to the Test Data In (TDI) pin. Each cell contains additional information, including: cell type, logical port 
associated with the cell, logical function of the cell, safe value, control cell number, disable value, and result value.

Table 7-1. JTAG Instructions 

Instruction Code Comments

Extest 11110000 IEEE 1149.1 standard

11111001 Reserved

Sample/Preload 11110010 IEEE 1149.1 standard

IDCode 11110011 IEEE 1149.1 standard

Private xxxx0100 Private instructions

HighZ 11110101 IEEE 1149.1a-1993 optional

Clamp 11110110 IEEE 1149.1a-1993 optional

Bypass 11111111 IEEE 1149.1 standard

11111011 Reserved
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7.2.1.4 JTAG Register (SDR0_JTAGID)

SDR0_JTAGID is a Device Control Register that enables manufacturing, part number, and version information to 
be determined through the TAP. The mfdcr instruction is used to read this register.

Refer to PPC440 Embedded Processor Data Sheet for the values of the SDR0_JTAGID fields.

 

7.2.2 Trace Port

The PPC440 implements a trace status interface to support the tracing of code running in real time. This interface 
enables the connection of an external trace tool, such as RISCWatch, and allows for user-extended trace 
functions. A software tool with trace capability, such as RISCWatch with RISCTrace, can use the data collected 
from this port to trace code running on the processor. The result is a trace of the code executed, including code 
executed out of the instruction cache if it was enabled. Information on trace capabilities, how trace works, and how 
to connect the external trace tool is available in RISCWatch Debugger User’s Guide.

7.3 Debug Modes

The following sections describe the various debug modes supported by the PPC440. Each of these debug modes 
supports a particular type of debug tool or debug task commonly used in embedded systems development. For all 
debug modes, the various debug event types are enabled by the setting of corresponding fields in Debug Control 
Register 0 (DBCR0), and upon their occurrence are recorded in the Debug Status Register (DBSR). 

There are four debug modes:

• Internal debug mode

• External debug mode

• Debug wait mode

• Trace debug mode

The PowerPC Book-E architecture specification deals only with internal debug mode, and the relationship of 
Debug interrupts to the rest of the interrupt architecture. Internal debug mode is the mode which involves debug 
software running on the processor itself, typically in the form of the Debug interrupt handler. The other debug 
modes, on the other hand, are outside the scope of the architecture, and involve special-purpose debug hardware 
external to the PPC440 core, connected either to the JTAG interface (for external debug mode and debug wait 
mode) or the trace interface (for trace debug mode). Details of these interfaces and their operation are beyond the 
scope of this manual.

Figure 7-1. JTAG ID Register (SDR0_JTAGID) 

0:3 VERS Version: 0x2

4:7 LOC Developer Location: 0xA

8:19 PART Part Number: 0x950

20:31 MANF Manufacturer Identifier: 0x049
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7.3.1 Internal Debug Mode

Internal debug mode provides access to architected processor resources and supports setting hardware and 
software breakpoints and monitoring processor status. In this mode, debug events are considered exceptions, 
which, in addition to recording their status in the DBSR, generate Debug interrupts if and when such interrupts are 
enabled (Machine State Register (MSR) DE field is 1; see Interrupts and Exceptions on page 127 for a description 
of the MSR and Debug interrupts). When a Debug interrupt occurs, special debugger software at the interrupt 
handler can check processor status and other conditions related to the debug event, as well as alter processor 
resources using all of the instructions defined for the PPC440.

Internal debug mode relies on this interrupt handling software at the Debug interrupt vector to debug software 
problems. This mode, used while the processor executes instructions, enables debugging of both application 
programs and operating system software, including all of the non-critical class interrupt handlers.

In this mode, the debugger software can communicate with the outside world through a communications port, such 
as a serial port, external to the processor core.

To enable internal debug mode, the IDM field of DBCR0 must be set to 1 (DBCR0[IDM] = 1). This mode can be 
enabled in combination with external debug mode (see External Debug Mode below) and/or debug wait mode (see 
Debug Wait Mode on page 184).

7.3.2 External Debug Mode

External debug mode provides access to architected processor resources and supports stopping, starting, and 
stepping the processor, setting hardware and software breakpoints, and monitoring processor status. In this mode, 
debug events record their status in the DBSR and then cause the processor to enter the stop state, in which normal 
instruction execution stops and architected processor resources and memory can be accessed and altered via the 
JTAG interface. While in the stop state, interrupts are temporarily disabled.

Storage access control by a memory management unit (MMU) remains in effect while in external debug mode; the 
debugger may need to modify MSR or TLB values to access protected memory.

External debug mode relies only on internal processor resources, and no Debug interrupt handling software, so it 
can be used to debug both system hardware and software problems. This mode can also be used for software 
development on systems without a control program, or to debug control program problems, including problems 
within the Debug interrupt handler itself, or within any other critical class interrupt handlers.

External debug mode is enabled by setting DBCR0[EDM] to 1. This mode can be enabled in combination with 
internal debug mode (see Internal Debug Mode on page 184) and/or debug wait mode (see Debug Wait Mode 
below). External debug mode takes precedence over internal debug mode however, in that debug events will first 
cause the processor to enter stop state rather than generating a Debug interrupt, although a Debug interrupt may 
be pending while the processor is in the stop state.

7.3.3 Debug Wait Mode

Debug wait mode is similar to external debug mode in that debug events cause the processor to enter the stop 
state. However, interrupts are still enabled while in debug wait mode, such that if and when an exception occurs for 
which the associated interrupt type is enabled, the processor will leave the stop state and generate the interrupt. 
This mode is useful for real-time hardware environments which cannot tolerate interrupts being disabled for an 
extended period of time. In such environments, if external debug mode were to be used, various I/O devices could 
operate incorrectly due to not being serviced in a timely fashion when they assert an interrupt request to the 
processor, if the processor happened to be in stop state at the time of the interrupt request.

When in debug wait mode, as with external debug mode, access to the architected processor resources and 
memory is via the JTAG interface.
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Debug wait mode is enabled by setting both MSR[DWE] and the debug wait mode enable within the JTAG 
controller to 1. Since MSR[DWE] is automatically cleared upon any interrupt, debug wait mode is temporarily 
disabled upon an interrupt, and then can be automatically re-enabled when returning from the interrupt due to the 
restoration of the MSR value upon the execution of an rfi, rfci, or rfmci instruction.

While debug wait mode can be enabled in combination with external debug mode, external debug mode takes 
precedence and interrupts are temporarily disabled, thereby effectively nullifying the effect of debug wait mode. 
Similarly, debug wait mode can be enabled in combination with internal debug mode. However, if Debug interrupts 
are enabled (MSR[DE] is 1), then any debug event will lead to an exception and a corresponding Debug interrupt, 
which takes precedence over the stop state associated with debug wait mode. On the other hand, if Debug 
interrupts are disabled (MSR[DE] is 0), then debug wait mode will take effect and a debug event will cause the 
processor to enter stop state.

7.3.4 Trace Debug Mode

Trace debug mode is simply the absence of each of the other modes. That is, if internal debug mode, external 
debug mode, and debug wait mode are all disabled, then the processor is in trace debug mode. While in trace 
debug mode, all debug events are simply recorded in the DBSR, and are indicated over the trace interface from the 
PPC440 core. The processor does not enter the stop state, nor does a Debug interrupt occur.

7.4 Debug Events

There are several different kinds of debug events, each of which is enabled by a field in DBCR0 (except for the 
Unconditional debug event) and recorded in the DBSR. Debug Modes on page 183 describes the operation that 
results when a debug event occurs while operating in any of the debug modes.

Table 7-2 lists the various debug events recognized by the PPC440. Detailed explanations of each debug event 
type follow the table.

Table 7-2. Debug Events 

Event Description

Instruction Address Compare (IAC) Caused by the attempted execution of an instruction for which the address matches the 
conditions specified by DBCR0, DBCR1, and the IAC1–IAC4 registers.

Data Address Compare (DAC)
Caused by the attempted execution of a load, store, or cache management instruction for 
which the data storage address matches the conditions specified by DBCR0, DBCR2, and 
the DAC1–DAC2 registers.

Data Value Compare (DVC)

Caused by the attempted execution of a load, store, or cache management instruction for 
which the data storage address matches the conditions specified by DBCR0, DBCR2, and 
the DAC1–DAC2 registers, and for which the referenced data matches the value specified 
by the DVC1–DVC2 registers.

Branch Taken (BRT)
Caused by the attempted execution of a branch instruction for which the branch conditions 
are met (that is, for a branch instruction that results in the re-direction of the instruction 
stream).

Trap (TRAP) Caused by the attempted execution of a tw or twi instruction for which the trap conditions 
are met.

Return (RET) Caused by the attempted execution of an rfi, rfci, or rfmci instruction.

Instruction Complete (ICMP) Caused by the successful completion of the execution of any instruction.

Interrupt (IRPT) Caused by the generation of an interrupt.

Unconditional (UDE) Caused by the assertion of an unconditional debug event request from the JTAG interface 
to the PPC440.
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7.4.1 Instruction Address Compare (IAC) Debug Event

IAC debug events occur when execution is attempted of an instruction for which the instruction address and other 
parameters match the IAC conditions specified by DBCR0, DBCR1, and the IAC registers. There are four IAC 
registers on the PPC440, IAC1–IAC4. Depending on the IAC mode specified by DBCR1, these IAC registers can 
be used to specify four independent, exact IAC addresses, or they can be configured in pairs (IAC1/IAC2 and 
IAC3/IAC4) in order to specify ranges of instruction addresses for which IAC debug events should occur.

7.4.1.1 IAC Debug Event Fields

There are several fields in DBCR0 and DBCR1 which are used to specify the IAC conditions, as follows:

IAC Event Enable Field
DBCR0[IAC1, IAC2, IAC3, IAC4] are the individual IAC event enables for each of the four IAC events: 
IAC1, IAC2, IAC3, and IAC4. For a given IAC event to occur, the corresponding IAC event enable bit in 
DBCR0 must be set. When a given IAC event occurs, the corresponding DBSR[IAC1, IAC2, IAC3, 
IAC4] bit is set.

IAC Mode Field
DBCR1[IAC12M, IAC34M] control the comparison mode for the IAC1/IAC2 and IAC3/IAC4 events, 
respectively. There are three comparison modes supported by the PPC440:

• Exact comparison mode (DBCR1[IAC12M/IAC34M] = 0b00)

In this mode, the instruction address is compared to the value in the corresponding IAC register, and the 
IAC event occurs only if the comparison is an exact match.

• Range inclusive comparison mode (DBCR1[IAC12M/IAC34M] = 0b10)

In this mode, the IAC1 or IAC2 event occurs only if the instruction address is within the range defined by 
the IAC1 and IAC2 register values, as follows: IAC1 ≤ address < IAC2. Similarly, the IAC3 or IAC4 event 
occurs only if the instruction address is within the range defined by the IAC3 and IAC4 register values, as 
follows: IAC3 ≤ address < IAC4. 

For a given IAC1/IAC2 or IAC3/IAC4 pair, when the instruction address falls within the specified range, 
either one or both of the corresponding IAC debug event bits will be set in the DBSR, as determined by 
which of the two corresponding IAC event enable bits are set in DBCR0. For example, when the 
IAC1/IAC2 pair are set to range inclusive comparison mode, and the instruction address falls within the 
defined range, then DBCR1[IAC1, IAC2] will determine whether one or the other or both of DBSR[IAC1, 
IAC2] are set. It is a programming error to set either of the IAC pairs to a range comparison mode (either 
inclusive or exclusive) without also enabling at least one of the corresponding IAC event enable bits in 
DBCR0.

Note that the IAC range auto-toggle mechanism can “switch” the IAC range mode from inclusive to exclu-
sive, and vice-versa. See IAC Range Mode Auto-Toggle Field on page 187.

• Range exclusive comparison mode (DBCR1[IAC12M/IAC34M] =  0b11)

In this mode, the IAC1 or IAC2 event occurs only if the instruction address is outside the range defined by 
the IAC1 and IAC2 register values, as follows: address < IAC1 or address ≥ IAC2. Similarly, the IAC3 or 
IAC4 event occurs only if the instruction address is outside the range defined by the IAC3 and IAC4 regis-
ter values, as follows: address < IAC3 or address ≥ IAC4. 

For a given IAC1/IAC2 or IAC3/IAC4 pair, when the instruction address falls outside the specified range, 
either one or both of the corresponding IAC debug event bits will be set in the DBSR, as determined by 
which of the two corresponding IAC event enable bits are set in DBCR0. For example, when the 
186       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
IAC1/IAC2 pair are set to range exclusive comparison mode, and the instruction address falls outside the 
defined range, then DBCR1[IAC1, IAC2] will determine whether one or the other or both of DBSR[IAC1, 
IAC2] are set. It is a programming error to set either of the IAC pairs to a range comparison mode (either 
inclusive or exclusive) without also enabling at least one of the corresponding IAC event enable bits in 
DBCR0.

Note that the IAC range auto-toggle mechanism can “switch” the IAC range mode from inclusive to exclu-
sive, and vice-versa. See IAC Range Mode Auto-Toggle Field on page 187.

The PowerPC Book-E architecture defines DBCR1[IAC12M/IAC34M] = 0b01 as IAC address bit mask 
mode, but that mode is not supported by the PPC440, and that value of the IAC12M/IAC34M fields is 
reserved.

IAC User/Supervisor Field
DBCR1[IAC1US, IAC2US, IAC3US, IAC4US] are the individual IAC user/supervisor fields for each of 
the four IAC events. The IAC user/supervisor fields specify what operating mode the processor must 
be in order for the corresponding IAC event to occur. The operating mode is determined by the 
Problem State field of the Machine State Register (MSR[PR]; see User and Supervisor Modes on 
page 65). When the IAC user/supervisor field is 0b00, the operating mode does not matter; the IAC 
debug event may occur independent of the state of MSR[PR]. When this field is 0b10, the processor 
must be operating in supervisor mode (MSR[PR] = 0). When this field is 0b11, the processor must be 
operating in user mode (MSR[PR] = 1). The IAC user/supervisor field value of 0b01 is reserved.
If a pair of IAC events (IAC1/IAC2 or IAC3/IAC4) are operating in range inclusive or range exclusive 
mode, it is a programming error (and the results of any instruction address comparison are undefined) 
if the corresponding pair of IAC user/supervisor fields are not set to the same value. For example, if 
IAC1/IAC2 are operating in one of the range modes, then both DBCR1[IAC1US] and DBCR1[IAC2US] 
must be set to the same value.

IAC Effective/Real Address Field
DBCR1[IAC1ER, IAC2ER, IAC3ER, IAC4ER] are the individual IAC effective/real address fields for 
each of the four IAC events. The IAC effective/real address fields specify whether the instruction 
address comparison should be performed using the effective, virtual, or real address (see Memory 
Management on page 103) for an explanation of these different types of addresses). When the IAC 
effective/real address field is 0b00, the comparison is performed using the effective address only—the 
IAC debug event may occur independent of the instruction address space (MSR[IS]). When this field is 
0b10, the IAC debug event occurs only if the effective address matches the IAC conditions and is in 
virtual address space 0 (MSR[IS] = 0). Similarly, when this field is 0b11, the IAC debug event occurs 
only if the effective address matches the IAC conditions and is in virtual address space 1 
(MSR[IS] = 1). Note that in these latter two modes, in which the virtual address space of the instruction 
is considered, it is not the entire virtual address which is considered. The Process ID, which forms the 
final part of the virtual address, is not considered. Finally, the IAC effective/real address field value of 
0b01 is reserved, and corresponds to the PowerPC Book-E architected real address comparison 
mode, which is not supported by the PPC440.
If a pair of IAC events (IAC1/IAC2 or IAC3/IAC4) are operating in range inclusive or range exclusive 
mode, it is a programming error (and the results of any instruction address comparison are undefined) 
if the corresponding pair of IAC effective/real address fields are not set to the same value. For 
example, if IAC1/IAC2 are operating in one of the range modes, then both DBCR1[IAC1ER] and 
DBCR1[IAC2ER] must be set to the same value.

IAC Range Mode Auto-Toggle Field
DBCR1[IAC12AT, IAC34AT] control the auto-toggle mechanism for the IAC1/IAC2 and IAC3/IAC4 
events, respectively. When the IAC mode for one of the pairs of IAC debug events is set to one of the 
range modes (either range inclusive or range exclusive), then the IAC range mode auto-toggle field 
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corresponding to that pair of IAC debug events controls whether or not the range mode will 
automatically “toggle” from inclusive to exclusive, and vice-versa. When the IAC range mode auto-
toggle field is set to 1, this automatic toggling is enabled; otherwise it is disabled. It is a programming 
error (and the results of any instruction address comparison are undefined) if an IAC range mode auto-
toggle field is set to 1 without the corresponding IAC mode field being set to one of the range modes. 
When auto-toggle is enabled for a pair of IAC debug events, then upon each occurrence of an IAC 
debug event within that pair the value of the corresponding auto-toggle status field in the DBSR 
(DBSR[IAC12ATS, IAC34ATS]) is reversed. That is, if the auto-toggle status field is 0 before the 
occurrence of the IAC debug event, then it will be changed to 1 at the same time that the IAC debug 
event is recorded in the DBSR. Conversely, if the auto-toggle status field is 1 before the occurrence of 
the IAC debug event, then it will be changed to 0 at the same time that the IAC debug event is 
recorded in the DBSR.
Furthermore, when auto-toggle is enabled, the auto-toggle status field of the DBSR affects the 
interpretation of the IAC mode field of DBCR1. If the auto-toggle status field is 0, then the IAC mode 
field is interpreted in the normal fashion, as defined in IAC Mode Field on page 186. That is, the IAC 
mode field value of 0b10 selects range inclusive mode, whereas the value of 0b11 selects range 
exclusive mode. On the other hand, when the auto-toggle status field is 1, then the interpretation of the 
IAC mode field is “reversed”. That is, the IAC mode field value of 0b10 selects range exclusive mode, 
whereas the value of 0b11 selects range inclusive mode. 
The relationship of the IAC mode, IAC range mode auto-toggle, and IAC range mode auto-toggle 
status fields is summarized in Table 7-3.

The affect of the auto-toggle mechanism is to cause the IAC mode to switch back and forth between 
range inclusive mode and range exclusive mode, as each IAC range mode debug event occurs. For 
example, if the IAC mode is set to range inclusive, and auto-toggle is enabled, and the auto-toggle 
status field is 0, then the first IAC debug event will be a range inclusive event. Upon that event, the 
DBSR auto-toggle status field will be set to 1, and the next IAC debug event will then be a range 
exclusive event. Upon this next event, the DBSR auto-toggle status field will be set back to 0, such that 
the next IAC debug event will again be a range inclusive event.
This auto-toggling between range inclusive and range exclusive IAC modes is particularly helpful when 
enabling IAC range mode debug events in trace debug mode. A common debug operation is to detect 
when the instruction stream enters a particular region of the instruction address space (range inclusive 
mode). Once having entered the region of interest (a range inclusive event), it is common for the 
debugger to then want to be informed when that region is exited (a range exclusive event). By 
automatically toggling to range exclusive mode upon the occurrence of the range inclusive IAC debug 
event, this particular debug operation is facilitated. Furthermore, by not remaining in range inclusive 
mode upon entry to the region of interest, the debugger avoids a continuous stream of range inclusive 

Table 7-3. IAC Range Mode Auto-Toggle Summary  

DBCR1 DBCR1 DBSR
IAC Mode

IAC12M/IAC34M IAC12AT/IAC34AT IAC12ATS/IAC34ATS

0b10 0 — Range Inclusive

0b10 1 0 Range Inclusive

0b10 1 1 Range Exclusive

0b11 0 — Range Exclusive

0b11 1 0 Range Exclusive

0b11 1 1 Range Inclusive
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IAC debug events while the processor continues to execute instructions within that region, which can 
often be for a very long series of instructions.

7.4.1.2 IAC Debug Event Processing

When operating in external debug mode or debug wait mode, the occurrence of an IAC debug event is recorded in 
the corresponding bit of the DBSR and causes the instruction execution to be suppressed. The processor then 
enters the stop state and ceases the processing of instructions. The program counter will contain the address of 
the instruction which caused the IAC debug event. Similarly, when operating in internal debug mode with Debug 
interrupts enabled (MSR[DE] = 1), the occurrence of an IAC debug event is recorded in the DBSR and causes the 
instruction execution to be suppressed. A Debug interrupt then occurs with Critical Save/Restore Register 0 
(CSRR0) set to the address of the instruction which caused the IAC debug event.

When operating in internal debug mode (and not also in external debug mode nor debug wait mode) with Debug 
interrupts disabled (MSR[DE] = 0), the behavior of IAC debug events depends on the IAC mode. If the IAC mode is 
set to exact comparison, then an IAC debug event can occur and will set the corresponding IAC field of the DBSR, 
along with the Imprecise Debug Event (IDE) field of the DBSR. The instruction execution is not suppressed, as no 
Debug interrupt will occur immediately. Instead, instruction execution continues, and a Debug interrupt will occur if 
and when MSR[DE] is set to 1, thereby enabling Debug interrupts, assuming software has not cleared the IAC 
debug event status from the DBSR in the meantime. Upon such a “delayed” interrupt, the Debug interrupt handler 
software may query the DBSR[IDE] field to determine that the Debug interrupt has occurred imprecisely. On the 
other hand, if the IAC mode is set to either range inclusive or range exclusive mode, then IAC debug events cannot 
occur when operating in internal debug mode with MSR[DE] = 0, unless external debug mode and/or debug wait 
mode is also enabled.

When operating in trace mode, the occurrence of an IAC debug event simply sets the corresponding IAC field of 
the DBSR and is indicated over the trace interface, and instruction execution continues.

7.4.2 Data Address Compare (DAC) Debug Event

DAC debug events occur when execution is attempted of a load, store, or cache management instruction for which 
the data storage address and other parameters match the DAC conditions specified by DBCR0, DBCR2, and the 
DAC registers. There are two DAC registers on the PPC440, DAC1 and DAC2. Depending on the DAC mode 
specified by DBCR2, these DAC registers can be used to specify two independent, exact DAC addresses, or they 
can be configured to operate as a pair. When operating as a pair, then can specify either a range of data storage 
addresses for which DAC debug events should occur, or a combination of an address and an address bit mask for 
selective comparison with the data storage address.

Note that for integer load and store instructions, and for cache management instructions, the address that is used 
in the DAC comparison is the starting data address calculated as part of the instruction execution. As explained in 
the instruction definitions for the cache management instructions, the target operand of these instructions is an 
aligned cache block, which on the PPC440 is 32 bytes. Therefore, the storage reference for these instructions 
effectively ignores the low-order five bits of the calculated data address, and the entire aligned 32-byte cache 
block—which starts at the calculated data address as modified with the low-order five bits set to 0b00000—is 
accessed. However, the DAC comparison does not take into account this implicit 32-byte alignment of the storage 
reference of a cache management instruction, and instead the DAC comparison considers the entire data address, 
as calculated according to the instruction definition.

On the other hand, for auxiliary processor load and store instructions, the AP interface can specify that the PPC440 
should force the storage access to be aligned on an operand-size boundary, by zeroing the appropriate number of 
low-order address bits. In such a case, the DAC comparison is performed against this modified, alignment-forced 
address, rather than the original address as calculated according to the instruction definition.
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7.4.2.1 DAC Debug Event Fields

There are several fields in DBCR0 and DBCR2 which are used to specify the DAC conditions, as follows:

DAC Event Enable Field
DBCR0[DAC1R, DAC1W, DAC2R, DAC2W] are the individual DAC event enables for the two DAC 
events DAC1 and DAC2. For each of the two DAC events, there is one enable for DAC read events, 
and another for DAC write events. Load, dcbt, dcbtst, icbi, and icbt instructions may cause DAC read 
events, while store, dcbst, dcbf, dcbi, and dcbz instructions may cause DAC write events (see DAC 
Debug Events Applied to Various Instruction Types on page 193 for more information on these 
instructions and the types of DAC debug events they may cause). For a given DAC event to occur, the 
corresponding DAC event enable bit in DBCR0 for the particular operation type must be set. When a 
DAC event occurs, the corresponding DBSR[DAC1R, DAC1W, DAC2R, DAC2W] bit is set. These 
same DBSR bits are shared by DVC debug events (see Data Value Compare (DVC) Debug Event on 
page 194).

DAC Mode Field
DBCR2[DAC12M] controls the comparison mode for the DAC1 and DAC2 events. There are four 
comparison modes supported by the PPC440:

• Exact comparison mode (DBCR2[DAC12M] = 0b00)

In this mode, the data address is compared to the value in the corresponding DAC register, and the DAC 
event occurs only if the comparison is an exact match.

• Address bit mask mode (DBCR2[DAC12M] = 0b01)

In this mode, the DAC1 or DAC2 event occurs only if the data address matches the value in the DAC1 reg-
ister, as masked by the value in the DAC2 register. That is, the DAC1 register specifies an address value, 
and the DAC2 register specifies an address bit mask which determines which bit of the data address 
should participate in the comparison to the DAC1 value. For every bit set to 1 in the DAC2 register, the cor-
responding data address bit must match the value of the same bit position in the DAC1 register. For every 
bit set to 0 in the DAC2 register, the corresponding address bit comparison does not affect the result of the 
DAC event determination. 

This comparison mode is useful for detecting accesses to a particular byte address, when the accesses 
may be of various sizes. For example, if the debugger is interested in detecting accesses to byte address 
0x00000003, then these accesses may occur due to a byte access to that specific address, or due to a half 
word access to address 0x00000002, or due to a word access to address 0x00000000. By using address 
bit mask mode and specifying that the low-order two bits of the address should be ignored (that is, setting 
the address bit mask in DAC2 to 0xFFFFFFFC), the debugger can detect each of these types of access to 
byte address 0x00000003.

When the data address matches the address bit mask mode conditions, either one or both of the DAC 
debug event bits corresponding to the operation type (read or write) will be set in the DBSR, as determined 
by which of the corresponding two DAC event enable bits are set in DBCR0. That is, when an address bit 
mask mode DAC debug event occurs, the setting of DBCR2[DAC1R, DAC1W, DAC2R, DAC2W] will 
determine whether one or the other or both of the DBSR[DAC1R, DAC1W, DAC2R, DAC2W] bits corre-
sponding to the operation type are set. It is a programming error to set the DAC mode field to address bit 
mask mode without also enabling at least one of the four DAC event enable bits in DBCR0.

• Range inclusive comparison mode (DBCR2[DAC12M] = 0b10)

In this mode, the DAC1 or DAC2 event occurs only if the data address is within the range defined by the 
DAC1 and DAC2 register values, as follows: DAC1 ≤ address < DAC2.
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When the data address falls within the specified range, either one or both of the DAC debug event bits cor-
responding to the operation type (read or write) will be set in the DBSR, as determined by which of the cor-
responding two DAC event enable bits are set in DBCR0. That is, when a range inclusive mode DAC 
debug event occurs, the setting of DBCR2[DAC1R, DAC1W, DAC2R, DAC2W] will determine whether one 
or the other or both of the DBSR[DAC1R, DAC1W, DAC2R, DAC2W] bits corresponding to the operation 
type are set. It is a programming error to set the DAC mode field to a range comparison mode (either inclu-
sive or exclusive) without also enabling at least one of the four DAC event enable bits in DBCR0.

• Range exclusive comparison mode (DBCR2[DAC12M] = 0b11)

In this mode, the DAC1 or DAC2 event occurs only if the data address is outside the range defined by the 
DAC1 and DAC2 register values, as follows: address < DAC1 or address ≥ DAC2.

When the data address falls outside the specified range, either one or both of the DAC debug event bits 
corresponding to the operation type (read or write) will be set in the DBSR, as determined by which of the 
corresponding two DAC event enable bits are set in DBCR0. That is, when a range exclusive mode DAC 
debug event occurs, the setting of DBCR2[DAC1R, DAC1W, DAC2R, DAC2W] will determine whether one 
or the other or both of the DBSR[DAC1R, DAC1W, DAC2R, DAC2W] bits corresponding to the operation 
type are set. It is a programming error to set the DAC mode field to a range comparison mode (either inclu-
sive or exclusive) without also enabling at least one of the four DAC event enable bits in DBCR0.

DAC User/Supervisor Field
DBCR2[DAC1US, DAC2US] are the individual DAC user/supervisor fields for the two DAC events. The 
DAC user/supervisor fields specify what operating mode the processor must be in order for the 
corresponding DAC event to occur. The operating mode is determined by the Problem State field of the 
Machine State Register (MSR[PR]; see User and Supervisor Modes on page 65). When the DAC 
user/supervisor field is 0b00, the operating mode does not matter—the DAC debug event may occur 
independent of the state of MSR[PR]. When this field is 0b10, the processor must be operating in 
supervisor mode (MSR[PR] = 0). When this field is 0b11, the processor must be operating in user 
mode (MSR[PR] = 1). The DAC user/supervisor field value of 0b01 is reserved.
If the DAC mode is set to one of the “paired” modes (address bit mask mode, or one of the two range 
modes), it is a programming error (and the results of any data address comparison are undefined) if 
DBCR2[DAC1US] and DBCR2[DAC2US] are not set to the same value.

DAC Effective/Real Address Field
DBCR2[DAC1ER, DAC2ER] are the individual DAC effective/real address fields for the two DAC 
events. The DAC effective/real address fields specify whether the instruction address comparison 
should be performed using the effective, virtual, or real address (see Memory Management on 
page 103) for an explanation of these different types of addresses). When the DAC effective/real 
address field is 0b00, the comparison is performed using the effective address only; the DAC debug 
event may occur independent of the data address space (MSR[DS]). When this field is 0b10, the DAC 
debug event occurs only if the effective address matches the DAC conditions and is in virtual address 
space 0 (MSR[DS] = 0). Similarly, when this field is 0b11, the DAC debug event occurs only if the 
effective address matches the DAC conditions and is in virtual address space 1 (MSR[DS] = 1). Note 
that in these latter two modes, in which the virtual address space of the data is considered, it is not the 
entire virtual address which is considered. The Process ID, which forms the final part of the virtual 
address, is not considered. Finally, the DAC effective/real address field value of 0b01 is reserved, and 
corresponds to the PowerPC Book-E architected real address comparison mode, which is not 
supported by the PPC440.
If the DAC mode is set to one of the “paired” modes (address bit mask mode, or one of the two range 
modes), it is a programming error (and the results of any data address comparison are undefined) if 
DBCR2[DAC1ER] and DBCR2[DAC2ER] are not set to the same value.
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DVC Byte Enable Field
DBCR2[DVC1BE, DVC2BE] are the individual data value compare (DVC) byte enable fields for the two 
DVC events. These fields must be disabled (by being set to 4b0000) in order for the corresponding 
DAC debug event to be enabled. In other words, when any of the DVC byte enable field bits for a given 
DVC event are set to 1, the corresponding DAC event is disabled, and the various DAC field conditions 
are used in conjunction with the DVC field conditions to determine whether a DVC event should occur. 
See Data Value Compare (DVC) Debug Event on page 194 for more information on DVC events.

7.4.2.2 DAC Debug Event Processing

The behavior of the PPC440 upon a DAC debug event depends on the setting of DBCR2[DAC12A]. This field of 
DBCR2 controls whether DAC debug events are processed in a synchronous (DBCR2[DAC12A] = 0) or an 
asynchronous (DBCR2[DAC12A] = 1) fashion.

DBCR2[DAC12A] = 0 (Synchronous Mode)
When operating in external debug mode or debug wait mode, the occurrence of a DAC debug event is 
recorded in the corresponding bit of the DBSR and causes the instruction execution to be suppressed. 
The processor then enters the stop state and ceases the processing of instructions. The program 
counter will contain the address of the instruction which caused the DAC debug event. Similarly, when 
operating in internal debug mode with Debug interrupts enabled (MSR[DE] = 1), the occurrence of a 
DAC debug event is recorded in the DBSR and causes the instruction execution to be suppressed. A 
Debug interrupt will occur with CSRR0 set to the address of the instruction which caused the DAC 
debug event. 
When operating in internal debug mode (and not also in external debug mode nor debug wait mode) 
with Debug interrupts disabled (MSR[DE] = 0), then a DAC debug event will set the corresponding 
DAC field of the DBSR, along with the Imprecise Debug Event (IDE) field of the DBSR. The instruction 
execution is not suppressed, as no Debug interrupt will occur immediately. Instead, instruction 
execution continues, and a Debug interrupt will occur if and when MSR[DE] is set to 1, thereby 
enabling Debug interrupts, assuming software has not cleared the DAC debug event status from the 
DBSR in the meantime. Upon such a “delayed” interrupt, the Debug interrupt handler software may 
query the DBSR[IDE] field to determine that the Debug interrupt has occurred imprecisely.
When operating in trace mode, the occurrence of a DAC debug event simply sets the corresponding 
DAC field of the DBSR and is indicated over the trace interface, and instruction execution continues. 
DBCR2[DAC12A] does not affect the processing of DAC debug events when operating in trace mode.

Engineering Note: When DAC debug events are enabled in any debug mode other than trace 
mode, and DBCR2[DAC12A] is set to 0 (synchronous mode), in order for the 
PPC440 to deal with a DAC-related Debug interrupt in a synchronous fashion, 
the processing of all potential DAC debug event-causing instructions (loads, 
stores, and cache management instructions) is impacted by one processor 
cycle. This one cycle impact occurs whether or not the instruction is actually 
causing a DAC debug event. Overall processor performance is thus 
significantly impacted if synchronous mode DAC debug events are enabled. In 
order to maintain normal processor performance while DAC debug events are 
enabled and in the absence of any actual DAC debug events, software should 
set DBCR2[DAC12A] to 1.

DBCR2[DAC12A] = 1 (Asynchronous Mode)
When operating in external debug mode or debug wait mode, the occurrence of a DAC debug event is 
recorded in the corresponding bit of the DBSR and causes the processor to enter stop state and cease 
processing instructions. However, the determination and processing of the DAC debug event is not 
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handled synchronously with respect to the instruction execution. That is, the processor may process 
the DAC debug event and enter the stop state either before or after the completion of the instruction 
causing the event. If the DAC debug event is processed before the completion of the instruction 
causing the event, then upon entering the stop state the program counter will contain the address of 
that instruction, and that instruction’s execution will have been suppressed. Conversely, if the DAC 
debug event is processed after the completion of the instruction causing the event, then the program 
counter will contain the address of some instruction after the one which caused the event. Whether or 
not the DAC debug event processing occurs before or after the completion of the instruction depends 
on the particular circumstances surrounding the instruction’s execution, the details of which are 
generally beyond the scope of this document.
Similarly, when operating in internal debug mode with Debug interrupts enabled (MSR[DE] = 1), the 
occurrence of a DAC debug event is recorded in the DBSR and will generate a Debug interrupt with 
CSRR0 set to the address of the instruction which caused the DAC debug event, or to the address of 
some subsequent instruction, depending upon whether the event is processed before or after the 
instruction completes.
When operating in internal debug mode (and not also in external debug mode nor debug wait mode) 
with Debug interrupts disabled (MSR[DE] = 0), then a DAC debug event will set the corresponding 
DAC field of the DBSR, along with the Imprecise Debug Event (IDE) field of the DBSR. Instruction 
execution continues, and a Debug interrupt will occur if and when MSR[DE] is set to 1, thereby 
enabling Debug interrupts, assuming software has not cleared the DAC debug event status from the 
DBSR in the meantime. Upon such a “delayed” interrupt, the Debug interrupt handler software may 
query the DBSR[IDE] field to determine that the Debug interrupt has occurred imprecisely.
When operating in trace mode, the occurrence of a DAC debug event simply sets the corresponding 
DAC field of the DBSR and is indicated over the trace interface, and instruction execution continues. 
DBCR2[DAC12A] does not affect the processing of DAC debug events when operating in trace mode.

7.4.2.3 DAC Debug Events Applied to Instructions that Result in Multiple Storage Accesses

Certain misaligned load and store instructions are handled by making multiple, independent storage accesses. 
Similarly, load and store multiple and string instructions which access more than one register result in more than 
one storage access. Load and Store Alignment on page 88 provides a detailed description of the circumstances 
that lead to such multiple storage accesses being made as the result of the execution of a single instruction.

Whenever the execution of a given instruction results in multiple storage accesses, the data address of each 
access is independently considered for whether or not it will cause a DAC debug event.

7.4.2.4 DAC Debug Events Applied to Various Instruction Types 

Various special cases apply to the cache management instructions, the store word conditional indexed (stwcx.) 
instruction, and the load and store string indexed (lswx, stswx) instructions, with regards to DAC debug events. 
These special cases are as follows:

dcbz, dcbi
The dcbz and dcbi instructions are considered “stores” with respect to both storage access control 
and DAC debug events. The dcbz instruction directly changes the contents of a given storage location, 
whereas the dcbi instruction can indirectly change the contents of a given storage location by 
invalidating data which has been modified within the data cache, thereby “restoring” the value of the 
location to the “old” contents of memory. As “store” operations, they may cause DAC write debug 
events.

dcbst, dcbf
The dcbst and dcbf instructions are considered “loads” with respect to storage access control, since 
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they do not change the contents of a given storage location. They may merely cause the data at that 
storage location to be moved from the data cache out to memory. However, in a debug environment, 
the fact that these instructions may lead to write operations on the external interface is typically the 
event of interest. Therefore, these instructions are considered “stores” with respect to DAC debug 
events, and may cause DAC write debug events.

dcbt, dcbtst, icbt
The touch instructions are considered “loads” with respect to both storage access control and 
DAC debug events. However, these instructions are treated as no-ops if they reference caching 
inhibited storage locations, or if they cause Data Storage or Data TLB Miss exceptions. 
Consequently, if a touch instruction is being treated as a no-op for one of these reasons, then it 
does not cause a DAC read debug event. However, if a touch instruction is not being treated as a 
no-op for one of these reasons, it may cause a DAC read debug event.

dcba
The dcba instruction is treated as a no-op by the PPC440, and thus will not cause a DAC debug 
event.

icbi
The icbi instruction is considered a “load” with respect to both storage access control and DAC debug 
events, and thus may cause a DAC read debug event.

dccci, dcread, iccci, icread
The dccci and iccci instructions do not generate an address, but rather they affect the entire data 
and instruction cache, respectively. Similarly, the dcread and icread instructions do not generate 
an address, but rather an “index” which is used to select a particular location in the respective 
cache, without regard to the storage address represented by that location. Therefore, none of 
these instructions cause DAC debug events.

stwcx.
If the execution of a stwcx. instruction would otherwise have caused a DAC write debug event, but the 
processor does not have the reservation from a lwarx instruction, then the DAC write debug event 
does not occur since the storage location does not get written.

lswx, stswx
DAC debug events do not occur for lswx or stswx instructions with a length of 0 (XER[TBC] = 0), 
since these instructions do not actually access storage.

7.4.3 Data Value Compare (DVC) Debug Event

DVC debug events occur when execution is attempted of a load, store, or dcbz instruction for which the data 
storage address and other parameters match the DAC conditions specified by DBCR0, DBCR2, and the DAC 
registers, and for which the data accessed matches the DVC conditions specified by DBCR2 and the DVC 
registers. In other words, in order for a DVC debug event to occur, the conditions for a DAC debug event must first 
be met, and then the data must also match the DVC conditions. Data Address Compare (DAC) Debug Event on 
page 189 describes the DAC conditions. In addition to the DAC conditions, there are two DVC registers on the 
PPC440, DVC1 and DVC2. The DVC registers can be used to specify two independent, 4-byte data values, which 
are selectively compared against the data being accessed by a given load, store, or cache management 
instruction.
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When a DVC event occurs, the corresponding DBSR[DAC1R, DAC1W, DAC2R, DAC2W] bit is set. These same 
DBSR bits are shared by DAC debug events.

7.4.3.1 DVC Debug Event Fields

In addition to the DAC debug event fields described in DAC Debug Event Fields on page 190, and the DVC 
registers themselves, there are two fields in DBCR2 which are used to specify the DVC conditions, as follows:

DVC Byte Enable Field
DBCR2[DVC1BE, DVC2BE] are the individual DVC byte enable fields for the two DVC events. When 
one or the other (or both) of these fields is disabled (by being set to 4b0000), the corresponding DVC 
debug event is disabled (the corresponding DAC debug event may still be enabled, as determined by 
the DAC debug event enable field of DBCR0). When either one or both of these fields is enabled (by 
being set to a non-zero value), then the corresponding DVC debug event is enabled.
Each bit of a given DVC byte enable field corresponds to a byte position within an aligned word of 
memory. For a given aligned word of memory, the byte offsets (or “byte lanes”) within that word are 
numbered 0, 1, 2, and 3, starting from the left-most (most significant) byte of the word. Accordingly, bits 
0:3 of a given DVC byte enable field correspond to bytes 0:3 of an aligned word of memory being 
accessed.
For an access to “match” the DVC conditions for a given byte, the access must be actually transferring 
data on that given byte position and the data must match the corresponding byte value within the DVC 
register.
For each storage access, the DVC comparison is made against the bytes that are being accessed 
within the aligned word of memory containing the starting byte of the transfer. For example, consider a 
load word instruction with a starting data address of x01. The four bytes from memory are located at 
addresses 0x01–0x04, but the aligned word of memory containing the starting byte consists of 
addresses 0x00–0x03. Thus the only bytes being accessed within the aligned word of memory 
containing the starting byte are the bytes at addresses 0x01–0x03, and only these bytes are 
considered in the DVC comparison. The byte transferred from address 0x04 is not considered.

DVC Mode Field
DBCR2[DVC1M, DVC2M] are the individual DVC mode fields for the two DVC events. Each one of 
these fields specifies the particular data value comparison mode for the corresponding DVC debug 
event. There are three comparison modes supported by the PPC440:

• AND comparison mode (DBCR2[DVC1M, DVC2M] = 0b01)

In this mode, all data byte lanes enabled by a DVC byte enable field must be being accessed and must 
match the corresponding byte data value in the corresponding DVC1 or DVC2 register.

• OR comparison mode (DBCR2[DVC1M, DVC2M] = 0b10)

In this mode, at least one data byte lane that is enabled by a DVC byte enable field must be being 
accessed and must match the corresponding byte data value in the corresponding DVC1 or DVC2 regis-
ter.

• AND-OR comparison mode (DBCR2[DVC1M, DVC2M] = 0b11)

In this mode, the four byte lanes of an aligned word are divided into two pairs, with byte lanes 0 and 1 
being in one pair, and byte lanes 2 and 3 in the other pair. The DVC comparison mode for each pair of byte 
lanes operates in AND mode, and then the results of these two AND mode comparisons are ORed 
together to determine whether a DVC debug event occurs. In other words, a DVC debug event occurs if 
either one or both of the pairs of byte lanes satisfy the AND mode comparison requirements.
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This mode may be used to cause a DVC debug event upon an access of a particular half word data value 
in either of the two half words of a word in memory.

7.4.3.2 DVC Debug Event Processing

The behavior of the PPC440 upon a DVC debug event depends on the setting of DBCR2[DAC12A]. This field of 
DBCR2 controls whether DVC debug events are processed in a synchronous (DBCR2[DAC12A] = 0) or an 
asynchronous (DBCR2[DAC12A] = 1) fashion. The processing of DVC debug events is the same as it is for DAC 
debug events. See DAC Debug Event Processing on page 192 for more information.

7.4.3.3 DVC Debug Events Applied to Instructions that Result in Multiple Storage Accesses

Certain misaligned load and store instructions are handled by making multiple, independent storage accesses. 
Similarly, load and store multiple and string instructions which access more than one register result in more than 
one storage access. Load and Store Alignment on page 88 provides a detailed description of the circumstances 
that lead to such multiple storage accesses being made as the result of the execution of a single instruction.

Whenever the execution of a given instruction results in multiple storage accesses, the address and data of each 
access is independently considered for whether or not it will cause a DVC debug event.

7.4.3.4 DVC Debug Events Applied to Various Instruction Types 

Various special cases apply to the cache management instructions, the store word conditional indexed (stwcx.) 
instruction, and the load and store string indexed (lswx, stswx) instructions, with regards to DVC debug events. 
These special cases are as follows:

dcbz
The dcbz instruction is the only cache management instruction which can cause a DVC debug event. 
dcbz is the only such instruction which actually writes new data to a storage location (in this case, an 
entire 32-byte data cache line is written to zeroes).

stwcx.
If the execution of a stwcx. instruction would otherwise have caused a DVC write debug event, but the 
processor does not have the reservation from a lwarx instruction, then the DVC write debug event 
does not occur since the storage location does not get written.

lswx, stswx
DVC debug events do not occur for lswx or stswx instructions with a length of 0 (XER[TBC] = 0), 
since these instructions do not actually access storage.

7.4.4 Branch Taken (BRT) Debug Event

BRT debug events occur when BRT debug events are enabled (DBCR0[BRT] = 1) and execution is attempted of a 
branch instruction for which the branch condition(s) are satisfied, such that the instruction stream will be redirected 
to the target address of the branch.

When operating in external debug mode or debug wait mode, the occurrence of a BRT debug event is recorded in 
DBSR[BRT] and causes the instruction execution to be suppressed. The processor then enters the stop state and 
ceases the processing of instructions. The program counter will contain the address of the branch instruction which 
caused the BRT debug event. Similarly, when operating in internal debug mode with Debug interrupts enabled 
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(MSR[DE] = 1), the occurrence of a BRT debug event is recorded in DBSR[BRT] and causes the instruction 
execution to be suppressed. A Debug interrupt will occur with CSRR0 set to the address of the branch instruction 
which caused the BRT debug event.

When operating in internal debug mode (and not also in external debug mode nor debug wait mode) with Debug 
interrupts disabled (MSR[DE] = 0), then BRT debug events cannot occur. Since taken branches are a very 
common operation and thus likely to be frequently executed within the critical class interrupt handlers (which 
typically have MSR[DE] set to 0), allowing BRT debug events under these conditions would lead to an undesirable 
number of delayed (and hence imprecise) Debug interrupts.

When operating in trace mode, the occurrence of a BRT debug event is simply recorded in DBSR[BRT] and is 
indicated over the trace interface, and instruction execution continues.

7.4.5 Trap (TRAP) Debug Event

TRAP debug events occur when TRAP debug events are enabled (DBCR0[TRAP] = 1) and execution is attempted 
of a trap (tw, twi) instruction for which the trap condition is satisfied.

When operating in external debug mode or debug wait mode, the occurrence of a TRAP debug event is recorded 
in DBSR[TRAP] and causes the instruction execution to be suppressed. The processor then enters the stop state 
and ceases the processing of instructions. The program counter will contain the address of the trap instruction 
which caused the TRAP debug event. Similarly, when operating in internal debug mode with Debug interrupts 
enabled (MSR[DE] = 1), the occurrence of a TRAP debug event is recorded in DBSR[TRAP] and causes the 
instruction execution to be suppressed. A Debug interrupt will occur with CSRR0 set to the address of the trap 
instruction which caused the TRAP debug event.

When operating in internal debug mode (and not also in external debug mode nor debug wait mode) with Debug 
interrupts disabled (MSR[DE] = 0), the occurrence of a TRAP debug event will set DBSR[TRAP], along with the 
Imprecise Debug Event (IDE) field of the DBSR. Although a Debug interrupt will not occur immediately, the 
instruction execution is suppressed as a Trap exception type Program interrupt will occur instead. A Debug 
interrupt will also occur later, if and when MSR[DE] is set to 1, thereby enabling Debug interrupts, assuming 
software has not cleared the TRAP debug event status from the DBSR in the meantime. Upon such a “delayed” 
interrupt, the Debug interrupt handler software may query the DBSR[IDE] field to determine that the Debug 
interrupt has occurred imprecisely.

When operating in trace mode, the occurrence of a TRAP debug event is simply recorded in DBSR[TRAP] and is 
indicated over the trace interface, and instruction execution continues.

7.4.6 Return (RET) Debug Event

RET debug events occur when RET debug events are enabled (DBCR0[RET] = 1) and execution is attempted of a 
return (rfi, rfci, or rfmci) instruction.

When operating in external debug mode or debug wait mode, the occurrence of a RET debug event is recorded in 
DBSR[RET] and causes the instruction execution to be suppressed. The processor then enters the stop state and 
ceases the processing of instructions. The program counter will contain the address of the return instruction which 
caused the RET debug event. Similarly, when operating in internal debug mode with Debug interrupts enabled 
(MSR[DE] = 1), the occurrence of a RET debug event is recorded in DBSR[RET] and causes the instruction 
execution to be suppressed. A Debug interrupt will occur with CSRR0 set to the address of the return instruction 
which caused the RET debug event.

When operating in internal debug mode (and not also in external debug mode nor debug wait mode) with Debug 
interrupts disabled (MSR[DE] = 0), then RET debug events can occur only for rfi instructions, and not for rfci or 
rfmci instructions. Since the rfci or rfmci instruction is typically used to return from a critical class interrupt handler 
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(including the Debug interrupt itself), and MSR[DE] is typically 0 at the time of the return, the rfci or rfmci must not 
be allowed to cause a RET debug event under these conditions, or else it would not be possible to return from the 
critical class interrupts. 

For the rfi instruction only, if a RET debug event occurs under these conditions (internal debug mode enabled, 
external debug mode and debug wait mode disabled, and MSR[DE] = 0), then DBSR[RET] is set, along with the 
Imprecise Debug Event (IDE) field of the DBSR. The instruction execution is not suppressed, as no Debug 
interrupt will occur immediately. Instead, instruction execution continues, and a Debug interrupt will occur if and 
when MSR[DE] is set to 1, thereby enabling Debug interrupts, assuming software has not cleared the RET debug 
event status from the DBSR in the meantime. Upon such a “delayed” interrupt, the Debug interrupt handler 
software may query the DBSR[IDE] field to determine that the Debug interrupt has occurred imprecisely. 

When operating in trace mode, the occurrence of a RET debug event is simply recorded in DBSR[RET] and is 
indicated over the trace interface, and instruction execution continues.

7.4.7 Instruction Complete (ICMP) Debug Event

ICMP debug events occur when ICMP debug events are enabled (DBCR0[ICMP] = 1) and the PPC440 completes 
the execution of any instruction.

When operating in external debug mode or debug wait mode, the occurrence of an ICMP debug event is recorded 
in DBSR[ICMP] and causes the processor to enter the stop state and cease processing instructions. The program 
counter will contain the address of the instruction which would have executed next, had the ICMP debug event not 
occurred. Note that if the instruction whose completion caused the ICMP debug event was a branch instruction 
(and the branch conditions were satisfied), then upon entering the stop state the program counter will contain the 
target of the branch, and not the address of the instruction that is sequentially after the branch. Similarly, if the 
ICMP debug event is caused by the execution of a return (rfi, rfci, or rfmci) instruction, then upon entering the stop 
state the program counter will contain the address being returned to, and not the address of the instruction which is 
sequentially after the return instruction. 

When operating in internal debug mode with Debug interrupts enabled (MSR[DE] = 1), the occurrence of an ICMP 
debug event is recorded in DBSR[ICMP] and a Debug interrupt will occur with CSRR0 set to the address of the 
instruction which would have executed next, had the ICMP debug event not occurred. Note that there is a special 
case of MSR[DE] = 1 at the time of the execution of the instruction causing the ICMP debug event, but that 
instruction itself sets MSR[DE] to 0. This special case is described in more detail in Debug Interrupt on page 159, 
in the subsection on the setting of CSRR0.

When operating in internal debug mode (and not also in external debug mode nor debug wait mode) with Debug 
interrupts disabled (MSR[DE] = 0), then ICMP debug events cannot occur. Since the code at the beginning of the 
critical class interrupt handlers (including the Debug interrupt itself) must execute at least temporarily with 
MSR[DE] = 0, there would be no way to avoid causing additional ICMP debug events and setting DBSR[IDE], if 
ICMP debug events were allowed to occur under these conditions.

The PPC440 does not support the use of the ICMP debug event when operating in trace mode. Software must not 
enable ICMP debug events unless one of the other debug modes is enabled as well.

7.4.8 Interrupt (IRPT) Debug Event

IRPT debug events occur when IRPT debug events are enabled (DBCR0[IRPT] = 1) and an interrupt occurs.
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When operating in external debug mode or debug wait mode, the occurrence of an IRPT debug event is recorded 
in DBSR[IRPT] and causes the processor to enter the stop state and cease processing instructions. The program 
counter will contain the address of the instruction which would have executed next, had the IRPT debug event not 
occurred. Since the IRPT debug event is caused by the occurrence of an interrupt, by definition this address is that 
of the first instruction of the interrupt handler for the interrupt type which caused the IRPT debug event. 

When operating in internal debug mode with external debug mode and debug wait mode both disabled (and 
regardless of the value of MSR[DE]), an IRPT debug event can only occur due to a non-critical class interrupt. 
Critical class interrupts (Machine Check, Critical Input, Watchdog Timer, and Debug interrupts) cannot cause IRPT 
debug events in internal debug mode (unless also in external debug mode or debug wait mode), as otherwise the 
Debug interrupt which would occur as the result of the IRPT debug event would by necessity always be imprecise, 
since the critical class interrupt which would be causing the IRPT debug event would itself be causing MSR[DE] to 
be set to 0.

For a non-critical class interrupt which is causing an IRPT debug event while internal debug mode is enabled and 
external debug mode and debug wait mode are both disabled, the occurrence of the IRPT debug event is recorded 
in DBSR[IRPT]. If MSR[DE] is 1 at the time of the IRPT debug event, then a Debug interrupt occurs with CSRR0 
set to the address of the instruction which would have executed next, had the IRPT debug event not occurred. 
Since the IRPT debug event is caused by the occurrence of some other interrupt, by definition this address is that 
of the first instruction of the interrupt handler for the interrupt type which caused the IRPT debug event. If MSR[DE] 
is 0 at the time of the IRPT debug event, then the Imprecise Debug Event (IDE) field of the DBSR is also set and a 
Debug interrupt does not occur immediately. Instead, instruction execution continues, and a Debug interrupt will 
occur if and when MSR[DE] is set to 1, thereby enabling Debug interrupts, assuming software has not cleared the 
IRPT debug event status from the DBSR in the meantime. Upon such a “delayed” interrupt, the Debug interrupt 
handler software may query the DBSR[IDE] field to determine that the Debug interrupt has occurred imprecisely. 

When operating in trace mode, the occurrence of an IRPT debug event is simply recorded in DBSR[IRPT] and is 
indicated over the trace interface, and instruction execution continues.

7.4.9 Unconditional Debug Event (UDE)

UDE debug events occur when a debug tool asserts the unconditional debug event request via the JTAG interface. 
The UDE debug event is the only event which does not have a corresponding enable field in DBCR0.

When operating in external debug mode or debug wait mode, the occurrence of a UDE debug event is recorded in 
DBSR[UDE] and causes the processor to enter the stop state and cease processing instructions. The program 
counter will contain the address of the instruction which would have executed next, had the UDE debug event not 
occurred. Similarly, when operating in internal debug mode with Debug interrupts enabled (MSR[DE] = 1), the 
occurrence of a UDE debug event is recorded in DBSR[UDE] and a Debug interrupt will occur with CSRR0 set to 
the address of the instruction which would have executed next, had the UDE debug event not occurred.

When operating in internal debug mode (and not also in external debug mode nor debug wait mode) with Debug 
interrupts disabled (MSR[DE] = 0), the occurrence of a UDE debug event will set DBSR[UDE], along with the 
Imprecise Debug Event (IDE) field of the DBSR. The Debug interrupt will not occur immediately. Instead, 
instruction execution continues, and a Debug interrupt will occur if and when MSR[DE] is set to 1, thereby enabling 
Debug interrupts, assuming software has not cleared the UDE debug event status from the DBSR in the meantime. 
Upon such a “delayed” interrupt, the Debug interrupt handler software may query the DBSR[IDE] field to determine 
that the Debug interrupt has occurred imprecisely.

When operating in trace mode, the occurrence of a UDE debug event simply sets DBSR[UDE] and is indicated 
over the trace interface, and instruction execution continues.
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7.4.10 Debug Event Summary

Table 7-4 summarizes each of the debug event types, and the effect of debug mode and MSR[DE] on their 
occurrence.

7.5 Debug Reset

Software can initiate an immediate reset operation by setting DBCR0[RST] to a non-zero value. The results of a 
reset operation within the PPC440 core are described in Reset and Initialization in the chip user’s manual. The 
results of a reset operation on the rest of the chip and/or system is dependent on the particular type of reset 
operation (core, chip, or system reset), and on the particular chip and system implementation. See the chip user’s 
manual for details.

7.6 Debug Timer Freeze

In order to maintain the semblance of “real time” operation while a system is being debugged, DBCR0[FT] can be 
set to 1, which will cause all of the timers within the PPC440 core to stop incrementing or decrementing for as long 
as a debug event bit is set in the DBSR, or until DBCR0[FT] is set to 0. See Timer Facilities on page 173 for more 
information on the operation of the PPC440 core timers.

7.7 Debug Registers

Various Special Purpose Registers (SPRs) are used to enable the debug modes, to configure and record debug 
events, and to communicate with debug tool hardware and software. These debug registers may be accessed 
either through software running on the processor or through the JTAG debug port of the PPC440.

Table 7-4. Debug Event Summary  

External
Debug
Mode

Debug
Wait
Mode

Internal
Debug
Mode

MSR
DE

Debug Events

IAC DAC DVC BRT TRAP RET ICMP IRPT UDE

Enabled — — — Yes Yes Yes Yes Yes Yes Yes Yes Yes

— Enabled — — Yes Yes Yes Yes Yes Yes Yes Yes Yes

Disabled Disabled Enabled 1 Yes Yes Yes Yes Yes Yes Yes Note 1 Yes

Disabled Disabled Enabled 0 Note 2 Yes Yes No Yes Note 3 No Note 1 Yes

Disabled Disabled Disabled — Yes Yes Yes Yes Yes Yes Note 4 yes Yes

Table Notes

1. IRPT debug events may only occur for non-critical class interrupts when operating in internal debug mode with 
external debug mode and debug wait mode both disabled.

2. IAC debug events may not occur in internal debug mode with MSR[DE] = 0 and with external debug mode 
and debug wait mode both disabled, and the IAC mode set to range inclusive or range exclusive. They may 
occur if the IAC mode is set to exact.

3. RET debug events may not occur for rfci or rfmci instructions when operating in internal debug mode with 
MSR[DE] = 0 and with external debug mode and debug wait mode both disabled. They may only occur in 
this mode for the rfi instruction.

4. ICMP debug events are not permitted when operating in trace debug mode. Software must not enable 
ICMP debug events unless one of the other debug modes is enabled.
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Programming Note: It is the responsibility of software to synchronize the context of any changes to 
the debug facility registers. Specifically, when changing the contents of any of 
the debug facility registers, software must execute an isync instruction both 
before and after the changes to these registers, to ensure that all preceding 
instructions use the old values of the registers, and that all succeeding 
instructions use the new values. In addition, when changing any of the debug 
facility register fields related to the DAC and/or DVC debug events, software 
must execute an msync instruction before making the changes, to ensure that 
all storage accesses complete using the old context of these register fields.

7.7.1 Debug Control Register 0 (DBCR0)

DBCR0 is an SPR that is used to enable debug modes and events, reset the processor, and control timer 
operation when debugging. DBCR0 can be written from a GPR using mtspr, and can be read into a GPR using 
mfspr.

Figure 7-2. Debug Control Register 0 (DBCR0) 

0 EDM
External Debug Mode
0 Disable external debug mode.
1 Enable external debug mode.

1 IDM
Internal Debug Mode
0 Disable internal debug mode.
1 Enable internal debug mode.

2:3 RST

Reset
00 No action
01 Core reset
10 Chip reset
11 System reset

Attention: Writing 01, 10, or 11 to this 
field causes a processor reset to occur.

4 ICMP
Instruction Completion Debug Event
0 Disable instruction completion debug event.
1 Enable instruction completion debug event.

Instruction completions do not cause 
instruction completion debug events if 
MSR[DE] = 0 in internal debug mode, 
unless also in external debug mode or 
debug wait mode.

5 BRT
Branch Taken Debug Event
0 Disable branch taken debug event.
1 Enable branch taken debug event.

Taken branches do not cause branch 
taken debug events if MSR[DE] = 0 in 
internal debug mode, unless also in 
external debug mode or debug wait 
mode.

6 IRPT
Interrupt Debug Event
0 Disable interrupt debug event.
1 Enable interrupt debug event.

Critical interrupts do not cause interrupt 
debug events in internal debug mode, 
unless also in external debug mode or 
debug wait mode.

7 TRAP
Trap Debug Event
0 Disable trap debug event.
1 Enable trap debug event.

8 IAC1
Instruction Address Compare (IAC) 1 Debug Event
0 Disable IAC 1 debug event.
1 Enable IAC 1 debug event.

9 IAC2
IAC 2 Debug Event
0 Disable IAC 2 debug event.
1 Enable IAC 2 debug event.

10 IAC3
IAC 3 Debug Event
0 Disable IAC 3 debug event.
1 Enable IAC 3 debug event.
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7.7.2 Debug Control Register 1 (DBCR1)

DBCR1 is an SPR that is used to configure IAC debug events. DBCR1 can be written from a GPR using mtspr, 
and can be read into a GPR using mfspr.

  

11 IAC4
IAC 4 Debug Event
0 Disable IAC 4 debug event.
1 Enable IAC 4 debug event.

12 DAC1R
Data Address Compare (DAC) 1 Read Debug Event
0 Disable DAC 1 read debug event.
1 Enable DAC 1 read debug event.

13 DAC1W
DAC 1 Write Debug Event
0 Disable DAC 1 write debug event.
1 Enable DAC 1 write debug event.

14 DAC2R
DAC 2 Read Debug Event
0 Disable DAC 2 read debug event.
1 Enable DAC 2 read debug event.

15 DAC2W
DAC 2 Write Debug Event
0 Disable DAC 2 write debug event.
1 Enable DAC 2 write debug event.

16 RET
Return Debug Event
0 Disable return (rfi/rfci/rfmci) debug event.
1 Enable return (rfi/rfci/rfmci) debug event.

rfci/rfmci does not cause a return 
debug event if MSR[DE] = 0 in internal 
debug mode, unless also in external 
debug mode or debug wait mode.

17:30 Reserved

31 FT

Freeze timers on debug event
0 Timers are not frozen.
1 Freeze timers if a DBSR field associated with a debug event 

is set.

Figure 7-3. Debug Control Register 1 (DBCR1) 

0:1 IAC1US

Instruction Address Compare (IAC) 1 User/Super-
visor
00 Both
01 Reserved
10 Supervisor only (MSR[PR] = 0)
11 User only (MSR[PR] = 1)

2:3 IAC1ER

IAC 1 Effective/Real
00 Effective (MSR[IS]  = don’t care)
01 Reserved
10 Virtual (MSR[IS]  = 0)
11 Virtual (MSR[IS]  = 1)

4:5 IAC2US

IAC 2 User/Supervisor
00 Both
01 Reserved
10 Supervisor only (MSR[PR] = 0)
11 User only (MSR[PR] = 1)

6:7 IAC2ER

IAC 2 Effective/Real
00 Effective (MSR[IS]  = don’t care)
01 Reserved
10 Virtual (MSR[IS]  = 0)
11 Virtual (MSR[IS]  = 1)
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8:9 IAC12M

IAC 1/2 Mode
00 Exact match

01 Reserved
10 Range inclusive
11 Range exclusive

Match if address[0:29] = IAC 1/2[0:29]; two inde-
pendent compares

Match if IAC1 ≤ address < IAC2
Match if address < IAC1 OR address ≥ IAC2

10:14 Reserved

15 IAC12AT
IAC 1/2 Auto-Toggle Enable
0 Disable IAC 1/2 auto-toggle
1 Enable IAC 1/2 auto-toggle

16:17 IAC3US

IAC 3 User/Supervisor
00 Both
01 Reserved
10 Supervisor only (MSR[PR] = 0)
11 User only (MSR[PR] = 1)

18:19 IAC3ER

IAC 3 Effective/Real
00 Effective (MSR[IS]  = don’t care)
01 Reserved
10 Virtual (MSR[IS]  = 0)
11 Virtual (MSR[IS]  = 1)

20:21 IAC4US

IAC 4 User/Supervisor
00 Both
01 Reserved
10 Supervisor only (MSR[PR] = 0)
11 User only (MSR[PR] = 1)

22:23 IAC4ER

IAC 4 Effective/Real
00 Effective (MSR[IS]  = don’t care)
01 Reserved
10 Virtual (MSR[IS]  = 0)
11 Virtual (MSR[IS]  = 1)

24:25 IAC34M

IAC 3/4 Mode
00 Exact match

01 Reserved
10 Range inclusive
11 Range exclusive

Match if address[0:29] = IAC 3/4[0:29]; two inde-
pendent compares

Match if IAC3 ≤ address < IAC4
Match if address < IAC3 OR address ≥ IAC4

26:30 Reserved

31 IAC34AT
IAC3/4 Auto-Toggle Enable
0 Disable IAC 3/4 auto-toggle
1 Enable IAC 3/4 auto-toggle
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7.7.3 Debug Control Register 2 (DBCR2)

DBCR2 is an SPR that is used to configure DAC and DVC debug events. DBCR2 can be written from a GPR using 
mtspr, and can be read into a GPR using mfspr.

  

Figure 7-4. Debug Control Register 2 (DBCR2) 

0:1 DAC1US

Data Address Compare (DAC) 1 User/Supervisor
00 Both
01 Reserved
10 Supervisor only (MSR[PR] = 0)
11 User only (MSR[PR] = 1)

2:3 DAC1ER

DAC 1 Effective/Real
00 Effective (MSR[DS]  = don’t care)
01 Reserved
10 Virtual (MSR[DS]  = 0)
11 Virtual (MSR[DS]  = 1)

4:5 DAC2US

DAC 2 User/Supervisor
00 Both
01 Reserved
10 Supervisor only (MSR[PR] = 0)
11 User only (MSR[PR] = 1)

6:7 DAC2ER

DAC 2 Effective/Real
00 Effective (MSR[DS]  = don’t care)
01 Reserved
10 Virtual (MSR[DS]  = 0)
11 Virtual (MSR[DS]  = 1)

8:9 DAC12M

DAC 1/2 Mode
00 Exact match

01 Address bit mask

10 Range inclusive
11 Range exclusive

Match if address[0:31] = DAC 1/2[0:31]; two inde-
pendent compares
Match if address = DAC1; only compare bits cor-
responding to 1 bits in DAC2
Match if DAC1 ≤ address < DAC2
Match if address < DAC1 OR address ≥ DAC2

10 DAC12A

DAC 1/2 Asynchronous
0 Debug interrupt caused by DAC1/2 exception 

will be synchronous
1 Debug interrupt caused by DAC1/2 exception 

will be asynchronous

11 Reserved

12:13 DVC1M

Data Value Compare (DVC) 1 Mode
00 Reserved
01 AND all bytes enabled by DVC1BE
10 OR all bytes enabled by DVC1BE
11 AND-OR pairs of bytes enabled by DVC1BE (0 AND 1) OR (2 AND 3)

14:15 DVC2M

DVC 2 Mode
00 Reserved
01 AND all bytes enabled by DVC2BE
10 OR all bytes enabled by DVC2BE
11 AND-OR pairs of bytes enabled by DVC2BE (0 AND 1) OR (2 AND 3)

16:19 Reserved

20:23 DVC1BE DVC 1 Byte Enables 0:3

24:27 Reserved

28:31 DVC2BE DVC 2 Byte Enables 0:3
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7.7.4 Debug Status Register (DBSR) 

The DBSR contains status on debug events as well as information on the type of the most recent reset. The status 
bits are set by the occurrence of debug events, while the reset type information is updated upon the occurrence of 
any of the three reset types.

The DBSR is read into a GPR using mfspr. Clearing the DBSR is performed using mtspr by placing a 1 in the 
GPR source register in all bit positions which are to be cleared in the DBSR, and a 0 in all other bit positions. The 
data written from the GPR to the DBSR is not direct data, but a mask. A 1 clears the bit and a 0 leaves the 
corresponding DBSR bit unchanged.

  

Figure 7-5. Debug Status Register (DBSR) 

0 IDE
Imprecise Debug Event
0 Debug event occurred while MSR[DE] = 1
1 Debug event occurred while MSR[DE] = 0

For synchronous debug events in internal debug 
mode, this field indicates whether the correspond-
ing Debug interrupt occurs precisely or impre-
cisely

1 UDE
Unconditional Debug Event
0 Event didn’t occur
1 Event occurred

2:3 MRR

Most Recent Reset
00 No reset has occurred since this field was last 

cleared by software.
01 Core reset
10 Chip reset
11 System reset

This field is set upon any processor reset to a 
value indicating the type of reset.

4 ICMP
Instruction Completion Debug Event
0 Event didn’t occur
1 Event occurred

5 BRT
Branch Taken Debug Event
0 Event didn’t occur
1 Event occurred

6 IRPT
Interrupt Debug Event
0 Event didn’t occur
1 Event occurred

7 TRAP
Trap Debug Event
0 Event didn’t occur
1 Event occurred

8 IAC1
IAC 1 Debug Event
0 Event didn’t occur
1 Event occurred

9 IAC2
IAC 2 Debug Event
0 Event didn’t occur
1 Event occurred

10 IAC3
IAC 3 Debug Event
0 Event didn’t occur
1 Event occurred

11 IAC4
IAC 4 Debug Event
0 Event didn’t occur
1 Event occurred

12 DAC1R
DAC 1 Read Debug Event
0 Event didn’t occur
1 Event occurred
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7.7.5 Instruction Address Compare Registers (IAC1:IAC4)

The four IAC registers specify the addresses upon which IAC debug events should occur. Each of the IAC registers 
can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

     

7.7.6 Data Address Compare Registers (DAC1:DAC2)

The two DAC registers specify the addresses upon which DAC (and/or DVC) debug events should occur. Each of 
the DAC registers can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

  

7.7.7 Data Value Compare Registers (DVC1:DVC2)

The DVC registers specify the data values upon which DVC debug events should occur. Each of the DVC registers 
can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

13 DAC1W
DAC 1 Write Debug Event
0 Event didn’t occur
1 Event occurred

14 DAC2R
DAC 2 Read Debug Event
0 Event didn’t occur
1 Event occurred

15 DAC2W
DAC 2 Write Debug Event
0 Event didn’t occur
1 Event occurred

16 RET
Return Debug Event
0 Event didn’t occur
1 Event occurred

17:29 Reserved

30 IAC12ATS

IAC 1/2 Auto-Toggle Status
0 Range is not reversed from value specified in 

DBCR1[IAC12M]
1 Range is reversed from value specified in 

DBCR1[IAC12M]

31 IAC34ATS

IAC 3/4 Auto-Toggle Status
0 Range is not reversed from value specified in 

DBCR1[IAC34M]
1 Range is reversed from value specified in 

DBCR1[IAC34M]

Figure 7-6. Instruction Address Compare Registers (IAC1:IAC4) 

0:29 Instruction Address Compare (IAC) word address

30:31 Reserved

Figure 7-7. Data Address Compare Registers (DAC1:DAC2) 

0:31 Data Address Compare (DAC) byte address
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7.7.8 Debug Data Register (DBDR)

The DBDR can be used for communication between software running on the processor and debug tool hardware 
and software. The DBDR can be written from a GPR using mtspr, and can be read into a GPR using mfspr.

    

Figure 7-8. Data Value Compare Registers (DVC1:DVC2) 

0:31 Data value to compare

Figure 7-9. Debug Data Register (DBDR) 

0:31 Debug Data
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8. Instruction Set
Descriptions of the PPC440 instructions follow. Each description contains the following elements:

• Instruction names (mnemonic and full)

• Instruction syntax

• Instruction format diagram

• Pseudocode description

• Prose description

• Registers altered

Where appropriate, instruction descriptions list invalid instruction forms and exceptions, and provide programming 
notes.

Table 8-1 summarizes the PPC440 instruction set by category. 

Table 8-1. Instruction Categories  

Category Sub-Category Instruction Types

Integer

Integer Storage Access load, store

Integer Arithmetic add, subtract, multiply, divide, negate

Integer Logical and, andc, or, orc, xor, nand, nor, xnor, extend sign, count leading 
zeros

Integer Compare compare, compare logical

Integer Trap trap

Integer Rotate rotate and insert, rotate and mask

Integer Shift shift left, shift right, shift right algebraic

Integer Select select operand

Branch branch, branch conditional, branch to link, branch to count

Processor Control

Condition Register Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor

Register Management move to/from SPR, move to/from DCR, move to/from MSR, write to 
external interrupt enable bit, move to/from CR

System Linkage system call, return from interrupt, return from critical interrupt, 
return from machine check interrupt

Processor Synchronization instruction synchronize

Storage Control

Cache Management data allocate, data invalidate, data touch, data zero, data flush, 
data store, instruction invalidate, instruction touch

TLB Management read, write, search, synchronize

Storage Synchronization memory synchronize, memory barrier

Allocated

Allocated Arithmetic multiply-accumulate, negative multiply-accumulate, multiply half 
word

Allocated Logical detect left-most zero byte

Allocated Cache Management data congruence-class invalidate, instruction congruence-class 
invalidate

Allocated Cache Debug data read, instruction read
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8.1 Instruction Set Portability

To support embedded real-time applications, the PPC440 implements the defined instruction set of the Book-E 
Enhanced PowerPC Architecture, with the exception of those operations which are defined for 64-bit 
implementations only, and those which are defined as floating-point operations. Support for the floating-point 
operations is provided via the auxiliary processor interface, while the 64-bit operations are not supported at all. See 
Instruction Classes on page 41 for more information on the support for defined instructions within the PPC440.

The PPC440 also implements a number of instructions that are not part of PowerPC Book-E architecture, but are 
included as part of the PPC440. Architecturally, they are considered allocated instructions, as they use opcodes 
which are within the allocated class of instructions, which the PowerPC Book-E architecture identifies as being 
available for implementation-dependent and/or application-specific purposes. However, all of the allocated 
instructions which are implemented within the PPC440 are “standard” for PowerPC 400 Series family of embedded 
controllers, and are not unique to the PPC440.

The allocated instructions implemented within the PPC440 are divided into four sub-categories, and are shown in 
Table 8-2. Programs using these instructions may not be portable to other PowerPC Book-E implementations.  

8.2 Instruction Formats

For more detailed information about instruction formats, including a summary of instruction field usage and 
instruction format diagrams for the PPC440, see Section A.1 Instruction Formats on page 411.

Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode field 
as well. The remaining instruction bits contain additional fields. All instruction fields belong to one of the following 
categories:

• Defined

These instruction fields contain values, such as opcodes, that cannot be altered. The instruction format dia-
grams specify the values of defined fields.

• Variable

These fields contain operands, such as general purpose register specifiers and immediate values, each of 
which may contain any one of a number of values. The instruction format diagrams specify the field names of 
variable fields.

Table 8-2. Allocated Instructions  
Arithmetic

Logical Cache
Management

Cache
DebugMultiply-Accumulate Negative

Multiply-Accumulate Multiply Half word

macchw[o][.]
macchws[o][.]
macchwsu[o][.]
macchwu[o][.]
machhw[o][.]
machhws[o][.]
machhwsu[o][.]
machhwu[o][.]
maclhw[o][.]
maclhws[o][.]
maclhwsu[o][.]
maclhwu[o][.]

nmacchw[o][.]
nmacchws[o][.]
nmachhw[o][.]
nmachhws[o][.]
nmaclhw[o][.]
nmaclhws[o][.]

mulchw[.]
mulchwu[.]
mulhhw[.]
mulhhwu[.]
mullhw[.]
mullhwu[.]

dlmzb[.] dccci
iccci

dcread
icread
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• Reserved

Bits in a reserved field should be set to 0. In the instruction format diagrams, reserved fields are shaded.

If any bit in a defined field does not contain the specified value, the instruction is illegal and an Illegal Instruction 
exception type Program interrupt occurs. If any bit in a reserved field does not contain 0, the instruction form is 
invalid and its result is architecturally undefined. Unless otherwise noted, the PPC440 will execute all invalid 
instruction forms without causing an Illegal Instruction exception.

8.3 Pseudocode

The pseudocode that appears in the instruction descriptions provides a semi-formal language for describing 
instruction operations.

The pseudocode uses the following notation:

+ Twos complement addition

% Remainder of an integer division; (33 % 32) = 1.

,  Unsigned comparison relations

(GPR(r)) The contents of GPR r, where 0 ≤ r ≤ 31.

(RA|0) The contents of the register RA or 0, if the RA field is 0.

(Rx) The contents of a GPR, where x is A, B, S, or T

0bn A binary number

0xn A hexadecimal number

<, > Signed comparison relations

= Assignment

=, ≠ Equal, not equal relations

CEIL(x) Least integer ≥ x.

CIA Current instruction address; the 32-bit address of the instruction being described by a sequence 
of pseudocode. This address is used to set the next instruction address (NIA). Does not 
correspond to any architected register.

DCR(DCRN) A Device Control Register (DCR) specified by the DCRF field in an mfdcr or mtdcr 
instruction

EA Effective address; the 32-bit address, derived by applying indexing or indirect addressing rules 
to the specified operand, that specifies an location in main storage.

EXTS(x) The result of extending x on the left with sign bits.

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb,b, . . . A list of bits, by number or name, in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

GPR(r) General Purpose Register (GPR) r, where 0 ≤ r ≤ 31.

GPRs RA, RB, . . .

MASK(MB,ME) Mask having 1s in positions MB through ME (wrapping if MB > ME) and 0s elsewhere.

MS(addr, n) The number of bytes represented by n at the location in main storage represented by addr.

<
u >

u
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NIA Next instruction address; the 32-bit address of the next instruction to be executed. In 
pseudocode, a successful branch is indicated by assigning a value to NIA. For instructions that 
do not branch, the NIA is CIA +4.

PC Program counter.

REG[FLD, FLD . . .] A list of fields in a named register

REG[FLD:FLD] A range of fields in a named register

REG[FLD] A field in a named register

REGb A bit in a named register

REGb,b, . . . A list of bits, by number or name, in a named register

REGb:b A range of bits in a named register

RESERVE Reserve bit; indicates whether a process has reserved a block of storage.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits specified by n.

SPR(SPRN) A Special Purpose Register (SPR) specified by the SPRF field in an mfspr or mtspr 
instruction

c0:3 A four-bit object used to store condition results in compare instructions.

do Do loop. “to” and “by” clauses specify incrementing an iteration variable; “while” and “until” 
clauses specify terminating conditions. Indenting indicates the scope of a loop.

if...then...else... Conditional execution; if condition then a else b, where a and b represent one or more 
pseudocode statements. Indenting indicates the ranges of a and b. If b is null, the else does not 
appear.

instruction(EA) An instruction operating on a data or instruction cache block associated with an EA.

leave Leave innermost do loop or do loop specified in a leave statement.

n A decimal number
nb The bit or bit value b is replicated n times.

xx Bit positions which are don’t-cares.

|| Concatenation

× Multiplication

÷ Division yielding a quotient

⊕ Exclusive-OR (XOR) logical operator

– Twos complement subtraction, unary minus

¬ NOT logical operator

∧ AND logical operator

∨ OR logical operator
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8.3.1 Operator Precedence

Table 8-3 lists the pseudocode operators and their associativity in descending order of precedence:

8.4 Register Usage

Each instruction description lists the registers altered by the instruction. Some register changes are explicitly 
detailed in the instruction description (for example, the target register of a load instruction). Some instructions also 
change other registers, but the details of the changes are not included in the instruction descriptions. Common 
examples of these kinds of register changes include the Condition Register (CR) and the Integer Exception 
Register (XER). For discussion of the CR, see Condition Register (CR) on page 54. For discussion of the XER, see 
Integer Exception Register (XER) on page 57.

8.5 Alphabetical Instruction Listing

The following pages list the instructions, both defined and allocated, which are implemented within the PPC440.

Table 8-3. Operator Precedence 

Operators Associativity

REGb, REG[FLD], function evaluation Left to right

nb Right to left

¬, – (unary minus) Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, >, , Left to right

∧, ⊕ Left to right

∨ Left to right

← None

<
u >

u
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add
Add
add
Add

(RT) ← (RA) + (RB)

The sum of the contents of register RA and the contents of register RB is placed into register RT.

Registers Altered
• RT

• CR[CR0] if Rc contains 1

• XER[SO, OV] if OE contains 1

add RT, RA, RB OE= 0, Rc= 0

add. RT, RA, RB OE= 0, Rc= 1

addo RT, RA, RB OE= 1, Rc= 0

addo. RT, RA, RB OE= 1, Rc= 1

31 RT RA RB OE 266 Rc

0 6 11 16 21 22 31
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addc
Add Carrying
addc
Add Carrying

(RT) ← (RA) + (RB)
if (RA) + (RB)  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and register RB is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0] if Rc contains 1

• XER[SO, OV] if OE contains 1

addc RT, RA, RB OE= 0, Rc= 0

addc. RT, RA, RB OE= 0, Rc= 1

addco RT, RA, RB OE= 1, Rc= 0

addco. RT, RA, RB OE= 1, Rc= 1

31 RT RA RB OE 10 Rc

0 6 11 16 21 22 31

>
u
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adde
Add Extended
adde
Add Extended

(RT) ← (RA) + (RB) + XER[CA]
if (RA) + (RB) + XER[CA]  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, register RB, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0] if Rc contains 1

• XER[SO, OV] if OE contains 1

adde RT, RA, RB OE= 0, Rc= 0

adde. RT, RA, RB OE= 0, Rc= 1

addeo RT, RA, RB OE= 1, Rc= 0

addeo. RT, RA, RB OE =1, Rc=1

31 RT RA RB OE 138 Rc

0 6 11 16 21 22 31

>
u
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addi
Add Immediate
addi
Add Immediate

(RT) ← (RA|0) + EXTS(IM)

If the RA field is 0, the IM field, sign-extended to 32 bits, is placed into register RT.

If the RA field is nonzero, the sum of the contents of register RA and the contents of the IM field, sign-extended to 
32 bits, is placed into register RT.

Registers Altered
• RT

Programming Note

To place an immediate, sign-extended value into the GPR specified by RT, set RA = 0.  

addi RT, RA, IM

14 RT RA IM

0 6 11 16 31

Table 8-4. Extended Mnemonics for addi  

Mnemonic Operands Function Other Registers Altered

la RT, D(RA)

Load address (RA ≠ 0); D is an offset from a base address that is 
assumed to be (RA).
(RT) ← (RA) + EXTS(D)

Extended mnemonic for
addi RT,RA,D

li RT, IM

Load immediate.
(RT) ← EXTS(IM)

Extended mnemonic for
addi RT,0,IM

subi RT, RA, IM

Subtract EXTS(IM) from (RA|0).
Place result in RT.

Extended mnemonic for
addi RT,RA,−IM
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addic
Add Immediate Carrying
addic
Add Immediate Carrying

(RT) ← (RA) + EXTS(IM)
if (RA) + EXTS(IM)  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32 bits, is placed into 
register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]  

addic RT, RA, IM

12 RT RA IM

0 6 11 16 31

Table 8-5. Extended Mnemonics for addic  

Mnemonic Operands Function Other Registers Altered

subic RT, RA, IM

Subtract EXTS(IM) from (RA)
Place result in RT; place carry-out in XER[CA].

Extended mnemonic for
addic RT,RA,−IM

>
u
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addic.
Add Immediate Carrying and Record
addic.
Add Immediate Carrying and Record

(RT) ← (RA) + EXTS(IM)
if (RA) + EXTS(IM)  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32 bits, is placed into 
register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]

Programming Note

addic. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other instructions 
are andi. and andis..  

addic. RT, RA, IM

13 RT RA IM

0 6 11 16 31

Table 8-6. Extended Mnemonics for addic.  

Mnemonic Operands Function Other Registers Altered

subic. RT, RA, IM

Subtract EXTS(IM) from (RA).
Place result in RT; place carry-out in XER[CA].

Extended mnemonic for
addic. RT,RA,−IM

CR[CR0]

>
u
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addis
Add Immediate Shifted
addis
Add Immediate Shifted

(RT) ← (RA|0) + (IM || 160)

If the RA field is 0, the IM field is concatenated on its right with sixteen 0-bits and placed into register RT.

If the RA field is nonzero, the contents of register RA are added to the contents of the extended IM field. The sum 
is stored into register RT.

Registers Altered
• RT

Programming Note

An addi instruction stores a sign-extended 16-bit value in a GPR. An addis instruction followed by an ori 
instruction stores an arbitrary 32-bit value in a GPR, as shown in the following example:

addis RT, 0, high 16 bits of value
ori RT, RT, low 16 bits of value  

addis RT, RA, IM

15 RT RA IM

0 6 11 16 31

Table 8-7. Extended Mnemonics for addis  

Mnemonic Operands Function Other Registers Altered

lis RT, IM

Load immediate shifted.
(RT) ← (IM || 160)

Extended mnemonic for
addis RT,0,IM

subis RT, RA, IM

Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for
addis RT,RA,−IM
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addme
Add to Minus One Extended
addme
Add to Minus One Extended

(RT) ← (RA) + XER[CA] + (–1)
if (RA) + XER[CA] + 0xFFFF FFFF  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, XER[CA], and –1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0] if Rc contains 1

• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

addme RT, RA OE= 0, Rc= 0

addme. RT, RA OE= 0, Rc= 1

addmeo RT, RA OE=1, Rc= 0

addmeo. RT, RA OE =1, Rc=1

31 RT RA OE 234 Rc

0 6 11 16 21 22 31

>
u
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addze
Add to Zero Extended
addze
Add to Zero Extended

(RT) ← (RA) + XER[CA]
if (RA) + XER[CA]  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0] if Rc contains 1

• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

addze RT, RA OE=0, Rc=0

addze. RT, RA OE=0, Rc=1

addzeo RT, RA OE=1, Rc=0

addzeo. RT, RA OE=1, Rc=1

31 RT RA OE 202 Rc

0 6 11 16 21 22 31

>
u
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and
AND
and
AND

(RA) ← (RS) ∧ (RB)

The contents of register RS are ANDed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0] if Rc contains 1

and RA, RS, RB Rc=0

and. RA, RS, RB Rc=1

31 RS RA RB 28 Rc

0 6 11 16 21 31
AMCC Proprietary       223



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
andc
AND with Complement
andc
AND with Complement

(RA) ← (RS) ∧ ¬(RB)

The contents of register RS are ANDed with the ones complement of the contents of register RB; the result is 
placed into register RA.

Registers Altered
• RA

• CR[CR0] if Rc contains 1

andc RA,RS,RB Rc=0

andc. RA,RS,RB Rc=1

31 RS RA RB 60 Rc

0 6 11 16 21 2 31
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andi.
AND Immediate
andi.
AND Immediate

(RA) ← (RS) ∧ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of register RS is ANDed with 
the extended IM field; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0]

Programming Note

The andi. instruction can test whether any of the 16 least-significant bits in a GPR are 1-bits.

andi. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other instructions 
are addic. and andis..

andi. RA, RS, IM

28 RS RA IM

0 6 11 16 31
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andis.
AND Immediate Shifted
andis.
AND Immediate Shifted

(RA) ← (RS) ∧ (IM || 160)

The IM field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of register RS are ANDed 
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

• CR[CR0]

Programming Note

The andis. instruction can test whether any of the 16 most-significant bits in a GPR are 1-bits.

andis. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other instructions 
are addic. and andi..

andis. RA, RS, IM

29 RS RA IM

0 6 11 16 31
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b
Branch
b
Branch

If AA = 1 then
LI ← target6:29
NIA ← EXTS(LI || 20)

else
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The next instruction address (NIA) is the effective address of the branch target. The NIA is formed by adding a 
displacement to a base address. The displacement is obtained by concatenating two 0-bits to the right of the LI 
field and sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is the current instruction 
address (CIA). If the AA field contains 1, the base address is 0.

Instruction execution resumes with the instruction at the NIA.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• LR if LK contains 1

b target AA=0, LK=0

ba target AA=1, LK=0

bl target AA=0, LK=1

bla target AA=1, LK=1

18 LI AA LK

0 6 30 31
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bc
Branch Conditional
bc
Branch Conditional 

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1))  then
if AA = 1 then

BD ← target16:29
NIA ← EXTS(BD || 20)

else
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If BO2 contains 0, the CTR decrements, and the decremented value is tested for 0 as part of the branch condition. 
In this case, BO3 indicates whether the test for 0 must be true or false in order for the branch to be taken. If BO2 
contains 1, then the CTR is neither decremented nor tested as part of the branch condition.

If BO0 contains 0, then the CR bit specified by the BI field is compared to BO1 as part of the branch condition. If 
BO0 contains 1, then the CR is not tested as part of the branch condition, and the BI field is ignored.

The next instruction address (NIA) is either the effective address of the branch target, or the address of the 
instruction after the branch, depending on whether the branch is taken or not. The branch target address is formed 
by adding a displacement to a base address. The displacement is obtained by concatenating two 0-bits to the right 
of the BD field and sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is the current instruction 
address (CIA). If the AA field contains 1, the base address is 0.

BO4 affects branch prediction, a performance-improvement feature. See Branch Prediction on page 52 for a 
complete discussion.

Instruction execution resumes with the instruction at the NIA.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0

• LR if LK contains 1

bc BO, BI, target AA=0, LK= 0

bca BO, BI, target AA =1, LK= 0

bcl BO, BI, target AA= 0, LK=1

bcla BO, BI, target AA =1, LK=1

16 BO BI BD AA LK

0 6 11 16 30 31
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bc
Branch Conditional
Table 8-8. Extended Mnemonics for bc, bca, bcl, bcla  

Mnemonic Operands Function Other Registers Altered

bdnz

target

Decrement CTR; branch if CTR ≠ 0.
Extended mnemonic for
bc 16,0,target

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target (LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target (LR) ← CIA + 4.

bdnzf

cr_bit, target

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 0,cr_bit,target

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target (LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target (LR) ← CIA + 4.

bdnzt

cr_bit, target

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 8,cr_bit,target

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target (LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target (LR) ← CIA + 4.

bdz

target

Decrement CTR; branch if CTR = 0.
Extended mnemonic for
bc 18,0,target

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target (LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target (LR) ← CIA + 4.

bdzf

cr_bit, target

Decrement CTR
Branch if CTR = 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 2,cr_bit,target

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target (LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target (LR) ← CIA + 4.
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bc
Branch Conditional
bdzt

cr_bit, target

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 10,cr_bit,target

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target (LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target (LR) ← CIA + 4.

beq

[cr_field,] target

Branch if equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+2,target

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target (LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target (LR) ← CIA + 4.

bf

cr_bit, target

Branch if CRcr_bit = 0.
Extended mnemonic for
bc 4,cr_bit,target

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target LR

bfla Extended mnemonic for
bcla 4,cr_bit,target LR

bge

[cr_field,] target

Branch if greater than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target LR

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target LR

bgt

[cr_field,] target

Branch if greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+1,target

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target LR

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target LR

Table 8-8. Extended Mnemonics for bc, bca, bcl, bcla (continued) 

Mnemonic Operands Function Other Registers Altered
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bc
Branch Conditional
ble

[cr_field,] target

Branch if less than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target LR

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target LR

blt

[cr_field,] target

Branch if less than
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+0,target

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target (LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target (LR) ← CIA + 4.

bne

[cr_field,] target

Branch if not equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+2,target

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4∗cr_field+2,target (LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target (LR) ← CIA + 4.

bng

[cr_field,] target

Branch if not greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target (LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target (LR) ← CIA + 4.

bnl

[cr_field,] target

Branch if not less than; use CR0 if cr_field is omitted.
Extended mnemonic for
bc 4,4∗cr_field+0,target

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target (LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target (LR) ← CIA + 4.

Table 8-8. Extended Mnemonics for bc, bca, bcl, bcla (continued) 

Mnemonic Operands Function Other Registers Altered
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bc
Branch Conditional
bns

[cr_field,] target

Branch if not summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target (LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target (LR) ← CIA + 4.

bnu

[cr_field,] target

Branch if not unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target (LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target (LR) ← CIA + 4.

bso

[cr_field,] target

Branch if summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target (LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target (LR) ← CIA + 4.

bt

cr_bit, target

Branch if CRcr_bit = 1.
Extended mnemonic for
bc 12,cr_bit,target

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target (LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target (LR) ← CIA + 4.

bun

[cr_field], target

Branch if unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target (LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target (LR) ← CIA + 4.

Table 8-8. Extended Mnemonics for bc, bca, bcl, bcla (continued) 

Mnemonic Operands Function Other Registers Altered
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bcctr
Branch Conditional to Count Register
bcctr
Branch Conditional to Count Register

if (BO0 = 1 ∨ (CRBI = BO1))  then
NIA ← CTR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If BO0 contains 0, then the CR bit specified by the BI field is compared to BO1 as part of the branch condition. If 
BO0 contains 1, then the CR is not tested as part of the branch condition, and the BI field is ignored.

The next instruction address (NIA) is either the effective address of the branch target, or the address of the 
instruction after the branch, depending on whether the branch is taken or not. The branch target address is formed 
by concatenating two 0-bits to the right of the 30 most significant bits of the CTR.

BO4 affects branch prediction, a performance-improvement feature. See Branch Prediction on page 52 for a 
complete discussion.

Instruction execution resumes with the instruction at the NIA.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• LR if LK contains 1

Invalid Instruction Forms
• Reserved fields

• If BO2 contains 0, the instruction form is invalid, and the result of the instruction (in particular, the branch target 
address and whether or not the branch is taken) is undefined. The architecture does not permit the combina-
tion of decrementing the CTR as part of the branch condition, together with using the CTR as the branch target 
address.

 

bcctr BO, BI LK = 0

bcctrl BO, BI LK =1

19 BO BI 528 LK

0 6 11 16 21 31

Table 8-9. Extended Mnemonics for bcctr, bcctrl  

Mnemonic Operands Function Other Registers Altered

bctr
Branch unconditionally to address in CTR.

Extended mnemonic for
bcctr 20,0

bctrl Extended mnemonic for
bcctrl 20,0 (LR) ← CIA + 4.
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bcctr
Branch Conditional to Count Register
beqctr
[cr_field]

Branch, if equal, to address in CTR
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+2

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2 (LR) ← CIA + 4.

bfctr
cr_bit

Branch, if CRcr_bit = 0, to address in CTR.
Extended mnemonic for
bcctr 4,cr_bit

bfctrl Extended mnemonic for
bcctrl 4,cr_bit (LR) ← CIA + 4.

bgectr
[cr_field]

Branch, if greater than or equal, to address in CTR. Use CR0 if cr_field 
is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bgtctr
[cr_field]

Branch, if greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+1

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1 (LR) ← CIA + 4.

blectr
[cr_field]

Branch, if less than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1 (LR) ← CIA + 4.

bltctr
[cr_field]

Branch, if less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+0

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0 (LR) ← CIA + 4.

bnectr
[cr_field]

Branch, if not equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+2

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2 (LR) ← CIA + 4.

bngctr
[cr_field]

Branch, if not greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1 (LR) ← CIA + 4.

Table 8-9. Extended Mnemonics for bcctr, bcctrl (continued) 

Mnemonic Operands Function Other Registers Altered
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bcctr
Branch Conditional to Count Register
bnlctr
[cr_field]

Branch, if not less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bnsctr
[cr_field]

Branch, if not summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3 (LR) ← CIA + 4.

bnuctr
[cr_field]

Branch, if not unordered, to address in CTR; use CR0 if cr_field is omit-
ted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3 (LR) ← CIA + 4.

bsoctr
[cr_field]

Branch, if summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3 (LR) ← CIA + 4.

btctr
cr_bit

Branch if CRcr_bit = 1 to address in CTR.
Extended mnemonic for
bcctr 12,cr_bit

btctrl Extended mnemonic for
bcctrl 12,cr_bit (LR) ← CIA + 4.

bunctr
[cr_field]

Branch if unordered to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3 (LR) ← CIA + 4.

Table 8-9. Extended Mnemonics for bcctr, bcctrl (continued) 
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bclr
Branch Conditional to Link Register
bclr
Branch Conditional to Link Register

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1))  then
NIA ← LR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If BO2 contains 0, the CTR decrements, and the decremented value is tested for 0 as part of the branch condition. 
In this case, BO3 indicates whether the test for 0 must be true or false in order for the branch to be taken. If BO2 
contains 1, then the CTR is neither decremented nor tested as part of the branch condition.

If BO0 contains 0, then the CR bit specified by the BI field is compared to BO1 as part of the branch condition. If 
BO0 contains 1, then the CR is not tested as part of the branch condition, and the BI field is ignored.

The next instruction address (NIA) is either the effective address of the branch target, or the address of the 
instruction after the branch, depending on whether the branch is taken or not. The branch target address is formed 
by concatenating two 0-bits to the right of the 30 most significant bits of the LR.

BO4 affects branch prediction, a performance-improvement feature. See Branch Prediction on page 52 for a 
complete discussion.

Instruction execution resumes with the instruction at the NIA.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0

• LR if LK contains 1

Invalid Instruction Forms
• Reserved fields

 

bclr BO, BI LK = 0

bclrl BO, BI LK =1

19 BO BI 16 LK

0 6 11 16 21 31

Table 8-10. Extended Mnemonics for bclr, bclrl  

Mnemonic Operands Function Other Registers Altered

blr
Branch unconditionally to address in LR.

Extended mnemonic for
bclr 20,0

blrl Extended mnemonic for
bclrl 20,0 (LR) ← CIA + 4.
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bclr
Branch Conditional to Link Register
bdnzlr

Decrement CTR.
Branch if CTR ≠ 0 to address in LR.

Extended mnemonic for
bclr 16,0

bdnzlrl Extended mnemonic for
bclrl 16,0 (LR) ← CIA + 4.

bdnzflr
cr_bit

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 0,cr_bit

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit (LR) ← CIA + 4.

bdnztlr
cr_bit

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 8,cr_bit

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit (LR) ← CIA + 4.

bdzlr

Decrement CTR.
Branch if CTR = 0 to address in LR.

Extended mnemonic for
bclr 18,0

bdzlrl Extended mnemonic for
bclrl 18,0 (LR) ← CIA + 4.

bdzflr
cr_bit

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 2,cr_bit

bdzflrl Extended mnemonic for
bclrl 2,cr_bit (LR) ← CIA + 4.

bdztlr
cr_bit

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 10,cr_bit

bdztlrl Extended mnemonic for
bclrl 10,cr_bit (LR) ← CIA + 4.

beqlr
[cr_field]

Branch if equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+2

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2 (LR) ← CIA + 4.

bflr
cr_bit

Branch if CRcr_bit = 0 to address in LR.
Extended mnemonic for
bclr 4,cr_bit

bflrl Extended mnemonic for
bclrl 4,cr_bit (LR) ← CIA + 4.

Table 8-10. Extended Mnemonics for bclr, bclrl (continued) 
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bclr
Branch Conditional to Link Register
bgelr
[cr_field]

Branch, if greater than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bgtlr
[cr_field]

Branch, if greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+1

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1 (LR) ← CIA + 4.

blelr
[cr_field]

Branch, if less than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1 (LR) ← CIA + 4.

bltlr
[cr_field]

Branch, if less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+0

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0 (LR) ← CIA + 4.

bnelr
[cr_field]

Branch, if not equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+2

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2 (LR) ← CIA + 4.

bnglr
[cr_field]

Branch, if not greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1 (LR) ← CIA + 4.

bnllr
[cr_field]

Branch, if not less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0 (LR) ← CIA + 4.

bnslr
[cr_field]

Branch if not summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3 (LR) ← CIA + 4.

Table 8-10. Extended Mnemonics for bclr, bclrl (continued) 
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bclr
Branch Conditional to Link Register
bnulr
[cr_field]

Branch if not unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3 (LR) ← CIA + 4.

bsolr
[cr_field]

Branch if summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3 (LR) ← CIA + 4.

btlr
cr_bit

Branch if CRcr_bit = 1 to address in LR.
Extended mnemonic for
bclr 12,cr_bit

btlrl Extended mnemonic for
bclrl 12,cr_bit (LR) ← CIA + 4.

bunlr
[cr_field]

Branch if unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3 (LR) ← CIA + 4.

Table 8-10. Extended Mnemonics for bclr, bclrl (continued) 
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cmp
Compare
cmp
Compare 

c0:3 ← 40
if (RA) < (RB) then c0 ← 1
if (RA) > (RB) then c1 ← 1
if (RA) = (RB) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The contents of register RA are compared with the contents of register RB using a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is 
placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

PowerPC Book-E architecture defines this instruction as cmp BF,L,RA,RB, where L selects operand size for 64-
bit implementations. For all 32-bit implementations, L = 0 is required (L = 1 is an invalid form); hence for the 
PPC440, use of the extended mnemonic cmpw BF,RA,RB is recommended.  

cmp BF, 0, RA, RB

31 BF RA RB 0

0 6 9 11 16 21 31

Table 8-11. Extended Mnemonics for cmp  

Mnemonic Operands Function Other Registers Altered

cmpw [BF,] RA, RB
Compare Word; use CR0 if BF is omitted.

Extended mnemonic for
cmp BF,0,RA,RB
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cmpi
Compare Immediate
cmpi
Compare Immediate

c0:3 ← 40
if (RA) < EXTS(IM) then c0 ← 1
if (RA) > EXTS(IM) then c1 ← 1
if (RA) = EXTS(IM) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The IM field is sign-extended to 32 bits. The contents of register RA are compared with the extended IM field, using 
a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is 
placed into the same CR field.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

PowerPC Book-E Architecture defines this instruction as cmpi BF,L,RA,IM, where L selects operand size for 64-
bit implementations. For all 32-bit implementations, L = 0 is required (L = 1 is an invalid form); hence for the 
PPC440, use of the extended mnemonic cmpwi BF,RA,IM is recommended.  

cmpi BF, 0, RA, IM

11 BF RA IM

0 6 9 11 16 31

Table 8-12. Extended Mnemonics for cmpi  

Mnemonic Operands Function Other Registers Altered

cmpwi [BF,] RA, IM

Compare Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpi BF,0,RA,IM
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cmpl
Compare Logical
cmpl
Compare Logical 

c0:3 ← 40
if (RA) (RB) then c0 ← 1
if (RA) (RB) then c1 ← 1
if (RA) (RB) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The contents of register RA are compared with the contents of register RB, using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is 
placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Notes

PowerPC Book-E Architecture defines this instruction as cmpl BF,L,RA,RB, where L selects operand size for 64-
bit implementations. For all 32-bit implementations, L = 0 is required (L = 1 is an invalid form); hence for PPC440, 
use of the extended mnemonic cmplw BF,RA,RB is recommended.  

cmpl BF, 0, RA, RB

31 BF RA RB 32

0 6 9 11 16 21 31

Table 8-13. Extended Mnemonics for cmpl  

Mnemonic Operands Function Other Registers Altered

cmplw [BF,] RA, RB

Compare Logical Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpl BF,0,RA,RB

<
u

>
u

=
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cmpli
Compare Logical Immediate
cmpli
Compare Logical Immediate

c0:3 ← 40
if (RA) (160 || IM) then c0 ← 1
if (RA) (160 || IM) then c1 ← 1
if (RA) (160 || IM) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The IM field is extended to 32 bits by concatenating 16 0-bits to its left. The contents of register RA are compared 
with IM using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of XER[SO] is 
placed into the same CR field.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

PowerPC Book-E Architecture defines this instruction as cmpli BF,L,RA,IM, where L selects operand size for 64-
bit implementations. For all 32-bit implementations, L = 0 is required (L = 1 is an invalid form); hence for the 
PPC440, use of the extended mnemonic cmplwi BF,RA,IM is recommended.  

cmpli BF, 0, RA, IM

10 BF RA IM

0 6 9 11 16 31

Table 8-14. Extended Mnemonics for cmpli  

Mnemonic Operands Function Other Registers Changed

cmplwi [BF,] RA, IM

Compare Logical Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpli BF,0,RA,IM

<
u

>
u

=
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cntlzw
Count Leading Zeros Word
cntlzw 
Count Leading Zeros Word

n ← 0
do while n < 32

if (RS)n = 1 then leave
n ← n + 1

(RA) ← n

The consecutive leading 0 bits in register RS are counted; the count is placed into register RA.

The count ranges from 0 through 32, inclusive.

Registers Altered
• RA

• CR[CR0] if Rc contains 1

Invalid Instruction Forms
• Reserved fields

cntlzw RA, RS Rc=0

cntlzw. RA, RS Rc=1

31 RS RA 26 Rc

0 6 11 16 21 31
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crand
Condition Register AND
crand
Condition Register AND

CRBT ← CRBA ∧ CRBB

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the result is placed into the 
CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields

crand BT, BA, BB

19 BT BA BB 257

0 6 11 16 21 31
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crandc
Condition Register AND with Complement
crandc
Condition Register AND with Complement

CRBT ← CRBA ∧ ¬CRBB

The CR bit specified by the BA field is ANDed with the ones complement of the CR bit specified by the BB field; the 
result is placed into the CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields

crandc BT, BA, BB

19 BT BA BB 129

0 6 11 16 21 31
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creqv
Condition Register Equivalent
creqv
Condition Register Equivalent

CRBT ← ¬(CRBA ⊕ CRBB)

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the ones complement of the 
result is placed into the CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields  

creqv BT, BA, BB

19 BT BA BB 289

0 6 11 16 21 31

Table 8-15. Extended Mnemonics for creqv  

Mnemonic Operands Function Other Registers Altered

crset bx
CR set.

Extended mnemonic for
creqv bx,bx,bx
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crnand
Condition Register NAND
crnand
Condition Register NAND

CRBT ← ¬(CRBA ∧ CRBB)

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the ones complement of the 
result is placed into the CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields

crnand BT, BA, BB

19 BT BA BB 225

0 6 11 16 21 31
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crnor
Condition Register NOR
crnor
Condition Register NOR

CRBT ← ¬(CRBA ∨ CRBB)

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the ones complement of the 
result is placed into the CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields  

crnor BT, BA, BB

19 BT BA BB 33

0 6 11 16 21 31

Table 8-16. Extended Mnemonics for crnor  

Mnemonic Operands Function Other Registers Altered

crnot bx, by
CR not.

Extended mnemonic for
crnor bx,by,by
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cror
Condition Register OR
cror
Condition Register OR

CRBT ← CRBA ∨ CRBB

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the result is placed into the 
CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields  

cror BT, BA, BB

19 BT BA BB 449

0 6 11 16 21 31

Table 8-17. Extended Mnemonics for cror  

Mnemonic Operands Function Other Registers Altered

crmove bx, by
CR move.

Extended mnemonic for
cror bx,by,by
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crorc
Condition Register OR with Complement
crorc
Condition Register OR with Complement

CRBT ← CRBA ∨ ¬CRBB

The condition register (CR) bit specified by the BA field is ORed with the ones complement of the CR bit specified 
by the BB field; the result is placed into the CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields

crorc BT, BA, BB

19 BT BA BB 417

0 6 11 16 21 31
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crxor
Condition Register XOR
crxor
Condition Register XOR

CRBT ← CRBA ⊕ CRBB

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the result is placed into the 
CR bit specified by the BT field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CRBT

Invalid Instruction Forms
• Reserved fields  

crxor BT, BA, BB

19 BT BA BB 193

0 6 11 16 21 31

Table 8-18. Extended Mnemonics for crxor  

Mnemonic Operands Function Other Registers Altered

crclr bx
Condition register clear.

Extended mnemonic for
crxor bx,bx,bx
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dcba
Data Cache Block Allocate
dcba
 Data Cache Block Allocate

dcba is treated as a no-op by the PPC440.

dcba RA, RB

31 RA RB 758

0 6 11 16 21 31
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dcbf
Data Cache Block Flush
dcbf
Data Cache Block Flush

EA ← (RA|0) + (RB)
DCBF(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block corresponding to the EA is in the data cache and marked as modified (stored into), the data block 
is copied back to main storage and then marked invalid in the data cache. If the data block is not marked as 
modified, it is simply marked invalid in the data cache. The operation is performed whether or not the memory page 
referenced by the EA is marked as cacheable.

If the data block at the EA is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “store” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

This instruction may cause a Cache Locking type of Data Storage exception. See Data Storage Interrupt on 
page 146 for more information. 

dcbf RA, RB

31 RA RB 86

0 6 11 16 21 31
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dcbi
Data Cache Block Invalidate
dcbi
Data Cache Block Invalidate

EA ← (RA|0) + (RB)
DCBI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache, the data block is marked invalid, regardless of whether or not the 
memory page referenced by the EA is marked as cacheable. If modified data existed in the data block prior to the 
operation of this instruction, that data is lost.

If the data block at the EA is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

Exceptions

This instruction is considered a “store” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “store” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

dcbi RA, RB

31 RA RB 470

0 6 11 16 21 31
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dcbst
Data Cache Block Store
dcbst
Data Cache Block Store

EA ← (RA|0) + (RB)
DCBST(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0, and is the contents of register RA otherwise. 

If the data block at the EA is in the data cache and marked as modified, the data block is copied back to main 
storage and marked as unmodified in the data cache.

If the data block at the EA is in the data cache, and is not marked as modified, or if the data block at the EA is not 
in the data cache, no operation is performed.

The operation specified by this instruction is performed whether or not the memory page referenced by the EA is 
marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “store” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

dcbst RA, RB

31 RA RB 54

0 6 11 16 21 31
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dcbt
Data Cache Block Touch
dcbt
Data Cache Block Touch

EA ← (RA|0) + (RB)
DCBT(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

If the data block at the EA is not in the data cache and the memory page referenced by the EA is marked as 
cacheable, the block is read from main storage into the data cache.

If the data block at the EA is in the data cache, or if the memory page referenced by the EA is marked as caching 
inhibited, no operation is performed.

This instruction is not allowed to cause Data Storage interrupts nor Data TLB Error interrupts. If execution of the 
instruction causes either of these types of exception, then no operation is performed, and no interrupt occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

The dcbt instruction allows a program to begin a cache block fetch from main storage before the program needs 
the data. The program can later load data from the cache into registers without incurring the latency of a cache 
miss.

Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “load” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

dcbt RA, RB

31 RA RB 278

0 6 11 16 21 31
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dcbtst
Data Cache Block Touch for Store
dcbtst
 Data Cache Block Touch for Store

EA ← (RA|0) + (RB)
DCBTST(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is not in the data cache and the memory page referenced by the EA address is marked 
as cacheable, the data block is loaded into the data cache.

If the data block at the EA is in the data cache, or if the memory page referenced by the EA is marked as caching 
inhibited, no operation is performed.

This instruction is not allowed to cause Data Storage interrupts nor Data TLB Error interrupts. If execution of the 
instruction causes either of these types of exception, then no operation is performed, and no interrupt occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

The dcbtst instruction allows a program to begin a cache block fetch from main storage before the program needs 
the data. The program can later store data from GPRs into the cache block, without incurring the latency of a cache 
miss.

Architecturally, dcbtst is intended to bring a cache block into the data cache in a manner which will permit future 
instructions to store to that block efficiently. For example, in an implementation which supports the “MESI” cache 
coherency protocol, the block would be brought into the cache in “Exclusive” mode, allowing the block to be stored 
to without having to broadcast any coherency operations on the system bus. However, since the PPC440 does not 
support hardware-enforcement of multiprocessor coherency, there is no distinction between a block being brought 
in for a read or a write, and hence the implementation of the dcbtst instruction is identical to the implementation of 
the dcbt instruction.

Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “load” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

dcbtst RA, RB

31 RA RB 246

0 6 11 16 21 31
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dcbz
Data Cache Block Set to Zero
dcbz
 Data Cache Block Set to Zero

EA ← (RA|0) + (RB)
DCBZ(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and the memory page referenced by the EA is marked as cacheable 
and non-write-through, the data in the cache block is set to 0 and marked as dirty (modified).

If the data block at the EA is not in the data cache and the memory page referenced by the EA is marked as 
cacheable and non-write-through, a cache block is established and set to 0 and marked as dirty. Note that nothing 
is read from main storage, as described in the programming note.

If the memory page referenced by the EA is marked as either write-through or as caching inhibited, an Alignment 
exception occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Because dcbz can establish an address in the data cache without copying the contents of that address from main 
storage, the address established may be invalid with respect to the storage subsystem. A subsequent operation 
may cause the address to be copied back to main storage, for example, to make room for a new cache block; a 
Data Machine Check exception could occur under these circumstances.

If dcbz is attempted to an EA in a memory page which is marked as caching inhibited or as write-through, the 
software alignment exception handler should emulate the instruction by storing zeros to the block referenced by 
the EA. The store instructions in the emulation software will cause main storage to be updated (and possibly the 
cache, if the EA is in a page marked as write-through).

Exceptions

An alignment exception occurs if the EA is marked as caching inhibited or as write-through.

This instruction is considered a “store” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “store” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

dcbz RA, RB

31 RA RB 1014

0 6 11 16 21 31
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dccci
Data Cache Congruence Class Invalidate
dccci
 Data Cache Congruence Class Invalidate

DCCCI

This instruction flash invalidates the entire data cache array. The RA and RB operands are not used; previous 
implementations used these operands to calculate an effective address (EA) which specified the particular block or 
blocks to be invalidated. The instruction form (including the specification of RA and RB operands) is maintained for 
software and tool compatibility.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire data cache array before 
caching is enabled.

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

dccci RA, RB

31 RA RB 454

0 6 11 16 21 31
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dcread
Data Cache Read
dcread
Data Cache Read

EA ← (RA|0) + (RB)
INDEX ← EA17:26
WORD ← EA27:29
(RT) ← (data cache data)[INDEX,WORD]
DCDBTRH ← (data cache tag high)[INDEX]
DCDBTRL ← (data cache tag low)[INDEX]

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

EA17:26 selects a line of tag and data from the data cache. EA27:29 selects a word from the 8-word data portion of 
the selected cache line, and this word is read into register RT. EA30:31 must be 0b00; if not, the value placed in 
register RT is undefined.

The tag portion of the selected cache line is read into the DCDBTRH and DCDBTRL registers, as follows:  

This instruction can be used by a debug tool to determine the contents of the data cache, without knowing the 
specific addresses of the lines which are currently contained within the cache.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

dcread RT, RA, RB

31 RT RA RB 486

0 6 11 16 21 31

Register[bit(s)] Tag 
Field Name

DCDBTRH[0:23] TRA Tag Real Address Bits 0:23 of the lower 32 bits of the 36-bit real 
address associated with this cache line

DCDBTRH[24] V Valid The valid indicator for the cache line (1 indicates 
valid)

DCDBTRH[25:27] reserved Reserved fields are read as 0s

DCDBTRH[28:31] TERA Tag Extended Real Address Upper 4 bits of the 36-bit real address associated 
with this cache line

DCDBTRL[0:23] reserved Reserved fields are read as 0s

DCDBTRL[24:27] D Dirty Indicators The “dirty” (modified) indicators for each of the four 
doublewords in the cache line

DCDBTRL[28] U0 U0 Storage Attribute The U0 storage attribute for the memory page asso-
ciated with this cache line

DCDBTRL[29] U1 U1 Storage Attribute The U0 storage attribute for the memory page asso-
ciated with this cache line

DCDBTRL[30] U2 U2 Storage Attribute The U0 storage attribute for the memory page asso-
ciated with this cache line

DCDBTRL[31] U3 U3 Storage Attribute The U0 storage attribute for the memory page asso-
ciated with this cache line
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dcread
Data Cache Read
Registers Altered
• RT

• DCDBTRH

• DCDBTRL

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

The PPC440 does not support the use of the dcread instruction when the data cache controller is still in the 
process of performing cache operations associated with previously executed instructions (such as line fills and line 
flushes). Also, the PPC440 does not automatically synchronize context between a dcread instruction and the 
subsequent mfspr instructions that read the results of the dcread instruction into GPRs. In order to guarantee that 
the dcread instruction operates correctly, and that the mfspr instructions obtain the results of the dcread 
instruction, a sequence such as the following must be used:

msync # ensure that all previous cache operations have completed
dcread regT,regA,regB # read cache information; the contents of GPR A and GPR B are 

# added and the result used to specify a cache line index to be read;
# the data word is moved into GPR T and the tag information is read
# into DCDBTRH and DCDBTRL

isync # ensure dcread completes before attempting to read results
mfdcdbtrh regD # move high portion of tag into GPR D
mfdcdbtrl regE # move low portion of tag into GPR E

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.
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divw
Divide Word
divw
 Divide Word

(RT) ← (RA) ÷ (RB)

The contents of register RA are divided by the contents of register RB. The quotient is placed into register RT.

Both the dividend and the divisor are interpreted as signed integers. The quotient is the unique signed integer that 
satisfies:

dividend = (quotient × divisor) + remainder

where the remainder has the same sign as the dividend and its magnitude is less than that of the divisor.

If an attempt is made to perform (0x8000 0000 ÷ –1) or (n ÷ 0), the contents of register RT are undefined; if the Rc 
field also contains 1, the contents of CR[CR0]0:2 are undefined. Either invalid division operation sets XER[OV, SO] 
(and CR[CR0]3 if Rc contains 1) to 1 if the OE field contains 1.

Registers Altered
• RT

• CR[CR0] if Rc contains 1

• XER[OV, SO] if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions:
divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient × divisor
subf RT,RT,RA # RT = remainder

The sequence does not calculate correct results for the invalid divide operations.

divw RT, RA, RB OE=0, Rc=0

divw. RT, RA, RB OE=0, Rc=1

divwo RT, RA, RB OE=1, Rc=0

divwo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 491 Rc

0 6 11 16 21 22 31
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divwu
Divide Word Unsigned
divwu
Divide Word Unsigned

(RT) ← (RA) ÷ (RB)

The contents of register RA are divided by the contents of register RB. The quotient is placed into register RT.

The dividend and the divisor are interpreted as unsigned integers. The quotient is the unique unsigned integer that 
satisfies:

dividend = (quotient × divisor) + remainder

If an attempt is made to perform (n ÷ 0), the contents of register RT are undefined; if the Rc also contains 1, the 
contents of CR[CR0]0:2 are also undefined. The invalid division operation also sets XER[OV, SO] (and CR[CR0]3 if 
Rc contains 1) to 1 if the OE field contains 1.

Registers Altered
• RT

• CR[CR0] if Rc contains 1

• XER[OV, SO] if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions
divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient × divisor
subf RT,RT,RA # RT = remainder

This sequence does not calculate the correct result if the divisor is 0.

divwu RT, RA, RB OE=0, Rc=0

divwu. RT, RA, RB OE=0, Rc=1

divwuo RT, RA, RB OE=1, Rc=0

divwuo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 459 Rc

0 6 11 16 21 22 31
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dlmzb
Determine Leftmost Zero Byte
dlmzb 

determine left most zero byte 

d ← (RS) || (RB)
i, x, y ← 0
do while (x < 8) ∧ (y = 0)

x ← x + 1
if di:i + 7 = 0 then

y ← 1
else

i ← i + 8
(RA) ← x
XER[TBC] ← x
if Rc = 1 then

CR[CR0]3 ←XER[SO]
if y = 1 then

if x < 5 then
CR[CR0]0:2 ← 0b010

else
CR[CR0]0:2 ← 0b100

else
CR[CR0]0:2 ← 0b001

The contents of registers RS and RB are concatenated to form an 8-byte operand. The operand is searched for the 
leftmost byte in which each bit is 0 (a 0-byte). 

Bytes in the operand are numbered from left to right starting with 1. If a 0-byte is found, its byte number is placed 
into XER[TBC] and register RA. Otherwise, the number 8 is placed into XER[TBC] and register RA.

If the Rc field contains 1, XER[SO] is copied to CR[CR0]3 and CR[CR0]0:2 are updated as follows:

• If no 0-byte is found, CR[CR0]0:2 is set to 0b001.

• If the leftmost 0-byte is in the first 4 bytes (in the RS register), CR[CR0]0:2 is set to 0b010.

• If the leftmost 0-byte is in the last 4 bytes (in the RB register), CR[CR0]0:2 is set to 0b100.

Registers Altered
• XER[TBC]

• RA

• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

dlmzb RA, RS, RB Rc=0

dlmzb. RA, RS, RB Rc=1

31 RS RA RB 78 Rc

0 6 11 16 21 31
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eqv
Equivalent
eqv
Equivalent

(RA) ← ¬((RS) ⊕ (RB))

The contents of register RS are XORed with the contents of register RB; the ones complement of the result is 
placed into register RA.

Registers Altered
• RA

• CR[CR0] if Rc contains 1

eqv RA, RS, RB Rc=0

eqv. RA, RS, RB Rc=1

31 RS RA RB 284 Rc
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extsb
Extend Sign Byte
extsb
Extend Sign Byte

(RA) ← EXTS(RS)24:31

The least significant byte of register RS is sign-extended to 32 bits by replicating bit 24 of the register into bits 0 
through 23 of the result. The result is placed into register RA.

Registers Altered
• RA

• CR[CR0] if Rc contains 1

Invalid Instruction Forms
• Reserved fields

extsb RA, RS Rc=0

extsb. RA, RS Rc=1

31 RS RA 954 Rc
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AMCC Proprietary       267



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
extsh
Extend Sign Halfword
extsh
Extend Sign Halfword

(RA) ← EXTS(RS)16:31

The least significant halfword of register RS is sign-extended to 32 bits by replicating bit 16 of the register into bits 
0 through 15 of the result. The result is placed into register RA.

Registers Altered
• RA

• CR[CR0] if Rc contains 1

Invalid Instruction Forms
• Reserved fields

extsh RA, RS Rc=0

extsh. RA, RS Rc=1

31 RS RA 922 Rc
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icbi
Instruction Cache Block Invalidate
icbi
Instruction Cache Block Invalidate

EA ← (RA|0) + (RB)
ICBI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the instruction block at the EA is in the instruction cache, the cache block is marked invalid.

If the instruction block at the EA is not in the instruction cache, no additional operation is performed.

The operation specified by this instruction is performed whether or not the EA is marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Instruction cache management instructions use MSR[DS], not MSR[IS], as part of the virtual address. Also, the 
instruction cache on the PPC440 is “virtually-tagged”, which means that the EA is converted to a virtual address 
(VA), and the VA is compared against the cache tag field. See Instruction Cache Synonyms on page 80 for more 
information on the ramifications of virtual tagging on software.

Exceptions

Instruction Storage interrupts and Instruction TLB Error interrupts are associated with exceptions which occur 
during instruction fetching, not during instruction execution. Execution of instruction cache management 
instructions may cause Data Storage or Data TLB Error exceptions.

This instruction is considered a “load” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

This instruction is considered a “load” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.

This instruction may cause a Cache Locking type of Data Storage exception. See Data Storage Interrupt on 
page 146 for more information. 

icbi RA, RB

31 RA RB 982
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icbt
Instruction Cache Block Touch
icbt
Instruction Cache Block Touch

EA← (RA|0) + (RB)
ICBT(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the instruction block at the EA is not in the instruction cache and the memory page referenced by the EA is 
marked as cacheable, the instruction block is fetched into the instruction cache.

If the instruction block at the EA is in the instruction cache, or if the memory page referenced by the EA is marked 
as caching inhibited, no operation is performed.

If the memory page referenced by the EA is marked as “no-execute” for the current operating mode (user mode or 
supervisor mode, as specified by MSR[PR]), no operation is performed.

This instruction is not allowed to cause Data Storage interrupts nor Data TLB Error interrupts. If execution of the 
instruction causes either of these types of exception, then no operation is performed, and no interrupt occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

This instruction allows a program to begin a cache block fetch from main storage before the program needs the 
instruction. The program can later branch to the instruction address and fetch the instruction from the cache 
without incurring the latency of a cache miss.

Instruction cache management instructions use MSR[DS], not MSR[IS], as part of the virtual address. Also, the 
instruction cache on the PPC440 is “virtually-tagged”, which means that the EA is converted to a virtual address 
(VA), and the VA is compared against the cache tag field. See Instruction Cache Synonyms on page 80 for more 
information on the ramifications of virtual tagging on software.

Exceptions

Instruction Storage interrupts and Instruction TLB Error interrupts are associated with exceptions which occur 
during instruction fetching, not during instruction execution. Execution of instruction cache management 
instructions may cause Data Storage or Data TLB Error exceptions, but are not allowed to cause the associated 
interrupt. Instead, if such an exception occurs, then no operation is performed.

This instruction is considered a “load” with respect to Data Storage exceptions. See Data Storage Interrupt on 
page 146 for more information.

icbt RA, RB

31 RA RB 22
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icbt
Instruction Cache Block Touch
This instruction is considered a “load” with respect to data address compare (DAC) Debug exceptions. See Debug 
Interrupt on page 159 for more information.
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iccci
Instruction Cache Congruence Class Invalidate
iccci
Instruction Cache Congruence Class Invalidate

ICCCI

This instruction flash invalidates the entire instruction cache array. The RA and RB operands are not used; 
previous implementations used these operands to calculate an effective address (EA) which specified the 
particular block or blocks to be invalidated. The instruction form (including the specification of RA and RB 
operands) is maintained for software and tool compatibility.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire instruction cache array 
before caching is enabled.

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

iccci RA, RB

31 RA RB 966
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icread
Instruction Cache Read
icread
Instruction Cache Read

EA ← (RA|0) + (RB)
INDEX ← EA17:26
WORD ← EA27:29
ICDBDR ← (instruction cache data)[INDEX,WORD]
ICDBTRH ← (instruction cache tag high)[INDEX]
ICDBTRL ← (instruction cache tag low)[INDEX]

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

EA17:26 selects a line of tag and data (instructions) from the instruction cache. EA27:29 selects a 32-bit instruction 
from the 8-instruction data portion of the selected cache line, and this instruction is read into the ICDBDR. EA30:31 
are ignored, as are EA0:16.

The tag portion of the selected cache line is read into the ICDBTRH and ICDBTRL registers, as follows:  

The instruction cache on PPC440 is “virtually-tagged”, which means that the tag field contains the virtual address, 
which consists of the TEA, TS, and TID fields. See Memory Management on page 103 for more information on the 
function of the TS, TD, and TID fields.

This instruction can be used by a debug tool to determine the contents of the instruction cache, without knowing 
the specific addresses of the lines which are currently contained within the cache.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• ICDBDR

• ICDBTRH

icread RA, RB

31 RA RB 998

0 6 11 16 21 31

Register[bit(s)] Tag 
Field Name

ICDBTRH[0:23] TEA Tag Effective Address Bits 0:23 of the 32-bit effective address associated 
with this cache line

ICDBTRH[24] V Valid The valid indicator for the cache line (1 indicates 
valid)

ICDBTRH[25:31] reserved Reserved fields are read as 0s

ICDBTRL[0:21] reserved Reserved fields are read as 0s

ICDBTRL[22] TS Translation Space The address space portion of the virtual address 
associated with this cache line.

ICDBTRL[23] TD Translation ID (TID) Disable TID Disable field for the memory page associated 
with this cache line

ICDBTRL[24:31] TID Translation ID TID field portion of the virtual address associated 
with this cache line
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icread
Instruction Cache Read
• ICDBTRL

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

The PPC440 does not automatically synchronize context between an icread instruction and the subsequent mfspr 
instructions which read the results of the icread instruction into GPRs. In order to guarantee that the mfspr 
instructions obtain the results of the icread instruction, a sequence such as the following must be used:

icread regA,regB # read cache information (the contents of GPR A and GPR B are 
# added and the result used to specify a cache line index to be read)

isync # ensure icread completes before attempting to read results
mficdbdr regC # move instruction information into GPR C
mficdbtrh regD # move high portion of tag into GPR D
mficdbtrl regE # move low portion of tag into GPR E

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.
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isel
Integer Select
isel
Add Immediate

if CR[CRb] = 1 then
(RT) ← (RA|0)

else
(RT) ← (RB)

If CR[CRb] = 0, register RT is written with the contents of register RB. 
If CR[CRb] = 1 and RA ≠ 0, register RT is written with the contents of register RA.
If CR[CRb] = 1 and RA = 0, register RT is written with 0.

Registers Altered
• RT

isel RT, RA, RB, CRb

31 RT RA RB CRb 15
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isync
Instruction Synchronize
isync
Instruction Synchronize

The isync instruction is a context synchronizing instruction.

isync provides an ordering function for the effects of all instructions executed by the processor. Executing isync 
insures that all instructions preceding the isync instruction execute before isync completes, except that storage 
accesses caused by those instructions need not have completed. Furthermore, all instructions preceding the isync 
are guaranteed to be unaffected by any context changes initiated by instructions after the isync. 

No subsequent instructions are initiated by the processor until isync completes. Finally, execution of isync causes 
the processor to discard any prefetched instructions (prefetched from the cache, not instructions that are in the 
cache or on their way into the cache), with the effect that subsequent instructions are fetched and executed in the 
context established by the instructions preceding isync.

isync causes any caching inhibited instruction fetches from memory to be aborted and any data associated with 
them to be discarded. Cacheable instruction fetches from memory are not aborted however, as these should be 
handled by the icbi instructions which must precede the isync if software wishes to invalidate any cached 
instructions.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

See the discussion of context synchronizing instructions in Synchronization on page 67.

The following code example illustrates the necessary steps for self-modifying code. This example assumes that 
addr1 is both data and instruction cacheable.

stw regN, addr1 # data in regN is to become an instruction at addr1
dcbst addr1 # forces data from the data cache to memory
msync # wait until the data actually reaches the memory
icbi addr1 # invalidate the instruction if it is in the cache (or in the # process 

of being fetched into the cache)
msync # wait until the icbi completes
isync # discard and refetch any instructions (including

# possibly the instruction at addr1) which may have
# already been fetched from the cache and be in the
# pipeline after the isync

isync

19 150

0 6 21 31
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lbz
Load Byte and Zero
lbz
Load Byte and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

Registers Altered
• RT

lbz RT, D(RA)

34 RT RA D
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lbzu
Load Byte and Zero with Update
lbzu
Load Byte and Zero with Update

EA ←  (RA|0) + EXTS(D)
(RA) ← EA
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise. The EA is placed into register RA.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• RA = RT

• RA = 0

lbzu RT, D(RA)

35 RT RA D
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lbzux
Load Byte and Zero with Update Indexed
lbzux
Load Byte and Zero with Update Indexed

EA ← (RA|0) + (RB)
(RA) ← EA
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA is placed into 
register RA.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• Reserved fields

• RA = RT

• RA = 0

lbzux RT, RA, RB

31 RT RA RB 119
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lbzx
Load Byte and Zero Indexed
lbzx
Load Byte and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

lbzx RT,RA, RB

31 RT RA RB 87
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lha
Load Halfword Algebraic
lha
Load Halfword Algebraic

EA ← (RA|0) + EXTS(D)
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

Registers Altered
• RT

lha RT, D(RA)

42 RT RA D

0 6 11 16 31
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lhau
Load Halfword Algebraic with Update
lhau
Load Halfword Algebraic with Update

EA ← (RA|0) + EXTS(D)
(RA) ← EA
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0 and is the contents of 
register RA otherwise. The EA is placed into register RA.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• RA = RT

• RA = 0

lhau RT, D(RA)

43 RT RA D
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lhaux
Load Halfword Algebraic with Update Indexed
lhaux
Load Halfword Algebraic with Update Indexed

EA ← (RA|0) + (RB)
(RA) ← EA
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA is placed into 
register RA.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

• RT

Invalid Instruction Forms
• Reserved fields

• RA = RT

• RA = 0

lhaux RT, RA, RB

31 RT RA RB 375
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lhax
Load Halfword Algebraic Indexed
lhax
Load Halfword Algebraic Indexed

EA ← (RA|0) + (RB)
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

lhax RT, RA, RB

31 RT RA RB 343
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lhbrx
Load Halfword Byte-Reverse Indexed
lhbrx
Load Halfword Byte-Reverse Indexed

EA ← (RA|0) + (RB)
(RT) ← 160 || BYTE_REVERSE(MS(EA,2))

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is byte-reversed from the default byte ordering for the memory page referenced by the EA. 
The resulting halfword is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register 
RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

Byte ordering is generally controlled by the Endian (E) storage attribute (see Memory Management on page 103). 
The load byte reverse instructions provide a mechanism for data to be loaded from a memory page using the 
opposite byte ordering from that specified by the Endian storage attribute.

lhbrx RT, RA, RB

31 RT RA RB 790
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lhz
Load Halfword and Zero
lhz
Load Halfword and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register 
RT.

Registers Altered
• RT

lhz RT, D(RA)

40 RT RA D
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lhzu
Load Halfword and Zero with Update
lhzu
Load Halfword and Zero with Update

EA ← (RA|0) + EXTS(D)
(RA) ← EA
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise. The EA is placed into register RA.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register 
RT.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• RA = RT
• RA = 0

lhzu RT, D(RA)

41 RT RA D
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lhzux
Load Halfword and Zero with Update Indexed
lhzux
Load Halfword and Zero with Update Indexed

EA ← (RA|0) + (RB)
(RA) ← EA
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA is placed into 
register RA.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register 
RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• Reserved fields
• RA = RT
• RA = 0

lhzux RT, RA, RB

31 RT RA RB 311

0 6 11 16 21 31
288       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor

lhzx
Load Halfword and Zero Indexed
lhzx
Load Halfword and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into register 
RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

lhzx RT, RA, RB

31 RT RA RB 279

0 6 11 16 21 31
AMCC Proprietary       289



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
lmw
Load Multiple Word
lmw
Load Multiple Word

EA ← (RA|0) + EXTS(D)
r ← RT
do while r ≤ 31

GPR(r)) ← MS(EA,4)
r ← r + 1
EA ← EA + 4

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field in the instruction to 32 bits. The base address is 0 if the RA field is 0 and is the 
contents of register RA otherwise.

A series of consecutive words starting at the EA are loaded into a set of consecutive GPRs, starting with register 
RT and continuing to and including GPR(31).

Registers Altered
• RT through GPR(31).

Invalid Instruction Forms
• RA is in the range of registers to be loaded, including the case RA = RT = 0.

Programming Note

This instruction can be restarted, meaning that it could be interrupted after having already updated some of the 
target registers, and then re-executed from the beginning (after returning from the interrupt), in which case the 
registers which had already been loaded prior to the interrupt will be loaded a second time. Note that if RA is in the 
range of registers to be loaded (an invalid form; see above) and is also one of the registers which is loaded prior to 
the interrupt, then when the instruction is restarted the re-calculated EA will be incorrect, since RA will no longer 
contain the original base address. Hence the definition of this as an invalid form which software must avoid.

lmw RT, D(RA)

46 RT RA D
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lswi
Load String Word Immediate
lswi
Load String Word Immediate

EA ← (RA|0)
if NB = 0 then

CNT ← 32
else

CNT ← NB
n ← CNT
RFINAL ← ((RT + CEIL(CNT/4) – 1) % 32)
r ← RT – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1
if r = 32 then

r ← 0
GPR(r)) ← 0

GPR(r)i:i+7) ← MS(EA,1)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is determined by the RA field. If the RA field contains 0, the EA is 0. Otherwise, the EA is 
the contents of register RA.

The NB field specifies the byte count CNT. If the NB field contains 0, the byte count is CNT = 32. Otherwise, the 
byte count is CNT = NB.

A series of CNT consecutive bytes in main storage, starting at the EA, are loaded into CEIL(CNT/4) consecutive 
GPRs, four bytes per GPR, until the byte count is exhausted. Bytes are loaded into GPRs; the byte at the lowest 
address is loaded into the most significant byte. Bits to the right of the last byte loaded into the last GPR are set to 
0.

The set of loaded GPRs starts at register RT, continues consecutively through GPR(31), and wraps to register 0, 
loading until the byte count is exhausted, which occurs in register RFINAL.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT and subsequent GPRs as described above.

Invalid Instruction Forms
• Reserved fields
• RA is in the range of registers to be loaded
• RA = RT = 0

lswi RT, RA, NB

31 RT RA NB 597
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lswi
Load String Word Immediate
Programming Note

This instruction can be restarted, meaning that it could be interrupted after having already updated some of the 
target registers, and then re-executed from the beginning (after returning from the interrupt), in which case the 
registers which had already been loaded prior to the interrupt will be loaded a second time. Note that if RA is in the 
range of registers to be loaded (an invalid form; see above) and is also one of the registers which is loaded prior to 
the interrupt, then when the instruction is restarted the re-calculated EA will be incorrect, since RA will no longer 
contain the original base address. Hence the definition of this as an invalid form which software must avoid.
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lswx
Load String Word Indexed
lswx
Load String Word Indexed

EA ← (RA|0) + (RB)
CNT ← XER[TBC]
n ← CNT
RFINAL ← ((RT + CEIL(CNT/4) – 1) % 32)
r ← RT – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1
if r = 32 then

r ← 0
GPR(r)) ← 0

GPR(r)i:i+7) ← MS(EA,1)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

A byte count CNT is obtained from XER[TBC].

A series of CNT consecutive bytes in main storage, starting at the EA, are loaded into CEIL(CNT/4) consecutive 
GPRs, four bytes per GPR, until the byte count is exhausted. Bytes are loaded into GPRs; the byte having the 
lowest address is loaded into the most significant byte. Bits to the right of the last byte loaded in the last GPR used 
are set to 0.

The set of consecutive GPRs loaded starts at register RT, continues through GPR(31), and wraps to register 0, 
loading until the byte count is exhausted, which occurs in register RFINAL.

If XER[TBC] is 0, the byte count is 0 and the contents of register RT are undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT and subsequent GPRs as described above.

Invalid Instruction Forms
• Reserved fields
• RA or RB is in the range of registers to be loaded.
• RA = RT = 0

lswx RT, RA, RB

31 RT RA RB 533
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lswx
Load String Word Indexed
Programming Note

This instruction can be restarted, meaning that it could be interrupted after having already updated some of the 
target registers, and then re-executed from the beginning (after returning from the interrupt), in which case the 
registers which had already been loaded prior to the interrupt will be loaded a second time. Note that if RA or RB is 
in the range of registers to be loaded (an invalid form; see above) and is also one of the registers which is loaded 
prior to the interrupt, then when the instruction is restarted the re-calculated EA will be incorrect, since the affected 
register will no longer contain the original base address or index. Hence the definition of these as invalid forms 
which software must avoid.

If XER[TBC] = 0, the contents of register RT are undefined and lswx is treated as a no-op. Furthermore, if the EA 
is such that a Data Storage, Data TLB Error, or Data Address Compare Debug exception occurs, lswx is treated 
as a no-op and no interrupt occurs as a result of the exception.
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lwarx
Load Word and Reserve Indexed
lwarx
Load Word and Reserve Indexed

EA ← (RA|0) + (RB)
RESERVE ← 1
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. 

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Execution of the lwarx instruction sets the reservation bit.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

The lwarx and stwcx. instructions are typically paired in a loop, as shown in the following example, to create the 
effect of an atomic operation to a memory area used as a semaphore between multiple processes. Only lwarx can 
set the reservation bit to 1. stwcx. sets the reservation bit to 0 upon its completion, whether or not stwcx. actually 
stored (RS) to memory. CR[CR0]2 must be examined to determine whether (RS) was sent to memory. 
loop: lwarx # read the semaphore from memory; set reservation

“alter” # change the semaphore bits in the register as required
stwcx. # attempt to store the semaphore; reset reservation
bne loop # some other process intervened and cleared the reservation prior to the above

# stwcx.; try again

The PowerPC Book-E architecture specifies that the EA for the lwarx instruction must be word-aligned (that is, a 
multiple of 4 bytes); otherwise, the result is undefined. Although the PPC440 will execute lwarx regardless of the 
EA alignment, in order for the operation of the pairing of lwarx and stwcx. to produce the desired result, software 
must ensure that the EA for both instructions is word-aligned. This requirement is due to the manner in which 
misaligned storage accesses may be broken up into separate, aligned accesses by the PPC440.

lwarx RT, RA, RB

31 RT RA RB 20
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Load Word Byte-Reverse Indexed
lwbrx
Load Word Byte-Reverse Indexed

EA ← (RA|0) + (RB)
(RT) ← BYTE_REVERSE(MS(EA,4))

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is byte-reversed from the default byte ordering for the memory page referenced by the EA. The 
result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

Byte ordering is generally controlled by the Endian (E) storage attribute (see Memory Management on page 103). 
The load byte reverse instructions provide a mechanism for data to be loaded from a memory page using the 
opposite byte ordering from that specified by the Endian storage attribute.

lwbrx RT, RA, RB

31 RT RA RB 534

0 6 11 16 21 31
296       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor

lwz
Load Word and Zero
lwz
Load Word and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise.

The word at the EA is placed into register RT.

Registers Altered
• RT

lwz RT, D(RA)

32 RT RA D
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lwzu
Load Word and Zero with Update
lwzu
Load Word and Zero with Update

EA ← (RA|0) + EXTS(D)
(RA) ← EA
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of register 
RA otherwise. The EA is placed into register RA.

The word at the EA is placed into register RT.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• RA = RT
• RA = 0

lwzu RT, D(RA)

33 RT RA D
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lwzux
Load Word and Zero with Update Indexed
lwzux
Load Word and Zero with Update Indexed

EA ← (RA|0) + (RB)
(RA) ← EA
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA is placed into 
register RA.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• Reserved fields
• RA = RT
• RA = 0

lwzux RT, RA, RB

31 RT RA RB 55
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lwzx
Load Word and Zero Indexed
lwzx
Load Word and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

lwzx RT, RA, RB

31 RT RA RB 23
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macchw
Multiply Accumulate Cross Halfword to Word Modulo Signed
macchw
Multiply Accumulate Cross Halfword to Word Modulo Signed

prod0:31 ← (RA)16:31 × (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with 
the contents of RT and RT is updated with the low-order 32 bits of the signed sum.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

macchw RT, RA, RB OE=0, Rc=0

macchw. RT, RA, RB OE=0, Rc=1

macchwo RT, RA, RB OE=1, Rc=0

macchwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 172 Rc
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macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed
macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed

prod0:31 ← (RA)16:31 × (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with 
the contents of RT.

If the signed sum can be represented in 32 bits, then RT is updated with the low-order 32 bits of the signed sum.

If the signed sum cannot be represented in 32 bits, then RT is updated with a value which is “saturated” to the 
nearest representable value. That is, if the signed sum is less than –231, then RT is updated with –231. Likewise, if 
the signed sum is greater than 231 – 1, then RT is updated with 231 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

macchws RT, RA, RB OE=0, Rc=0

macchws. RT, RA, RB OE=0, Rc=1

macchwso RT, RA, RB OE=1, Rc=0

macchwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 236 Rc
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macchwsu
Multiply Accumulate Cross Halfword to Word Saturate Unsigned
macchwsu
Multiply Accumulate Cross Halfword to Word Saturate Unsigned

prod0:31 ← (RA)16:31 × (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The low-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed with 
the contents of RT.

If the unsigned sum can be represented in 32 bits, then RT is updated with the low-order 32 bits of the unsigned 
sum.

If the unsigned sum cannot be represented in 32 bits, then RT is updated with a value which is “saturated” to the 
maximum representable value of 232 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

macchwsu RT, RA, RB OE=0, Rc=0

macchwsu. RT, RA, RB OE=0, Rc=1

macchwsuo RT, RA, RB OE=1, Rc=0

macchwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 204 Rc
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macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned
macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned

prod0:31 ← (RA)16:31 × (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed with 
the contents of RT and RT is updated with the low-order 32 bits of the unsigned sum.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

macchwu RT, RA, RB OE=0, Rc=0

macchwu. RT, RA, RB OE=0, Rc=1

macchwuo RT, RA, RB OE=1, Rc=0

macchwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 140 Rc
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machhw
Multiply Accumulate High Halfword to Word Modulo Signed
machhw
Multiply Accumulate High Halfword to Word Modulo Signed

prod0:31 ← (RA)0:15 × (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with 
the contents of RT and RT is updated with the low-order 32 bits of the signed sum.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

machhw RT, RA, RB OE=0, Rc=0

machhw. RT, RA, RB OE=0, Rc=1

machhwo RT, RA, RB OE=1, Rc=0

machhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 44 Rc
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machhws
Multiply Accumulate High Halfword to Word Saturate Signed
machhws
Multiply Accumulate High Halfword to Word Saturate Signed

prod0:31 ← (RA)0:15 × (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed with 
the contents of RT.

If the signed sum can be represented in 32 bits, then RT is updated with the low-order 32 bits of the signed sum.

If the signed sum cannot be represented in 32 bits, then RT is updated with a value which is “saturated” to the 
nearest representable value. That is, if the signed sum is less than –231, then RT is updated with –231. Likewise, if 
the signed sum is greater than 231 – 1, then RT is updated with 231 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

machhws RT, RA, RB OE=0, Rc=0

machhws. RT, RA, RB OE=0, Rc=1

machhwso RT, RA, RB OE=1, Rc=0

machhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 108 Rc
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machhwsu
Multiply Accumulate High Halfword to Word Saturate Unsigned
machhwsu
Multiply Accumulate High Halfword to Word Saturate Unsigned

prod0:31 ← (RA)0:15 × (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The high-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed 
with the contents of RT.

If the unsigned sum can be represented in 32 bits, then RT is updated with the low-order 32 bits of the unsigned 
sum.

If the unsigned sum cannot be represented in 32 bits, then RT is updated with a value which is “saturated” to the 
maximum representable value of 232 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

machhwsu RT, RA, RB OE=0, Rc=0

machhwsu. RT, RA, RB OE=0, Rc=1

machhwsuo RT, RA, RB OE=1, Rc=0

machhwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 76 Rc
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machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned
machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned

prod0:31 ← (RA)0:15 × (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is summed 
with the contents of RT and RT is updated with the low-order 32 bits of the unsigned sum.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

machhwu RT, RA, RB OE=0, Rc=0

machhwu. RT, RA, RB OE=0, Rc=1

machhwuo RT, RA, RB OE=1, Rc=0

machhwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 12 Rc
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maclhw
Multiply Accumulate Low Halfword to Word Modulo Signed
maclhw
Multiply Accumulate Low Halfword to Word Modulo Signed

prod0:31 ← (RA)16:31 × (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is summed with the 
contents of RT and RT is updated with the low-order 32 bits of the signed sum.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

maclhw RT, RA, RB OE=0, Rc=0

maclhw. RT, RA, RB OE=0, Rc=1

maclhwo RT, RA, RB OE=1, Rc=0

maclhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 428 Rc
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maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed
maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed

prod0:31 ← (RA)16:31 × (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is summed with the 
contents of RT.

If the signed sum can be represented in 32 bits, then RT is updated with the low-order 32 bits of the signed sum.

If the signed sum cannot be represented in 32 bits, then RT is updated with a value which is “saturated” to the 
nearest representable value. That is, if the signed sum is less than –231, then RT is updated with –231. Likewise, if 
the signed sum is greater than 231 – 1, then RT is updated with 231 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

maclhws RT, RA, RB OE=0, Rc=0

maclhws. RT, RA, RB OE=0, Rc=1

maclhwso RT, RA, RB OE=1, Rc=0

maclhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 492 Rc
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maclhwsu
Multiply Accumulate Low Halfword to Word Saturate Unsigned
maclhwsu
Multiply Accumulate Low Halfword to Word Saturate Unsigned

prod0:31 ← (RA)16:31 × (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The low-order halfword of RA is multiplied by the low-order halfword of RB. The unsigned product is summed with 
the contents of RT.

If the unsigned sum can be represented in 32 bits, then RT is updated with the low-order 32 bits of the unsigned 
sum.

If the unsigned sum cannot be represented in 32 bits, then RT is updated with a value which is “saturated” to the 
maximum representable value of 232 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

maclhwsu RT, RA, RB OE=0, Rc=0

maclhwsu. RT, RA, RB OE=0, Rc=1

maclhwsuo RT, RA, RB OE=1, Rc=0

maclhwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 460 Rc
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maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned
maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned

prod0:31 ← (RA)16:31 × (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The unsigned product is summed with 
the contents of RT and RT is updated with the low-order 32 bits of the unsigned sum.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

maclhwu RT, RA, RB OE=0, Rc=0

maclhwu. RT, RA, RB OE=0, Rc=1

maclhwuo RT, RA, RB OE=1, Rc=0

maclhwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 396 Rc
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mbar
Memory Barrier
mbar
Memory Barrier

The mbar instruction ensures that all loads and stores preceding mbar complete with respect to main storage 
before any loads and stores following mbar access main storage. As implemented in the PPC440, the MO field of 
mbar is ignored and treated as 0, providing a storage ordering function for all storage access instructions executed 
by the processor. Other processors implementing the mbar instruction may support one or more non-zero MO 
settings, specifying different subsets of storage accesses to be ordered by the mbar instruction in those 
implementations.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Architecturally, mbar merely orders storage accesses, and does not perform execution nor context 
synchronization (see Synchronization on page 67). Therefore, non-storage access instructions after mbar could 
complete before the storage access instructions which were executed prior to mbar have actually completed their 
storage accesses. The msync instruction, on the other hand, is execution synchronizing, and does guarantee that 
all storage accesses initiated by instructions executed prior to the msync have completed before any instructions 
after the msync begin execution. However, the PPC440 implements the mbar instruction identically to the msync 
instruction, and thus both are execution synchronizing. 

Software should nevertheless use the correct instruction (mbar or msync) as called for by the specific ordering 
and synchronizing requirements of the application, in order to guarantee portability to other implementations.

See Storage Ordering and Synchronization on page 68 for additional information on the use of the msync and 
mbar instructions. 

Architecture Note

mbar replaces the PowerPC eieio instruction. mbar uses the same opcode as eieio; PowerPC applications which 
used eieio will get the function of mbar when executed on a PowerPC Book-E implementation. mbar is 
architecturally “stronger” than eieio, in that eieio forced separate ordering amongst different categories of storage 
accesses, while mbar forces such ordering amongst all storage accesses as a single category.

mbar

31 MO 854

0 6 11 21 31

Table 8-19. Extended Mnemonics for mbar  

Mnemonic Operands Function Other Registers Altered

mbar None
Memory Barrier.

Extended mnemonic for
mbar 0
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mcrf
Move Condition Register Field
mcrf
Move Condition Register Field

m ← BFA
n ← BF
(CR[CRn]) ← (CR[CRm])

The contents of the CR field specified by the BFA field are placed into the CR field specified by the BF field.

Registers Altered
• CR[CRn] where n is specified by the BF field.

Invalid Instruction Forms
• Reserved fields

mcrf BF, BFA

19 BF BFA 0

0 6 9 11 14 21 31
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mcrxr
Move to Condition Register from XER
mcrxr
Move to Condition Register from XER

n ← BF
(CR[CRn]) ← XER0:3
XER0:3 ← 40

The contents of XER0:3 are placed into the CR field specified by the BF field. XER0:3 are then set to 0.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field.
• XER[SO, OV, CA]

Invalid Instruction Forms
• Reserved fields

mcrxr BF

31 BF 512

0 6 9 21 31
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mfcr
Move From Condition Register
mfcr
Move From Condition Register

(RT) ← (CR)

The contents of the CR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

mfcr RT

31 RT 19

0 6 11 21 31
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mfdcr
Move from Device Control Register
mfdcr
Move from Device Control Register

DCRN ← DCRF5:9 || DCRF0:4
(RT) ← (DCR(DCRN))

The contents of the DCR specified by the DCRF field are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of the mfdcr instruction refers to a DCR 
number. The assembler handles the unusual register number encoding to generate the DCRF field.

Architecture Note

The specific numbers and definitions of any DCRs are outside the scope of both the PowerPC Book-E architecture 
and the PPC440. Any DCRs are defined as part of the chip-level product incorporating the PPC440.

mfdcr RT, DCRN

31 RT DCRF 323

0 6 11 21 31
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mfmsr
Move From Machine State Register
mfmsr
Move From Machine State Register

(RT) ← (MSR) 

The contents of the MSR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

mfmsr RT

31 RT 83

0 6 11 21 31
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mfspr
Move From Special Purpose Register
mfspr
Move From Special Purpose Register

SPRN ← SPRF5:9 || SPRF0:4
(RT) ← (SPR(SPRN))

The contents of the SPR specified by the SPRF field are placed into register RT. See Special Purpose Registers 
Sorted by SPR Number on page 403 for a listing of SPR mnemonics and corresponding SPRN values.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields
• Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 contains 1. See Privileged SPRs on page 66 for a list of 
privileged SPRs.

The SPR number (SPRN) specified in the assembler language coding of the mfspr instruction refers to an SPR 
number. The assembler handles the unusual register number encoding to generate the SPRF field.

mfspr RT, SPRN

31 RT SPRF 339

0 6 11 21 31
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mfspr
Move From Special Purpose Register
Table 8-20. Extended Mnemonics for mfspr  

Mnemonic Operands Function

mfccr0
mfccr1
mfcsrr0
mfcsrr1
mfctr
mfdac1
mfdac2
mfdbcr0
mfdbcr1
mfdbcr2
mfdbdr
mfdbsr
mfdcdbtrh
mfdcdbtrl
mfdear
mfdec
mfdnv0
mfdnv1
mfdnv2
mfdnv3
mfdtv0
mfdtv1
mfdtv2
mfdtv3
mfdvc1
mfdvc2
mfdvlim
mfesr
mfiac1
mfiac2
mfiac3
mfiac4
mficdbdr
mficdbtrh
mficdbtrl
mfinv0
mfinv1
mfinv2
mfinv3
mfitv0
mfitv1
mfitv2
mfitv3
mfivlim
mfivor0
mfivor1
mfivor2
mfivor3
mfivor4
mfivor5
mfivor6
mfivor7
mfivor8
mfivor9
mfivor10
mfivor11
mfivor12
mfivor13
mfivor14
mfivor15
mfivpr
mflr
mfmcsr
mfmcsrr0
mfmcsrr1
mfmmucr

RT

Move from special purpose register SPRN.
Extended mnemonic for
mfspr RT,SPRN

See Special Purpose Registers Sorted by SPR Number on page 403 for a list of valid 
SPRN values.
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mfspr
Move From Special Purpose Register
mfpid
mfpir
mfpvr
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mftbl
mftbu
mftcr
mftsr
mfusprg0
mfxer

Table 8-20. Extended Mnemonics for mfspr (continued) 

Mnemonic Operands Function
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msync
Memory Synchronize
msync
Memory Synchronize

The msync instruction guarantees that all instructions initiated by the processor preceding msync will complete 
before msync completes, and that no subsequent instructions will be initiated by the processor until after msync 
completes. msync also will not complete until all storage accesses associated with instructions preceding msync 
have completed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None.

Invalid Instruction Forms
• Reserved fields

Programming Notes

The msync instruction is execution synchronizing (see Execution Synchronization on page 68), and guarantees 
that all storage accesses initiated by instructions executed prior to the msync have completed before any 
instructions after the msync begin execution. On the other hand, architecturally the mbar instruction merely orders 
storage accesses, and does not perform execution synchronization. Therefore, non-storage access instructions 
after mbar could complete before the storage access instructions which were executed prior to mbar have actually 
completed their storage accesses. However, the PPC440 implements the mbar instruction identically to the 
msync instruction, and thus both are execution synchronizing.

Software should nevertheless use the correct instruction (mbar or msync) as called for by the specific ordering 
and synchronizing requirements of the application, in order to guarantee portability to other implementations.

See Storage Ordering and Synchronization on page 68 for additional information on the use of the msync and 
mbar instructions.

Architecture Note

mbar replaces the PowerPC eieio instruction. mbar uses the same opcode as eieio; PowerPC applications which 
used eieio will get the function of mbar when executed on a PowerPC Book-E implementation. mbar is 
architecturally “stronger” than eieio, in that eieio forced separate ordering amongst different categories of storage 
accesses, while mbar forces such ordering amongst all storage accesses as a single category.

msync replaces the PowerPC sync instruction. msync uses the same opcode as sync; PowerPC applications 
which used sync get the function of msync when executed on a PowerPC Book-E implementation. msync is 
architecturally identical to the version of sync specified by an earlier version of the PowerPC architecture.

msync

31 598

0 6 21 31
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mtcrf
Move to Condition Register Fields
mtcrf
Move to Condition Register Fields

mask ← 4(FXM0) || 4(FXM1) || ... || 4(FXM6) || 4(FXM7)
(CR) ← ((RS) ∧ mask) ∨ ((CR) ∧ ¬mask)

Some or all of the contents of register RS are placed into the CR as specified by the FXM field.

Each bit in the FXM field controls the copying of 4 bits in register RS into the corresponding bits in the CR. The 
correspondence between the bits in the FXM field and the bit copying operation is shown in the following table:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields  

mtcrf FXM, RS

31 RS FXM 144

0 6 11 12 20 21 31

Table 8-21. FXM Bit Field Correspondence 

FXM Bit Number CR Bits Affected

0 0:3

1 4:7

2 8:11

3 12:15

4 16:19

5 20:23

6 24:27

7 28:31

Table 8-22. Extended Mnemonics for mtcrf  

Mnemonic Operands Function

mtcr RS
Move to CR.

Extended mnemonic for
mtcrf 0xFF,RS
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mtdcr
Move To Device Control Register
mtdcr
Move To Device Control Register

DCRN ← DCRF5:9 || DCRF0:4
(DCR(DCRN)) ← (RS)

The contents of register RS are placed into the DCR specified by the DCRF field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• DCR(DCRN)

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of the mtdcr instruction refers to a DCR 
number. The assembler handles the unusual register number encoding to generate the DCRF field.

Architecture Note

The specific numbers and definitions of any DCRs are outside the scope of both the PowerPC Book-E architecture 
and the PPC440. Any DCRs are defined as part of the chip-level product incorporating the PPC440.

mtdcr DCRN, RS

31 RS DCRF 451

0 6 11 21 31
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mtmsr
Move To Machine State Register
mtmsr
Move To Machine State Register

(MSR) ← (RS)

The contents of register RS are placed into the MSR.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR

Invalid Instruction Forms
• Reserved fields

Programming Note

The mtmsr instruction is privileged and execution synchronizing (see Execution Synchronization on page 68).

mtmsr RS

31 RS 146

0 6 11 21 31
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mtspr
Move To Special Purpose Register
mtspr
Move To Special Purpose Register

SPRN ← SPRF5:9 || SPRF0:4
(SPR(SPRN)) ← (RS)

The contents of register RS are placed into register RT. See Special Purpose Registers Sorted by SPR Number on 
page 403 for a listing of SPR mnemonics and corresponding SPRN values.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• SPR (SPRN)

Invalid Instruction Forms
• Reserved fields
• Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 contains 1. See Privileged SPRs on page 66 for a list of 
privileged SPRs.

The SPR number (SPRN) specified in the assembler language coding of the mtspr instruction refers to an SPR 
number. The assembler handles the unusual register number encoding to generate the SPRF field.

mtspr SPRN, RS

31 RS SPRF 467

0 6 11 21 31
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mtspr
Move To Special Purpose Register
Table 8-23. Extended Mnemonics for mtspr  

Mnemonic Operands Function

mtccr0
mtccr1
mtcsrr0
mtcsrr1
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbcr2
mtdbdr
mtdbsr
mtdear
mtdec
mtdecar
mtdnv0
mtdnv1
mtdnv2
mtdnv3
mtdtv0
mtdtv1
mtdtv2
mtdtv3
mtdvc1
mtdvc2
mtdvlim
mtesr
mtiac1
mtiac2
mtiac3
mtiac4
mtinv0
mtinv1
mtinv2
mtinv3
mtitv0
mtitv1
mtitv2
mtitv3
mtivlim
mtivor0
mtivor1
mtivor2
mtivor3
mtivor4
mtivor5
mtivor6
mtivor7
mtivor8
mtivor9
mtivor10
mtivor11
mtivor12
mtivor13
mtivor14
mtivor15
mtivpr
mtlr
mtmcsr
mtmcsrr0
mtmcsrr1
mtmmucr
mtpid

RT

Move to special purpose register SPRN.
Extended mnemonic for
mtspr RT,SPRN

See Special Purpose Registers Sorted by SPR Number on page 403 for a list of valid SPRN 
values.
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mtspr
Move To Special Purpose Register
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mttbl
mttbu
mttcr
mttsr
mtusprg0
mtxer

Table 8-23. Extended Mnemonics for mtspr (continued) 

Mnemonic Operands Function
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mulchw
Multiply Cross Halfword to Word Signed
mulchw
Multiply Cross Halfword to Word Signed

(RT)0:31 ← (RA)16:31 × (RB)0:15 signed

The low-order halfword of RA is multiplied by the high-order halfword of RB, considering both source operands as 
signed integers. The 32-bit result is placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

mulchw RT, RA, RB Rc=0

mulchw. RT, RA, RB Rc=1

4 RT RA RB 168 Rc

0 6 11 16 21 31
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mulchwu
Multiply Cross Halfword to Word Unsigned
mulchwu
Multiply Cross Halfword to Word Unsigned

(RT)0:31 ← (RA)16:31 × (RB)0:15 unsigned

The low-order halfword of RA is multiplied by the high-order halfword of RB, considering both source operands as 
unsigned integers. The 32-bit result is placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

mulchwu RT, RA, RB Rc=0

mulchwu. RT, RA, RB Rc=1

4 RT RA RB 136 Rc

0 6 11 16 21 31
330       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor

mulhhw
Multiply High Halfword to Word Signed
mulhhw
Multiply High Halfword to Word Signed

(RT)0:31 ← (RA)0:15 × (RB)0:15 signed

The high-order halfword of RA is multiplied by the high-order halfword of RB, considering both source operands as 
signed integers. The 32-bit result is placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

mulhhw RT, RA, RB Rc=0

mulhhw. RT, RA, RB Rc=1

4 RT RA RB 40 Rc

0 6 11 16 21 31
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mulhhwu
Multiply High Halfword to Word Unsigned
mulhhwu
Multiply High Halfword to Word Unsigned

(RT)0:31 ← (RA)0:15 × (RB)0:15 unsigned

The high-order halfword of RA is multiplied by the high-order halfword of RB, considering both source operands as 
unsigned integers. The 32-bit result is placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

mulhhwu RT, RA, RB Rc=0

mulhhwu. RT, RA, RB Rc=1

4 RT RA RB 8 Rc

0 6 11 16 21 31
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mulhw
Multiply High Word
mulhw
Multiply High Word

prod0:63 ← (RA) × (RB) signed
(RT) ← prod0:31

The 64-bit signed product of registers RA and RB is formed. The most significant 32 bits of the result is placed into 
register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ depending on whether the 
registers RA and RB are interpreted as signed or unsigned quantities. mulhw generates the correct result when 
these operands are interpreted as signed quantities. mulhwu generates the correct result when these operands 
are interpreted as unsigned quantities.

Invalid Instruction Forms
• Reserved fields

mulhw RT, RA, RB Rc=0

mulhw. RT, RA, RB Rc=1

31 RT RA RB 75 Rc

0 6 11 16 21 22 31
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mulhwu
Multiply High Word Unsigned
mulhwu
Multiply High Word Unsigned

prod0:63 ← (RA) × (RB) unsigned
(RT) ← prod0:31

The 64-bit unsigned product of registers RA and RB is formed. The most significant 32 bits of the result are placed 
into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ depending on whether the 
registers RA and RB are interpreted as signed or unsigned quantities. The mulhw instruction generates the correct 
result when these operands are interpreted as signed quantities. The mulhwu instruction generates the correct 
result when these operands are interpreted as unsigned quantities.

Invalid Instruction Forms
• Reserved fields

mulhwu RT, RA, RB Rc=0

mulhwu. RT, RA, RB Rc=1

31 RT RA RB 11 Rc

0 6 11 16 21 22 31
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mullhw
Multiply Low Halfword to Word Signed
mullhw
Multiply High Halfword to Word Signed

(RT)0:31 ← (RA)16:31 × (RB)16:31 signed

The low-order halfword of RA is multiplied by the low-order halfword of RB, considering both source operands as 
signed integers. The 32-bit result is placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

mullhw RT, RA, RB Rc=0

mullhw. RT, RA, RB Rc=1

4 RT RA RB 424 Rc

0 6 11 16 21 31
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mullhwu
Multiply Low Halfword to Word Unsigned
mullhwu
Multiply High Halfword to Word Unsigned

(RT)0:31 ← (RA)16:31 × (RB)16:31 unsigned

The low-order halfword of RA is multiplied by the low-order halfword of RB, considering both source operands as 
unsigned integers. The 32-bit result is placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

mullhwu RT, RA, RB Rc=0

mullhwu. RT, RA, RB Rc=1

4 RT RA RB 392 Rc

0 6 11 16 21 31
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mulli
Multiply Low Immediate
mulli
Multiply Low Immediate

prod0:47 ← (RA) × IM
(RT) ← prod16:47

The 48-bit product of register RA and the 16-bit IM field is formed. The least significant 32 bits of the product are 
placed into register RT.

Registers Altered
• RT

Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA and field IM are 
interpreted as signed or unsigned numbers.

mulli RT, RA, IM

7 RT RA IM

0 6 11 16 31
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mullw
Multiply Low Word
mullw
Multiply Low Word

prod0:63 ← (RA) × (RB) signed
(RT) ← prod32:63

The 64-bit signed product of register RA and register RB is formed. The least significant 32 bits of the result is 
placed into register RT.

If the signed product cannot be represented in 32 bits and OE=1, XER[SO, OV] are set to 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE=1

Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA and register RB are 
interpreted as signed or unsigned numbers. The overflow indication, however, is calculated specifically for a 64-bit 
signed product, and is dependent upon interpretation of the source operands as signed numbers.

mullw RT, RA, RB OE=0, Rc=0

mullw. RT, RA, RB OE=0, Rc=1

mullwo RT, RA, RB OE=1, Rc=0

mullwo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 235 Rc

0 6 11 16 21 22 31
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nand
NAND
nand
NAND

(RA) ← ¬((RS) ∧ (RB))

The contents of register RS is ANDed with the contents of register RB; the ones complement of the result is placed 
into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1

nand RA, RS, RB Rc=0

nand. RA, RS, RB Rc=1

31 RT RA RB 476 Rc

0 6 11 16 21 31
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neg
Negate
neg
Negate

(RT) ← ¬(RA) + 1

The twos complement of the contents of register RA are placed into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE=1

Invalid Instruction Forms
• Reserved fields

neg RT, RA OE=0, Rc=0

neg. RT, RA OE=0, Rc=1

nego RT, RA OE=1, Rc=0

nego. RT, RA OE=1, Rc=1

31 RT RA OE 104 Rc

0 6 11 16 21 22 31
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nmacchw
Negative Multiply Accumulate Cross Halfword to Word Modulo
nmacchw
Negative Multiply Accumulate Cross Halfword to Word Modulo Signed

nprod0:31 ← –((RA)16:31 × (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is subtracted from 
the contents of RT and RT is updated with the low-order 32 bits of the result.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

nmacchw RT, RA, RB OE=0, Rc=0

nmacchw. RT, RA, RB OE=0, Rc=1

nmacchwo RT, RA, RB OE=1, Rc=0

nmacchwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 174 Rc

0 6 11 16 21 22 31
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nmacchws
Negative Multiply Accumulate Cross Halfword to Word Saturate 
nmacchws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

nprod0:31 ← –((RA)16:31 × (RB)0:15 signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is subtracted from 
the contents of RT.

If the result of the subtraction can be represented in 32 bits, then RT is updated with the low-order 32 bits of the 
result.

If the result of the subtraction cannot be represented in 32 bits, then RT is updated with a value which is “saturated” 
to the nearest representable value. That is, if the result is less than –231, then RT is updated with –231. Likewise, if 
the result is greater than 231 – 1, then RT is updated with 231 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

nmacchws RT, RA, RB OE=0, Rc=0

nmacchws. RT, RA, RB OE=0, Rc=1

nmacchwso RT, RA, RB OE=1, Rc=0

nmacchwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 238 Rc

0 6 11 16 21 22 31
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nmachhw
Negative Multiply Accumulate High Halfword to Word Modulo
nmachhw
Negative Multiply Accumulate High Halfword to Word Modulo Signed

nprod0:31 ← –((RA)0:15 × (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is subtracted from 
the contents of RT and RT is updated with the low-order 32 bits of the result.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

nmachhw RT, RA, RB OE=0, Rc=0

nmachhw. RT, RA, RB OE=0, Rc=1

nmachhwo RT, RA, RB OE=1, Rc=0

nmachhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 46 Rc

0 6 11 16 21 22 31
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nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate 
nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

nprod0:31 ← –((RA)0:15 × (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is subtracted from 
the contents of RT.

If the result of the subtraction can be represented in 32 bits, then RT is updated with the low-order 32 bits of the 
result.

If the result of the subtraction cannot be represented in 32 bits, then RT is updated with a value which is “saturated” 
to the nearest representable value. That is, if the result is less than –231, then RT is updated with –231. Likewise, if 
the result is greater than 231 – 1, then RT is updated with 231 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

nmachhws RT, RA, RB OE=0, Rc=0

nmachhws. RT, RA, RB OE=0, Rc=1

nmachhwso RT, RA, RB OE=1, Rc=0

nmachhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 110 Rc

0 6 11 16 21 22 31
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nmaclhw
Negative Multiply Accumulate Low Halfword to Word Modulo Signed
nmaclhw
Negative Multiply Accumulate Low Halfword to Word Modulo Signed

nprod0:31 ← –((RA)16:31 × (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is subtracted from 
the contents of RT and RT is updated with the low-order 32 bits of the result.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

nmaclhw RT, RA, RB OE=0, Rc=0

nmaclhw. RT, RA, RB OE=0, Rc=1

nmaclhwo RT, RA, RB OE=1, Rc=0

nmaclhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 430 Rc

0 6 11 16 21 22 31
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nmaclhws
Negative Multiply Accumulate High Halfword to Word Saturate 
nmaclhws
Negative Multiply Accumulate Low Halfword to Word Saturate Signed

nprod0:31 ← –((RA)16:31 × (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is subtracted from 
the contents of RT.

If the result of the subtraction can be represented in 32 bits, then RT is updated with the low-order 32 bits of the 
result.

If the result of the subtraction cannot be represented in 32 bits, then RT is updated with a value which is “saturated” 
to the nearest representable value. That is, if the result is less than –231, then RT is updated with –231. Likewise, if 
the result is greater than 231 – 1, then RT is updated with 231 – 1.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is implementation-specific and programs which use this instruction may not be portable to other 
PowerPC Book-E implementations. See Instruction Set Portability on page 210.

nmaclhws RT, RA, RB OE=0, Rc=0

nmaclhws. RT, RA, RB OE=0, Rc=1

nmaclhwso RT, RA, RB OE=1, Rc=0

nmaclhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 494 Rc

0 6 11 16 21 22 31
346       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor

nor
NOR
nor
NOR

(RA) ← ¬((RS) ∨ (RB))

The contents of register RS is ORed with the contents of register RB; the ones complement of the result is placed 
into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1  

nor RA, RS, RB Rc=0

nor. RA, RS, RB Rc=1

31 RT RA RB 124 Rc

0 6 11 16 21 31

Table 8-24. Extended Mnemonics for nor, nor.  

Mnemonic Operands Function Other Registers Altered

not
RA, RS

Complement register.
(RA) ← ¬(RS)

Extended mnemonic for
nor RA,RS,RS

not. Extended mnemonic for
nor. RA,RS,RS CR[CR0]
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or
OR
or
OR

(RA) ← (RS) ∨ (RB)

The contents of register RS is ORed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1  

or RA, RS, RB Rc=0

or. RA, RS, RB Rc=1

31 RS RA RB 444 Rc

0 6 11 16 21 31

Table 8-25. Extended Mnemonics for or, or.  

Mnemonic Operands Function Other Registers Altered

mr
RT, RS

Move register.
(RT) ← (RS)

Extended mnemonic for
or RT,RS,RS

mr. Extended mnemonic for
or. RT,RS,RS CR[CR0]
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orc
OR with Complement
orc
OR with Complement

(RA) ← (RS) ∨ ¬(RB)

The contents of register RS is ORed with the ones complement of the contents of register RB; the result is placed 
into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1

orc RA, RS, RB Rc=0

orc. RA, RS, RB Rc=1

31 RT RA RB 412 Rc

0 6 11 16 21 31
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ori
OR Immediate
ori
OR Immediate

(RA) ← (RS) ∨ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. Register RS is ORed with the extended IM 
field; the result is placed into register RA.

Registers Altered
• RA  

ori RA, RS, IM

24 RS RA IM

0 6 11 16 31

Table 8-26. Extended Mnemonics for ori  

Mnemonic Operands Function Other Registers Altered

nop
Preferred no-op; triggers optimizations based on no-ops.

Extended mnemonic for
ori 0,0,0
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oris
OR Immediate Shifted
oris
OR Immediate Shifted

(RA) ← (RS) ∨ (IM || 160)

The IM Field is extended to 32 bits by concatenating 16 0-bits on the right. Register RS is ORed with the extended 
IM field and the result is placed into register RA.

Registers Altered
• RA

oris RA, RS, IM

25 RS RA IM

0 6 11 16 31
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rfci
Return From Critical Interrupt
rfci
Return From Critical Interrupt

(PC) ← (CSRR0)
(MSR) ← (CSRR1)

This instruction is used to return from a critical interrupt.

The program counter (PC) is restored with the contents of CSRR0 and the MSR is restored with the contents of 
CSRR1.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Programming Note

Execution of this instruction is privileged and context-synchronizing (see Context Synchronization on page 67).

rfci

19 51

0 6 21 31
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rfi
Return From Interrupt
rfi
Return From Interrupt

(PC) ← (SRR0)
(MSR) ← (SRR1)

This instruction is used to return from a non-critical interrupt.

The program counter (PC) is restored with the contents of SRR0 and the MSR is restored with the contents of 
SRR1.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged and context-synchronizing (see Context Synchronization on page 67).

rfi

19 50

0 6 21 31
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rfmci
Return From Machine Check Interrupt
rfmci
Return From Critical Interrupt

(PC) ← (MCSRR0)
(MSR) ← (MCSRR1)

This instruction is used to return from a machine check interrupt.

The program counter (PC) is restored with the contents of MCSRR0 and the MSR is restored with the contents of 
MCSRR1.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Programming Note

Execution of this instruction is privileged and context-synchronizing (see “Context Synchronization” on page 67).

rfmci

19 38

0 6 21 31
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rlwimi
Rotate Left Word Immediate then Mask Insert
rlwimi
Rotate Left Word Immediate then Mask Insert

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask is 
generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position specified 
by the ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the mask wraps 
from the highest bit position back around to the lowest. The rotated data is inserted into register RA, in positions 
corresponding to the bit positions in the mask that contain a 1-bit.

Registers Altered
• RA
• CR[CR0] if Rc contains 1 

rlwimi RA, RS, SH, MB, ME Rc=0

rlwimi. RA, RS, SH, MB, ME Rc=1

20 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Table 8-27. Extended Mnemonics for rlwimi, rlwimi.  

Mnemonic Operands Function Other Registers Altered

inslwi
RA, RS, n, b

Insert from left immediate (n > 0).
(RA)b:b+n-1 ← (RS)0:n-1

Extended mnemonic for
rlwimi RA,RS,32−b,b,b+n−1

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1 CR[CR0]

insrwi
RA, RS, n, b

Insert from right immediate. (n > 0)
(RA)b:b+n-1 ← (RS)32-n:31

Extended mnemonic for
rlwimi RA,RS,32−b−n,b,b+n−1

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1 CR[CR0]
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rlwinm
Rotate Left Word Immediate then AND with Mask
rlwinm
Rotate Left Word Immediate then AND with Mask

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← r ∧ m

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask is 
generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position specified 
by the ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the mask wraps 
from the highest bit position back around to the lowest. The rotated data is ANDed with the generated mask; the 
result is placed into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1  

rlwinm RA, RS, SH, MB, ME Rc=0

rlwinm. RA, RS, SH, MB, ME Rc=1

21 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Table 8-28. Extended Mnemonics for rlwinm, rlwinm.  

Mnemonic Operands Function Other Registers Altered

clrlwi
RA, RS, n

Clear left immediate. (n < 32)
(RA)0:n-1 ← n0

Extended mnemonic for
rlwinm RA,RS,0,n,31

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31 CR[CR0]

clrlslwi
RA, RS, b, n

Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b-n:31-n ← (RS)b:31
(RA)32-n:31 ← n0
(RA)0:b-n-1 ← b-n0

Extended mnemonic for
rlwinm RA,RS,n,b−n,31−n

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n CR[CR0]

clrrwi
RA, RS, n

Clear right immediate. (n < 32)
(RA)32-n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,0,0,31−n

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n CR[CR0]
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rlwinm
Rotate Left Word Immediate then AND with Mask
extlwi
RA, RS, n, b

Extract and left justify immediate. (n > 0)
(RA)0:n-1 ← (RS)b:b+n-1
(RA)n:31 ← 32-n0

Extended mnemonic for
rlwinm RA,RS,b,0,n−1

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1 CR[CR0]

extrwi
RA, RS, n, b

Extract and right justify immediate. (n > 0)
(RA)32-n:31 ← (RS)b:b+n-1
(RA)0:31-n ← 32-n0

Extended mnemonic for
rlwinm RA,RS,b+n,32−n,31

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31 CR[CR0]

rotlwi
RA, RS, n

Rotate left immediate.
(RA) ← ROTL((RS), n)

Extended mnemonic for
rlwinm RA,RS,n,0,31

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31 CR[CR0]

rotrwi
RA, RS, n

Rotate right immediate.
(RA) ← ROTL((RS), 32−n)

Extended mnemonic for
rlwinm RA,RS,32−n,0,31

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31 CR[CR0]

slwi
RA, RS, n

Shift left immediate. (n < 32)
(RA)0:31-n ← (RS)n:31
(RA)32-n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,n,0,31−n

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n CR[CR0]

srwi
RA, RS, n

Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31-n
(RA)0:n-1 ← n0

Extended mnemonic for
rlwinm RA,RS,32−n,n,31

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31 CR[CR0]

Table 8-28. Extended Mnemonics for rlwinm, rlwinm. (continued) 

Mnemonic Operands Function Other Registers Altered
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rlwnm
Rotate Left Word then AND with Mask
rlwnm
Rotate Left Word then AND with Mask

r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← r ∧ m

The contents of register RS are rotated left by the number of bit positions specified by the contents of register 
RB27:31. A mask is generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit 
position specified by the ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the ones portion of the mask wraps 
from the highest bit position back to the lowest. The rotated data is ANDed with the generated mask and the result 
is placed into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1  

rlwnm RA, RS, RB, MB, ME Rc=0

rlwnm. RA, RS, RB, MB, ME Rc=1

23 RS RA RB MB ME Rc

0 6 11 16 21 26 31

Table 8-29. Extended Mnemonics for rlwnm, rlwnm.  

Mnemonic Operands Function Other Registers Altered

rotlw
RA, RS, RB

Rotate left.
(RA) ← ROTL((RS), (RB)27:31)

Extended mnemonic for
rlwnm RA,RS,RB,0,31

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31 CR[CR0]
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sc
System Call
sc
System Call

SRR1 ← MSR
SRR0 ← 4 + address of sc instruction
PC ← IVPR0:15 || IVOR816:27 || 40
MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS] ← 90

A System Call exception is generated, and a System Call interrupt occurs (see System Call Interrupt on page 154 
for more information on System Call interrupts). The contents of the MSR are copied into SRR1 and (4 + address 
of sc instruction) is placed into SRR0.

The program counter (PC) is then loaded with the interrupt vector address. The interrupt vector address is formed 
by concatenating the high halfword of the Interrupt Vector Prefix Register (IVPR), bits 16:27 of the Interrupt Vector 
Offset Register 8 (IVOR8), and 0b0000.

The MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS] bits are set to 0.

Program execution continues at the new address in the PC.

Registers Altered
• SRR0
• SRR1
• MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS]

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is context-synchronizing (see Context Synchronization on page 67).

sc

17 1

0 6 30 31
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slw
Shift Left Word
slw
Shift Left Word

n ← (RB)26:31
r ← ROTL((RS), n)
if n < 32 then

m ← MASK(0, 31 – n)
else

m ← 320
(RA) ← r ∧ m

The contents of register RS are shifted left by the number of bits specified by the contents of register RB26:31. Bits 
shifted left out of the most significant bit are lost, and 0-bits fill vacated bit positions on the right. The result is 
placed into register RA.

Note that if RB26 = 1, then the shift amount is 32 bits or more, and thus all bits are shifted out such that register RA 
is set to zero.

Registers Altered
• RA
• CR[CR0] if Rc contains 1

slw RA, RS, RB Rc=0

slw. RA, RS, RB Rc=1

31 RS RA RB 24 Rc

0 6 11 16 21 31
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sraw
Shift Right Algebraic Word
sraw
Shift Right Algebraic Word

n ← (RB)26:31
r ← ROTL((RS), 32 – n)
if n < 32 then

m ← MASK(n, 31)
else

m ← 320
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0)

The contents of register RS are shifted right by the number of bits specified the contents of register RB26:31. Bits 
shifted out of the least significant bit are lost. Bit 0 of Register RS is replicated to fill the vacated positions on the 
left. The result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least significant bit position, 
XER[CA] is set to 1; otherwise, it is set to 0.

Note that if RB26 = 1, then the shift amount is 32 bits or more, and thus all bits are shifted out such that register RA 
and XER[CA] are set to bit 0 of register RS.

Registers Altered
• RA
• XER[CA]
• CR[CR0] if Rc contains 1

sraw RA, RS, RB Rc=0

sraw. RA, RS, RB Rc=1

31 RS RA RB 792 Rc

0 6 11 16 21 31
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srawi
Shift Right Algebraic Word Immediate
srawi
Shift Right Algebraic Word Immediate

n ← SH
r ← ROTL((RS), 32 – n)
m ← MASK(n, 31)
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m)≠0)

The contents of register RS are shifted right by the number of bits specified in the SH field. Bits shifted out of the 
least significant bit are lost. Bit RS0 is replicated to fill the vacated positions on the left. The result is placed into 
register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least significant bit position, 
XER[CA] is set to 1; otherwise, it is set to 0.

Registers Altered
• RA
• XER[CA]
• CR[CR0] if Rc contains 1

srawi RA, RS, SH Rc=0

srawi. RA, RS, SH Rc=1

31 RS RA SH 824 Rc

0 6 11 16 21 31
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srw
Shift Right Word
srw
Shift Right Word

n ← (RB)26:31
r ← ROTL((RS), 32 – n)
if n < 32 then

m ← MASK(n, 31)
else

m ← 320
(RA) ← r ∧ m

The contents of register RS are shifted right by the number of bits specified the contents of register RB26:31. Bits 
shifted right out of the least significant bit are lost, and 0-bits fill the vacated bit positions on the left. The result is 
placed into register RA.

Note that if RB26 = 1, then the shift amount is 32 bits or more, and thus all bits are shifted out such that register RA 
is set to zero.

Registers Altered
• RA
• CR[CR0] if Rc contains 1

srw RA, RS, RB Rc=0

srw. RA, RS, RB Rc=1

31 RS RA RB 536 Rc

0 6 11 16 21 31
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stb
Store Byte
stb
Store Byte

EA ← (RA|0) + EXTS(D)
MS(EA, 1) ← (RS)24:31

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of 
register RA otherwise.

The least significant byte of register RS is stored into the byte at the EA.

Registers Altered
• None

stb RS, D(RA)

38 RS RA D

0 6 11 16 31
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stbu
Store Byte with Update
stbu
Store Byte with Update

EA ← (RA|0) + EXTS(D)
MS(EA, 1) ← (RS)24:31
(RA) ← EA

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of 
register RA otherwise.

The least significant byte of register RS is stored into the byte at the EA.

The EA is placed into register RA.

Registers Altered
• RA

Invalid Instruction Forms

RA = 0

stbu RS, D(RA)

39 RS RA D

0 6 11 16 31
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stbux
Store Byte with Update Indexed
stbux
Store Byte with Update Indexed

EA ← (RA|0) + (RB)
MS(EA, 1) ← (RS)24:31
(RA) ← EA

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise. 

The least significant byte of register RS is stored into the byte at the EA.

The EA is placed into register RA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields

RA = 0

stbux RS, RA, RB

31 RS RA RB 247
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stbx
Store Byte Indexed
stbx
Store Byte Indexed

EA ← (RA|0) + (RB)
MS(EA, 1) ← (RS)24:31

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise. 

The least significant byte of register RS is stored into the byte at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

stbx RS, RA, RB

31 RS RA RB 215
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sth
Store Halfword
sth
Store Halfword

EA ← (RA|0) + EXTS(D)
MS(EA, 2) ← (RS)16:31

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0 and is the contents of 
register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA in main storage.

Registers Altered
• None

sth RS, D(RA)

44 RS RA D
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sthbrx
Store Halfword Byte-Reverse Indexed
sthbrx
Store Halfword Byte-Reverse Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← BYTE_REVERSE((RS)16:31)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0 and is the contents of register RA otherwise.

The least significant halfword of register RS is byte-reversed from the default byte ordering for the memory page 
referenced by the EA. The resulting halfword is stored at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Byte ordering is generally controlled by the Endian (E) storage attribute (see Memory Management on page 103). 
The store byte reverse instructions provide a mechanism for data to be stored to a memory page using the 
opposite byte ordering from that specified by the Endian storage attribute.

sthbrx RS, RA, RB

31 RS RA RB 918
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sthu
Store Halfword with Update
sthu
Store Halfword with Update

EA ← (RA|0) + EXTS(D)
MS(EA, 2) ← (RS)16:31
(RA) ← EA

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of 
register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA.

The EA is placed into register RA.

Registers Altered
• RA

Invalid Instruction Forms

RA = 0

sthu RS, D(RA)

45 RS RA D
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sthux
Store Halfword with Update Indexed
sthux
Store Halfword with Update Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← (RS)16:31
(RA) ← EA

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA.

The EA is placed into register RA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields
• RA = 0

sthux RS, RA, RB

31 RS RA RB 439
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sthx
Store Halfword Indexed
sthx
Store Halfword Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← (RS)16:31

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

sthx RS, RA, RB

31 RS RA RB 407
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stmw
Store Multiple Word
stmw
Store Multiple Word

EA ← (RA|0) + EXTS(D)
r ← RS
do while r ≤ 31

MS(EA, 4) ← (GPR(r))
r ← r + 1
EA ← EA + 4

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of 
register RA otherwise.

The contents of a series of consecutive registers, starting with register RS and continuing through GPR(31), are 
stored into consecutive words starting at the EA.

Registers Altered
• None

Programming Note

This instruction can be restarted, meaning that it could be interrupted after having already stored some of the 
register values to memory, and then re-executed from the beginning (after returning from the interrupt), in which 
case the registers which had already been stored prior to the interrupt will be stored a second time.

stmw RS, D(RA)

47 RS RA D
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stswi
Store String Word Immediate
stswi

Store String Word Immediate

EA ← (RA|0)
if NB = 0 then

n ← 32
else

n ← NB
r ← RS – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1

if r = 32 then
r ← 0

MS(EA,1) ← (GPR(r)i:i+7)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is determined by the RA field. If the RA field contains 0, the EA is 0; otherwise, the EA is 
the contents of register RA.

A byte count is determined by the NB field. If the NB field contains 0, the byte count is 32; otherwise, the byte count 
is the contents of the NB field.

The contents of a series of consecutive GPRs (starting with register RS, continuing through GPR(31) and wrapping 
to GPR(0) as necessary, and continuing to the final byte count) are stored, starting at the EA. The bytes in each 
GPR are accessed starting with the most significant byte. The byte count determines the number of transferred 
bytes.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

This instruction can be restarted, meaning that it could be interrupted after having already stored some of the 
register values to memory, and then re-executed from the beginning (after returning from the interrupt), in which 
case the registers which had already been stored prior to the interrupt will be stored a second time.

stswi RS, RA, NB

31 RS RA NB 725
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stswx
Store String Word Indexed
stswx
Store String Word Indexed

EA ← (RA|0) + (RB)
n ← XER[TBC]
r ← RS – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1

if r = 32 then
r ← 0

MS(EA, 1) ← (GPR(r)i:i+7)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

A byte count is contained in XER[TBC].

The contents of a series of consecutive GPRs (starting with register RS, continuing through GPR(31) and wrapping 
to GPR(0) as necessary, and continuing to the final byte count) are stored, starting at the EA. The bytes in each 
GPR are accessed starting with the most significant byte. The byte count determines the number of transferred 
bytes.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

This instruction can be restarted, meaning that it could be interrupted after having already stored some of the 
register values to memory, and then re-executed from the beginning (after returning from the interrupt), in which 
case the registers which had already been stored prior to the interrupt will be stored a second time.

If XER[TBC] = 0, no GPRs are stored to memory, and stswx is treated as a no-op. Furthermore, if the EA is such 
that a Data Storage, Data TLB Error, or Data Address Compare Debug exception occurs, stswx is treated as a no-
op and no interrupt occurs as a result of the exception.

stswx RS, RA, RB

31 RS RA RB 661
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stw
Store Word
stw
Store Word

EA ← (RA|0) + EXTS(D)
MS(EA, 4) ← (RS)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of 
register RA otherwise.

The contents of register RS are stored at the EA.

Registers Altered
• None

stw RS, D(RA)

36 RS RA D
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stwbrx
Store Word Byte-Reverse Indexed
stwbrx
Store Word Byte-Reverse Indexed

EA ← (RA|0) + (RB)
MS(EA, 4) ← BYTE_REVERSE((RS)0:31)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0 and is the contents of register RA otherwise.

The word in register RS is byte-reversed from the default byte ordering for the memory page referenced by the EA. 
The resulting word is stored at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Byte ordering is generally controlled by the Endian (E) storage attribute (see Memory Management on page 103). 
The store byte reverse instructions provide a mechanism for data to be stored to a memory page using the 
opposite byte ordering from that specified by the Endian storage attribute.

stwbrx RS, RA, RB

31 RS RA RB 662
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stwcx.
Store Word Conditional Indexed
stwcx.
Store Word Conditional Indexed

EA ← (RA|0) + (RB)
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XER[SO]

else
(CR[CR0]) ← 20 || 0 || XER[SO]

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

If the reservation bit contains 1 when the instruction is executed, the contents of register RS are stored into the 
word at the EA and the reservation bit is cleared. If the reservation bit contains 0 when the instruction is executed, 
no store operation is performed.

CR[CR0] is set as follows:
• CR[CR0]0:1 are cleared
• CR[CR0]2 is set to indicate whether or not the store was performed (1 indicates that it was)
• CR[CR0]3 is set to the contents of the XER[SO] bit

Registers Altered
• CR[CR0]

Programming Notes

The lwarx and stwcx. instructions are typically paired in a loop, as shown in the following example, to create the 
effect of an atomic operation to a memory area used as a semaphore between multiple processes. Only lwarx can 
set the reservation bit to 1. stwcx. sets the reservation bit to 0 upon its completion, whether or not stwcx. actually 
stored (RS) to memory. CR[CR0]2 must be examined to determine whether (RS) was sent to memory. 
loop: lwarx # read the semaphore from memory; set reservation

“alter” # change the semaphore bits in the register as required
stwcx. # attempt to store the semaphore; reset reservation
bne loop # some other process intervened and cleared the reservation prior to the above

# stwcx.; try again

The PowerPC Book-E architecture specifies that the EA for the lwarx instruction must be word-aligned (that is, a 
multiple of 4 bytes); otherwise, the result is undefined. Although the PPC440 will execute stwcx. regardless of the 
EA alignment, in order for the operation of the pairing of lwarx and stwcx. to produce the desired result, software 
must ensure that the EA for both instructions is word-aligned. This requirement is due to the manner in which 
misaligned storage accesses may be broken up into separate, aligned accesses by the PPC440.

The PowerPC Book-E architecture also specifies that it is implementation-dependent as to whether a Data 
Storage, Data TLB Error, Alignment, or Debug interrupt occurs when the reservation bit is off at the time of 
execution of an stwcx. instruction, and when the conditions are such that a non-stwcx. store-type storage access 
instruction would have resulted in such an interrupt. The PPC440 implements stwcx. such that Data Storage and 

stwcx. RS, RA, RB

31 RS RA RB 150 1
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stwcx.
Store Word Conditional Indexed
Debug (DAC and/or DVC exception type) interrupts do not occur when the reservation bit is off at the time of 
execution of the stwcx.  Instead, the stwcx. instruction completes without causing the interrupt and without storing 
to memory, and CR[CR0] is updated to indicate the failure of the stwcx.

On the other hand, the PPC440 causes a Data TLB Error interrupt if a Data TLB Miss exception occurs during due 
to the execution of a stwcx. instruction, regardless of the state of the reservation.  Similarly, the PPC440 causes 
an Alignment interrupt if the EA of the stwcx. operand is not word-aligned when CCR0[FLSTA] is 1, regardless of 
the state of the reservation (see Core Configuration Register 0 (CCR0) on page 83 for more information on the 
Force Load/Store Alignment function). 
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stwu
Store Word with Update
stwu
Store Word with Update

EA ← (RA|0) + EXTS(D)
MS(EA, 4) ← (RS)
(RA) ← EA

An effective address (EA) is formed by adding a displacement to a base address. The displacement is obtained by 
sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is the contents of 
register RA otherwise.

The contents of register RS are stored into the word at the EA.

The EA is placed into register RA.

Registers Altered
• RA

Invalid Instruction Forms

RA = 0

stwu RS, D(RA)

37 RS RA D
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stwux
Store Word with Update Indexed
stwux
Store Word with Update Indexed

EA ← (RA|0) + (RB)
MS(EA, 4) ← (RS)
(RA) ← EA

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The contents of register RS are stored into the word at the EA.

The EA is placed into register RA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields
• RA = 0

stwux RS, RA, RB

31 RS RA RB 183
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stwx
Store Word Indexed
stwx
Store Word Indexed

EA ← (RA|0) + (RB)
MS(EA,4) ← (RS)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of register RB. 
The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The contents of register RS are stored into the word at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

stwx RS, RA, RB

31 RS RA RB 151
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subf
Subtract From
subf
Subtract From

(RT) ← ¬(RA) + (RB) + 1

The sum of the ones complement of register RA, register RB, and 1 is stored into register RT.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1  

subf RT, RA, RB OE=0, Rc=0

subf. RT, RA, RB OE=0, Rc=1

subfo RT, RA, RB OE=1, Rc=0

subfo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 40 Rc

0 6 11 16 21 22 31

Table 8-30. Extended Mnemonics for subf, subf., subfo, subfo.  

Mnemonic Operands Function Other Registers Altered

sub

RT, RA, RB

Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.

Extended mnemonic for
subf RT,RB,RA

sub. Extended mnemonic for
subf. RT,RB,RA CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]
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subfc
Subtract From Carrying
subfc
Subtract From Carrying

(RT) ← ¬(RA) + (RB) + 1
if ¬(RA) + (RB) + 1  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB, and 1 is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1  

subfc RT, RA, RB OE=0, Rc=0

subfc. RT, RA, RB OE=0, Rc=1

subfco RT, RA, RB OE=1, Rc=0

subfco. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 8 Rc

0 6 11 16 21 22 31

Table 8-31. Extended Mnemonics for subfc, subfc., subfco, subfco.  

Mnemonic Operands Function Other Registers Altered

subc

RT, RA, RB

Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].

Extended mnemonic for
subfc RT,RB,RA

subc. Extended mnemonic for
subfc. RT,RB,RA CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

>
u
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subfe
Subtract From Extended
subfe
Subtract From Extended

(RT) ← ¬(RA) + (RB) + XER[CA]
if ¬(RA) + (RB) + XER[CA]  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

subfe RT, RA, RB OE=0, Rc=0

subfe. RT, RA, RB OE=0, Rc=1

subfeo RT, RA, RB OE=1, Rc=0

subfeo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 136 Rc

0 6 11 16 21 22 31
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subfic
Subtract From Immediate Carrying
subfic
Subtract From Immediate Carrying

(RT) ← ¬(RA) + EXTS(IM) + 1
if ¬(RA) + EXTS(IM) + 1  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of RA, the IM field sign-extended to 32 bits, and 1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]

subfic RT, RA, IM

8 RT RA IM

0 6 11 16 31

>
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subfme
Subtract from Minus One Extended
subfme
Subtract from Minus One Extended

(RT) ← ¬(RA) – 1 + XER[CA]
if ¬(RA) + 0xFFFF FFFF + XER[CA]  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, –1, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1
• XER[CA]

Invalid Instruction Forms
• Reserved fields

subfme RT, RA OE=0, Rc=0

subfme. RT, RA OE=0, Rc=1

subfmeo RT, RA OE=1, Rc=0

subfmeo. RT, RA OE=1, Rc=1

31 RT RA OE 232 Rc

0 6 11 16 21 22 31

>
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subfze
Subtract from Zero Extended
subfze
Subtract from Zero Extended

(RT) ← ¬(RA) + XER[CA]
if ¬(RA) + XER[CA]  232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA and XER[CA] is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0] if Rc contains 1
• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

subfze RT, RA OE=0, Rc=0

subfze. RT, RA OE=0, Rc=1

subfzeo RT, RA OE=1, Rc=0

subfzeo. RT, RA OE=1, Rc=1

31 RT RA OE 200 Rc

0 6 11 16 21 22 31
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tlbre
TLB Read Entry
tlbre
TLB Read Entry

tlbentry ← TLB[(RA)26:31]
if WS =0

(RT)0:27 ← tlbentry[EPN,V,TS,SIZE]
if CCR0[CRPE] = 0

(RT)28:31 ← 
40

else
(RT)28:31 ← TPAR

MMUCR[STID] ← tlbentry[TID] 
else if WS = 1

(RT)0:21 ← tlbentry[RPN]
if CCR0[CRPE] = 0

(RT)22:23 ← 
20

else
(RT)22:23 ← PAR1

(RT)24:27 ← 
40

(RT)28:31 ← tlbentry[ERPN]
else if WS = 2

if CCR0[CRPE] = 0
(RT)0:1 ← 

20
else

(RT)0:1 ← PAR2
(RT)2:15 ← 

140
(RT)16:24 ← tlbentry[U0,U1,U2,U3,W,I,M,G,E]
(RT)25 ← 0
(RT)26:31 ← tlbentry[UX,UW,UR,SX,SW,SR]

else (RT), MMUCR[STID] ← undefined

The contents of the specified portion of the selected TLB entry are placed into register RT (and also MMUCR[STID] 
if WS = 0).

The parity bits in the TLB entry (TPAR, PAR1, and PAR2) are placed into the register RT if and only if the Cache 
Read Parity Enable bit, CCR0[CRPE], is set to 1.

The contents of RA are used as an index into the TLB. If this value is greater than the index of the highest 
numbered TLB entry (63), the results are undefined.

The WS field specifies which portion of the TLB entry is placed into RT. If WS = 0, the TID field of the selected TLB 
entry is read into MMUCR[STID]. See Memory Management on page 103 for descriptions of the TLB entry fields.

If the value of the WS field is greater than 2, the instruction form is invalid and the result is undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT
• MMUCR[STID] (if WS = 0)

tlbre RT, RA, WS

31 RT RA WS 946

0 6 11 16 21 31
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tlbre
TLB Read Entry
Invalid Instruction Forms
• Reserved fields
• Invalid WS value 

Programming Notes

Execution of this instruction is privileged.

The PPC440 does not automatically synchronize the context of the MMUCR[STID] field between a tlbre instruction 
which updates the field, and a tlbsx[.] instruction which uses it as a source operand. Therefore, software must 
execute an isync instruction between the execution of a tlbre instruction and a subsequent tlbsx[.] instruction to 
ensure that the tlbsx[.] instruction will use the new value of MMUCR[STID]. On the other hand, the PPC440 does 
automatically synchronize the context of MMUCR[STID] between tlbre and tlbwe, as well as between tlbre and 
mfspr which specifies the MMUCR as the source SPR, so no isync is required in these cases.
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tlbsx
TLB Search Indexed
tlbsx
TLB Search Indexed

EA ← (RA|0) + (RB)
if Rc = 1

CR[CR0]0 ← 0
CR[CR0]1 ← 0
CR[CR0]3 ← XER[SO}

if Valid TLB entry matching EA and MMUCR[STID,STS] is in the TLB then
(RT) ← Index of matching TLB Entry
if Rc = 1

CR[CR0]2 ← 1 
else

(RT) ← Undefined 
if Rc = 1

CR[CR0]2 ← 0

An effective address is formed by adding an index to a base address. The index is the contents of register RB. The 
base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The TLB is searched for a valid entry which translates EA and MMUCR[STID,STS]. See Memory Management on 
page 103 for descriptions of the TLB fields and how they participate in the determination of a match. If a matching 
entry is found, its index (0 - 63) is placed into bits 26:31 of RT, and bits 0:25 are set to 0. If no match is found, the 
contents of RT are undefined.

The record bit (Rc) specifies whether the results of the search will affect CR[CR0] as shown above, such that 
CR[CR0]2 can be tested if there is a possibility that the search may fail.

Registers Altered
• CR[CR0] if Rc contains 1

Invalid Instruction Forms
• None

Programming Notes

Execution of this instruction is privileged.

The PPC440 does not automatically synchronize the context of the MMUCR[STID] field between a tlbre instruction 
which updates the field, and a tlbsx[.] instruction which uses it as a source operand. Therefore, software must 
execute an isync instruction between the execution of a tlbre instruction and a subsequent tlbsx[.] instruction to 
ensure that the tlbsx[.] instruction will use the new value of MMUCR[STID]. On the other hand, the PPC440 does 
automatically synchronize the context of MMUCR[STID] between tlbre and tlbwe, as well as between tlbre and 
mfspr which specifies the MMUCR as the source SPR, so no isync is required in these cases.

tlbsx RT, RA, RB Rc=0

tlbsx. RT, RA, RB Rc=1

31 RT RA RB 914 Rc

0 6 11 16 21 31
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tlbsync
TLB Synchronize
tlbsync
TLB Synchronize 

The tlbsync instruction is provided by the PowerPC Book-E architecture to support synchronization of TLB 
operations between processors in a coherent multi-processor system. Since the PPC440 does not support 
coherent multi-processing, this instruction performs no operation, and is provided only to facilitate code portability.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

Since the PPC440 does not support tightly-coupled multiprocessor systems, tlbsync performs no operation.

tlbsync

31 566

0 6 21 31
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tlbwe
TLB Write Entry
tlbwe
TLB Write Entry 

tlbentry ← TLB[(RA)26:31]
if WS = 0

tlbentry[EPN,V,TS,SIZE] ← (RS)0:27
tlbentry[TID] ← MMUCR[STID]

else if WS = 1
tlbentry[RPN] ← (RS)0:21
tlbentry[ERPN] ← (RS)28:31

else if WS = 2
tlbentry[U0,U1,U2,U3,W,I,M,G,E] ← (RS)16:24
tlbentry[UX,UW,UR,SX,SW,SR] ← (RS)26:31

else tlbentry ← undefined

The contents of the specified portion of the selected TLB entry are replaced with the contents of register RS (and 
also MMUCR[STID] if WS = 0).

Parity check bits are automatically calculated and stored in the TLB entry as the tlbwe is executed. The contents of 
the RS register in the TPAR, PAR1, and PAR2 fields (for WS=0,1,or 2, respectively) is ignored by tlbwe; the parity 
is calculated from the other data bits being written to the TLB entry.

The contents of RA are used as an index into the TLB. If this value is greater than the index of the highest 
numbered TLB entry (63), the results are undefined.

The WS field specifies which portion of the TLB entry is replaced by the contents of RS. If WS = 0, the TID field of 
the selected TLB entry is replaced by the value in MMUCR[STID]. See Memory Management on page 103 for 
descriptions of the TLB entry fields.

If the value of the WS field is greater than 2, the instruction form is invalid and the result is undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields
• Invalid WS value

Programming Note

Execution of this instruction is privileged.

tlbwe RS, RA, WS

31 RS RA WS 978

0 6 11 16 21 31
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tw
Trap Word
tw
Trap Word

if ( ((RA) (RB) ∧ TO0 = 1) ∨
((RA) (RB) ∧ TO1 = 1) ∨
((RA) (RB) ∧ TO2 = 1) ∨
((RA) (RB) ∧ TO3 = 1) ∨
((RA) (RB) ∧ TO4 = 1) )

SRR0 ← address of tw instruction
SRR1 ← MSR
ESR[PTR] ← 1 (other bits cleared)
MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS]) ← 90
PC ← IVPR0:15 || IVOR616:27 || 40

else no operation

Register RA is compared with register RB. If any comparison condition enabled by the TO field is true, a Trap 
exception type Program interrupt occurs as follows (see Program Interrupt on page 151 for more information on 
Program interrupts). The contents of the MSR are copied into SRR1 and the address of the tw instruction) is 
placed into SRR0. ESR[PTR] is set to 1 and the other bits ESR bits cleared to indicate the type of exception 
causing the Program interrupt.

The program counter (PC) is then loaded with the interrupt vector address. The interrupt vector address is formed 
by concatenating the high halfword of the Interrupt Vector Prefix Register (IVPR), bits 16:27 of the Interrupt Vector 
Offset Register 6 (IVOR6), and 0b0000.

MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS] are set to 0.

Program execution continues at the new address in the PC.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• SRR0 (if trap condition is met)
• SRR1 (if trap condition is met)
• MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS] (if trap condition is met)
• ESR (if trap condition is met)

Invalid Instruction Forms
• Reserved fields

Programming Notes

This instruction can be inserted into the execution stream by a debugger to implement breakpoints, and is not 
typically used by application code.

The enabling of trap debug events may affect the interrupt type caused by the execution of tw instruction. 
Specifically, trap instructions may be enabled to cause Debug interrupts instead of Program interrupts. See Trap 
(TRAP) Debug Event on page 197 for more details.

tw TO, RA, RB

31 TO RA RB 4

0 6 11 16 21 31
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tw
Trap Word
 

Table 8-32. Extended Mnemonics for tw  

Mnemonic Operands Function Other Registers Altered

trap
Trap unconditionally.

Extended mnemonic for
tw 31,0,0

tweq RA, RB
Trap if (RA) equal to (RB).

Extended mnemonic for
tw 4,RA,RB

twge RA, RB
Trap if (RA) greater than or equal to (RB).

Extended mnemonic for
tw 12,RA,RB

twgt RA, RB
Trap if (RA) greater than (RB).

Extended mnemonic for
tw 8,RA,RB

twle RA, RB
Trap if (RA) less than or equal to (RB).

Extended mnemonic for
tw 20,RA,RB

twlge RA, RB
Trap if (RA) logically greater than or equal to (RB).

Extended mnemonic for
tw 5,RA,RB

twlgt RA, RB
Trap if (RA) logically greater than (RB).

Extended mnemonic for
tw 1,RA,RB

twlle RA, RB
Trap if (RA) logically less than or equal to (RB).

Extended mnemonic for
tw 6,RA,RB

twllt RA, RB
Trap if (RA) logically less than (RB).

Extended mnemonic for
tw 2,RA,RB

twlng RA, RB
Trap if (RA) logically not greater than (RB).

Extended mnemonic for
tw 6,RA,RB

twlnl RA, RB
Trap if (RA) logically not less than (RB).

Extended mnemonic for
tw 5,RA,RB

twlt RA, RB
Trap if (RA) less than (RB).

Extended mnemonic for
tw 16,RA,RB

twne RA, RB
Trap if (RA) not equal to (RB).

Extended mnemonic for
tw 24,RA,RB

twng RA, RB
Trap if (RA) not greater than (RB).

Extended mnemonic for
tw 20,RA,RB

twnl RA, RB
Trap if (RA) not less than (RB).

Extended mnemonic for
tw 12,RA,RB
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twi
Trap Word Immediate
twi
Trap Word Immediate

if ( ((RA) EXTS(IM) ∧ TO0 = 1) ∨
((RA) EXTS(IM) ∧ TO1 = 1) ∨
((RA) EXTS(IM) ∧ TO2 = 1) ∨
((RA) EXTS(IM) ∧ TO3 = 1) ∨
((RA) EXTS(IM) ∧ TO4 = 1) )

SRR0 ← address of twi instruction
SRR1 ← MSR
ESR[PTR] ← 1 (other bits cleared)
MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS]) ← 90
PC ← IVPR0:15 || IVOR616:27 || 40

else no operation

Register RA is compared with the sign-extended IM field. If any comparison condition selected by the TO field is 
true, a Trap exception type Program interrupt occurs as follows (see Program Interrupt on page 151 for more 
information on Program interrupts). The contents of the MSR are copied into SRR1 and the address of the twi 
instruction) is placed into SRR0. ESR[PTR] is set to 1 and the other bits ESR bits cleared to indicate the type of 
exception causing the Program interrupt.

The program counter (PC) is then loaded with the interrupt vector address. The interrupt vector address is formed 
by concatenating the high halfword of the Interrupt Vector Prefix Register (IVPR), bits 16:27 of the Interrupt Vector 
Offset Register 6 (IVOR6), and 0b0000.

MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS] are set to 0.

Program execution continues at the new address in the PC.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• SRR0 (if trap condition is met)
• SRR1 (if trap condition is met)
• MSR[WE, EE, PR, FP, FE0, FE1, DWE, DS, IS] (if trap condition is met)
• ESR (if trap condition is met)

Invalid Instruction Forms
• Reserved fields

Programming Notes

This instruction can be inserted into the execution stream by a debugger to implement breakpoints, and is not 
typically used by application code.

The enabling of trap debug events may affect the interrupt type caused by the execution of tw instruction. 
Specifically, trap instructions may be enabled to cause Debug interrupts instead of Program interrupts. See Trap 
(TRAP) Debug Event on page 197 for more details. 

twi TO, RA, IM

3 TO RA IM

0 6 11 16 31
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twi
Trap Word Immediate
 

Table 8-33. Extended Mnemonics for twi  

Mnemonic Operands Function Other Registers Altered

tweqi RA, IM
Trap if (RA) equal to EXTS(IM).

Extended mnemonic for
twi 4,RA,IM

twgei RA, IM
Trap if (RA) greater than or equal to EXTS(IM).

Extended mnemonic for
twi 12,RA,IM

twgti RA, IM
Trap if (RA) greater than EXTS(IM).

Extended mnemonic for
twi 8,RA,IM

twlei RA, IM
Trap if (RA) less than or equal to EXTS(IM).

Extended mnemonic for
twi 20,RA,IM

twlgei RA, IM
Trap if (RA) logically greater than or equal to EXTS(IM).

Extended mnemonic for
twi 5,RA,IM

twlgti RA, IM
Trap if (RA) logically greater than EXTS(IM).

Extended mnemonic for
twi 1,RA,IM

twllei RA, IM
Trap if (RA) logically less than or equal to EXTS(IM).

Extended mnemonic for
twi 6,RA,IM

twllti RA, IM
Trap if (RA) logically less than EXTS(IM).

Extended mnemonic for
twi 2,RA,IM

twlngi RA, IM
Trap if (RA) logically not greater than EXTS(IM).

Extended mnemonic for
twi 6,RA,IM

twlnli RA, IM
Trap if (RA) logically not less than EXTS(IM).

Extended mnemonic for
twi 5,RA,IM

twlti RA, IM
Trap if (RA) less than EXTS(IM).

Extended mnemonic for 
twi 16,RA,IM

twnei RA, IM
Trap if (RA) not equal to EXTS(IM).

Extended mnemonic for
twi 24,RA,IM

twngi RA, IM
Trap if (RA) not greater than EXTS(IM).

Extended mnemonic for
twi 20,RA,IM

twnli RA, IM
Trap if (RA) not less than EXTS(IM).

Extended mnemonic for
twi 12,RA,IM
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wrtee
Write External Enable
wrtee
Write External Enable

MSR[EE] ← (RS)16

MSR[EE] is set to the value specified by bit 16 of register RS.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR[EE]

Invalid Instruction Forms:
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

This instruction is typically used as part of a code sequence which can provide the equivalent of an atomic read-
modify-write of the MSR, as follows:

mfmsr Rn #save EE in Rn[16]
wrteei 0 #Turn off EE (leaving other bits unchanged)
• #Code with EE disabled
•
•
wrtee Rn #restore EE without affecting any MSR changes that occurred in the disabled code

wrtee RS

31 RS 131

0 6 11 21 31
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wrteei
Write External Enable Immediate
wrteei
Write External Enable Immediate

MSR[EE] ← E

MSR[EE] is set to the value specified by the E field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR[EE]

Invalid Instruction Forms:
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

This instruction is typically used as part of a code sequence which can provide the equivalent of an atomic read-
modify-write of the MSR, as follows:

mfmsr Rn #save EE in Rn[16]
wrteei 0 #Turn off EE (leaving other bits unchanged)
• #Code with EE disabled
•
•
wrtee Rn #restore EE without affecting any MSR changes that occurred in the disabled code

wrteei E

31 E 163

0 6 16 17 21 31
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xor
XOR
xor
XOR

(RA) ← (RS) ⊕ (RB)

The contents of register RS are XORed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0] if Rc contains 1

xor RA, RS, RB Rc=0

xor. RA, RS, RB Rc=1

31 RS RA RB 316 Rc

0 6 11 16 21 31
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xori
XOR Immediate
xori
XOR Immediate

(RA) ← (RS) ⊕ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register RS are XORed 
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

xori RA, RS, IM

26 RS RA IM

0 6 11 16 31
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xoris
XOR Immediate Shifted
xoris
XOR Immediate Shifted

(RA) ← (RS) ⊕ (IM || 160)

The IM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents of register RS are XORed 
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

xoris RA, RS, IM

27 RS RA IM

0 6 11 16 31
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9. Register Summary
This chapter provides an alphabetical listing and bit definitions for the registers contained in the PPC440.

The registers, of five types, are grouped into several functional categories according to the processor functions 
with which they are associated. More information about the registers and register categories is provided in 
Section 2.2 Registers on page 36, and in the chapters describing the processor functions with which each register 
category is associated.

9.1 Register Categories

Table 2-3 on page 39 summarizes the register categories and the registers contained in each category. Italicized 
register names are implementation-specific. All other registers are defined by the Book-E Enhanced PowerPC 
Architecture.

Table 9-1, lists the Special Purpose Registers (SPRs) in order by SPR number (SPRN). The table provides 
mnemonics, names, SPR numbers, model (user or supervisor), and access. All SPR numbers not listed are 
reserved, and should be neither read nor written.

Note that three registers, DBSR, MCSR, and TSR, are indicated as having the access type of Read/Clear. These 
three registers are status registers, and as such behave differently than other SPRs when written. The term 
Read/Clear does not mean that these registers are automatically cleared upon being read. Clear refers to their 
behavior when being written. Instead of simply overwriting the SPR with the data in the source GPR, the status 
SPR is updated by zeroing those bit positions corresponding to 1 values in the source GPR, with those bit positions 
corresponding to 0 values in the source GPR being left unchanged. In this fashion, it is possible for software to 
read one of these status SPRs, and then write to it using the same data which was read. Any bits which were read 
as 1 will then be cleared, and any bits which were not yet set at the time the SPR was read will be left unchanged. 
If any of these previously clear bits happen to be set between the time the SPR is read and when it is written, then 
when the SPR is later read again, software will observe any newly set bits. If it were not for this behavior, then soft-
ware could erroneously clear bits which it had not yet observed as having been set, and overlook the occurrence of 
certain exceptions.
  

Table 9-1. Special Purpose Registers Sorted by SPR Number  

Mnemonic Register Name SPRN Model Access

XER Integer Exception Register 0x001 User Read/Write

LR Link Register 0x008 User Read/Write

CTR Count Register 0x009 User Read/Write

DEC Decrementer 0x016 Supervisor Read/Write

SRR0 Save/Restore Register 0 0x01A Supervisor Read/Write

SRR1 Save/Restore Register 1 0x01B Supervisor Read/Write

PID Process ID 0x030 Supervisor Read/Write

DECAR Decrementer Auto-Reload 0x036 Supervisor Write-only

CSRR0 Critical Save/Restore Register 0 0x03A Supervisor Read/Write

CSRR1 Critical Save/Restore Register 1 0x03B Supervisor Read/Write

DEAR Data Exception Address Register 0x03D Supervisor Read/Write

ESR Exception Syndrome Register 0x03E Supervisor Read/Write

IVPR Interrupt Vector Prefix Register 0x03F Supervisor Read/Write

USPRG0 User Special Purpose Register General 0 0x100 User Read/Write
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SPRG4 Special Purpose Register General 4 0x104 User Read-only

SPRG5 Special Purpose Register General 5 0x105 User Read-only

SPRG6 Special Purpose Register General 6 0x106 User Read-only

SPRG7 Special Purpose Register General 7 0x107 User Read-only

TBL Time Base Lower 0x10C User Read-only

TBU Time Base Upper 0x10D User Read-only

SPRG0 Special Purpose Register General 0 0x110 Supervisor Read/Write

SPRG1 Special Purpose Register General 1 0x111 Supervisor Read/Write

SPRG2 Special Purpose Register General 2 0x112 Supervisor Read/Write

SPRG3 Special Purpose Register General 3 0x113 Supervisor Read/Write

SPRG4 Special Purpose Register General 4 0x114 Supervisor Write-only

SPRG5 Special Purpose Register General 5 0x115 Supervisor Write-only

SPRG6 Special Purpose Register General 6 0x116 Supervisor Write-only

SPRG7 Special Purpose Register General 7 0x117 Supervisor Write-only

TBL Time Base Lower 0x11C Supervisor Write-only

TBU Time Base Upper 0x11D Supervisor Write-only

PIR Processor ID Register 0x11E Supervisor Read-only

PVR Processor Version Register 0x11F Supervisor Read-only

DBSR Debug Status Register 0x130 Supervisor Read/Clear

DBCR0 Debug Control Register 0 0x134 Supervisor Read/Write

DBCR1 Debug Control Register 1 0x135 Supervisor Read/Write

DBCR2 Debug Control Register 2 0x136 Supervisor Read/Write

IAC1 Instruction Address Compare 1 0x138 Supervisor Read/Write

IAC2 Instruction Address Compare 2 0x139 Supervisor Read/Write

IAC3 Instruction Address Compare 3 0x13A Supervisor Read/Write

IAC4 Instruction Address Compare 4 0x13B Supervisor Read/Write

DAC1 Data Address Compare 1 0x13C Supervisor Read/Write

DAC2 Data Address Compare 2 0x13D Supervisor Read/Write

DVC1 Data Value Compare 1 0x13E Supervisor Read/Write

DVC2 Data Value Compare 2 0x13F Supervisor Read/Write

TSR Timer Status Register 0x150 Supervisor Read/Clear

TCR Timer Control Register 0x154 Supervisor Read/Write

IVOR0 Interrupt Vector Offset Register 0 0x190 Supervisor Read/Write

IVOR1 Interrupt Vector Offset Register 1 0x191 Supervisor Read/Write

IVOR2 Interrupt Vector Offset Register 2 0x192 Supervisor Read/Write

IVOR3 Interrupt Vector Offset Register 3 0x193 Supervisor Read/Write

IVOR4 Interrupt Vector Offset Register 4 0x194 Supervisor Read/Write

IVOR5 Interrupt Vector Offset Register 5 0x195 Supervisor Read/Write

Table 9-1. Special Purpose Registers Sorted by SPR Number (continued) 

Mnemonic Register Name SPRN Model Access
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IVOR6 Interrupt Vector Offset Register 6 0x196 Supervisor Read/Write

IVOR7 Interrupt Vector Offset Register 7 0x197 Supervisor Read/Write

IVOR8 Interrupt Vector Offset Register 8 0x198 Supervisor Read/Write

IVOR9 Interrupt Vector Offset Register 9 0x199 Supervisor Read/Write

IVOR10 Interrupt Vector Offset Register 10 0x19A Supervisor Read/Write

IVOR11 Interrupt Vector Offset Register 11 0x19B Supervisor Read/Write

IVOR12 Interrupt Vector Offset Register 12 0x19C Supervisor Read/Write

IVOR13 Interrupt Vector Offset Register 13 0x19D Supervisor Read/Write

IVOR14 Interrupt Vector Offset Register 14 0x19E Supervisor Read/Write

IVOR15 Interrupt Vector Offset Register 15 0x19F Supervisor Read/Write

MCSRR0 Machine Check Save Restore Register 0 0x23A Supervisor Read/Write

MCSRR1 Machine Check Save Restore Register 1 0x23B Supervisor Read/Write

MCSR Machine Check Status Register 0x23C Supervisor Read/Write

INV0 Instruction Cache Normal Victim 0 0x370 Supervisor Read/Write

INV1 Instruction Cache Normal Victim 1 0x371 Supervisor Read/Write

INV2 Instruction Cache Normal Victim 2 0x372 Supervisor Read/Write

INV3 Instruction Cache Normal Victim 3 0x373 Supervisor Read/Write

ITV0 Instruction Cache Transient Victim 0 0x374 Supervisor Read/Write

ITV1 Instruction Cache Transient Victim 1 0x375 Supervisor Read/Write

ITV2 Instruction Cache Transient Victim 2 0x376 Supervisor Read/Write

ITV3 Instruction Cache Transient Victim 3 0x377 Supervisor Read/Write

CCR1 Core Configuration Register 1 0x378 Supervisor Read/Write

DNV0 Data Cache Normal Victim 0 0x390 Supervisor Read/Write

DNV1 Data Cache Normal Victim 1 0x391 Supervisor Read/Write

DNV2 Data Cache Normal Victim 2 0x392 Supervisor Read/Write

DNV3 Data Cache Normal Victim 3 0x393 Supervisor Read/Write

DTV0 Data Cache Transient Victim 0 0x394 Supervisor Read/Write

DTV1 Data Cache Transient Victim 1 0x395 Supervisor Read/Write

DTV2 Data Cache Transient Victim 2 0x396 Supervisor Read/Write

DTV3 Data Cache Transient Victim 3 0x397 Supervisor Read/Write

DVLIM Data Cache Victim Limit 0x398 Supervisor Read/Write

IVLIM Instruction Cache Victim Limit 0x399 Supervisor Read/Write

RSTCFG Reset Configuration 0x39B Supervisor Read-only

DCDBTRL Data Cache Debug Tag Register Low 0x39C Supervisor Read-only

DCDBTRH Data Cache Debug Tag Register High 0x39D Supervisor Read-only

ICDBTRL Instruction Cache Debug Tag Register Low 0x39E Supervisor Read-only

ICDBTRH Instruction Cache Debug Tag Register High 0x39F Supervisor Read-only

MMUCR Memory Management Unit Control Register 0x3B2 Supervisor Read/Write

Table 9-1. Special Purpose Registers Sorted by SPR Number (continued) 

Mnemonic Register Name SPRN Model Access
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9.2 Reserved Fields

For all registers with fields marked as reserved, the reserved fields should be written as zero and read as unde-
fined. That is, when writing to a reserved field, write a zero to that field. When reading from a reserved field, ignore 
that field.

The recommended coding practice is to perform the initial write to a register with reserved fields as described in the 
preceding paragraph, and to perform all subsequent writes to the register using a read-modify-write strategy: read 
the register, alter desired fields with logical instructions, and then write the register.

9.3 Alphabetical Listing of Processor Core Registers

The following table lists the processor core registers available in the PPC440. For each register, the following 
information is supplied:

• Register mnemonic.

Note:  Note that these registers, unlike those associated with functional units outside the processor core, have 
no prefix.

• Register type.

• Register description.

• Register number or address.

• Register programming model (User or Supervisor).

• Access (Read/Clear, Read-Only, Read/Write, Write-Only).

• Cross reference to detailed register information.

  

CCR0 Core Configuration Register 0 0x3B3 Supervisor Read/Write

ICDBDR Instruction Cache Debug Data Register 0x3D3 Supervisor Read-only

DBDR Debug Data Register 0x3F3 Supervisor Read/Write

Table 9-2. Alphabetical Listing of Processor Core Registers  

Register Type Description Address Model Access See page

CCR0 SPR Core Configuration Register 0 0x3B3 Supervisor R/W 61

CCR1 SPR Core Configuration Register 1 0x378 Supervisor R/W 63

CR CR Condition Register NA User R/W 54

CSRR0 SPR Critical Save/Restore Register 0 0x03A Supervisor R/W 135

CSRR1 SPR Critical Save/Restore Register 1 0x03B Supervisor R/W 135

CTR SPR Count Register 0x009 User R/W 54

DAC1 SPR Data Address Compare 1 0x13C Supervisor R/W 206

DAC2 SPR Data Address Compare 2 0x13D Supervisor R/W 206

DBCR0 SPR Debug Control Register 0 0x134 Supervisor R/W 201

Table 9-1. Special Purpose Registers Sorted by SPR Number (continued) 

Mnemonic Register Name SPRN Model Access
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DBCR1 SPR Debug Control Register 1 0x135 Supervisor R/W 202

DBCR2 SPR Debug Control Register 2 0x136 Supervisor R/W 204

DBDR SPR Debug Data Register 0x3F3 Supervisor R/W 207

DBSR SPR Debug Status Register 0x130 Supervisor Read/Clear 205

DCDBTRH SPR Data Cache Debug Tag Register High 0x39D Supervisor Read-only 96

DCDBTRL SPR Data Cache Debug Tag Register Low 0x39C Supervisor Read-only 96

DEAR SPR Data Exception Address Register 0x03D Supervisor R/W 136

DEC SPR Decrementer 0x016 Supervisor R/W 175

DECAR SPR Decrementer Auto-Reload 0x036 Supervisor Write-only 175

DNV0 SPR Data Cache Normal Victim 0 0x390 Supervisor R/W 72

DNV1 SPR Data Cache Normal Victim 1 0x391 Supervisor R/W 72

DNV2 SPR Data Cache Normal Victim 2 0x392 Supervisor R/W 72

DNV3 SPR Data Cache Normal Victim 3 0x393 Supervisor R/W 72

DTV0 SPR Data Cache Transient Victim 0 0x394 Supervisor R/W 72

DTV1 SPR Data Cache Transient Victim 1 0x395 Supervisor R/W 72

DTV2 SPR Data Cache Transient Victim 2 0x396 Supervisor R/W 72

DTV3 SPR Data Cache Transient Victim 3 0x397 Supervisor R/W 72

DVC1 SPR Data Value Compare 1 0x13E Supervisor R/W 206

DVC2 SPR Data Value Compare 2 0x13F Supervisor R/W 206

DVLIM SPR Data Cache Victim Limit 0x398 Supervisor R/W 73

ESR SPR Exception Syndrome Register 0x03E Supervisor R/W 138

GPR (R0:R31) GPR General Purpose Registers NA User R/W 57

IAC1 SPR Instruction Address Compare 1 0x138 Supervisor R/W 206

IAC2 SPR Instruction Address Compare 2 0x139 Supervisor R/W 206

IAC3 SPR Instruction Address Compare 3 0x13A Supervisor R/W 206

IAC4 SPR Instruction Address Compare 4 0x13B Supervisor R/W 206

ICDBDR SPR Instruction Cache Debug Data Register 0x3D3 Supervisor Read-only 83

ICDBTRH SPR Instruction Cache Debug Tag Register High 0x39F Supervisor Read-only 83

ICDBTRL SPR Instruction Cache Debug Tag Register Low 0x39E Supervisor Read-only 83

INV0 SPR Instruction Cache Normal Victim 0 0x370 Supervisor R/W 72

INV1 SPR Instruction Cache Normal Victim 1 0x371 Supervisor R/W 72

INV2 SPR Instruction Cache Normal Victim 2 0x372 Supervisor R/W 72

INV3 SPR Instruction Cache Normal Victim 3 0x373 Supervisor R/W 72

ITV0 SPR Instruction Cache Transient Victim 0 0x374 Supervisor R/W 72

ITV1 SPR Instruction Cache Transient Victim 1 0x375 Supervisor R/W 72

ITV2 SPR Instruction Cache Transient Victim 2 0x376 Supervisor R/W 72

ITV3 SPR Instruction Cache Transient Victim 3 0x377 Supervisor R/W 72

IVLIM SPR Instruction Cache Victim Limit 0x399 Supervisor R/W 73

Table 9-2. Alphabetical Listing of Processor Core Registers (continued) 

Register Type Description Address Model Access See page
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IVOR0 SPR Interrupt Vector Offset Register 0 0x190 Supervisor R/W 137

IVOR1 SPR Interrupt Vector Offset Register 1 0x191 Supervisor R/W 137

IVOR2 SPR Interrupt Vector Offset Register 2 0x192 Supervisor R/W 137

IVOR3 SPR Interrupt Vector Offset Register 3 0x193 Supervisor R/W 137

IVOR4 SPR Interrupt Vector Offset Register 4 0x194 Supervisor R/W 137

IVOR5 SPR Interrupt Vector Offset Register 5 0x195 Supervisor R/W 137

IVOR6 SPR Interrupt Vector Offset Register 6 0x196 Supervisor R/W 137

IVOR7 SPR Interrupt Vector Offset Register 7 0x197 Supervisor R/W 137

IVOR8 SPR Interrupt Vector Offset Register 8 0x198 Supervisor R/W 137

IVOR9 SPR Interrupt Vector Offset Register 9 0x199 Supervisor R/W 137

IVOR10 SPR Interrupt Vector Offset Register 10 0x19A Supervisor R/W 137

IVOR11 SPR Interrupt Vector Offset Register 11 0x19B Supervisor R/W 137

IVOR12 SPR Interrupt Vector Offset Register 12 0x19C Supervisor R/W 137

IVOR13 SPR Interrupt Vector Offset Register 13 0x19D Supervisor R/W 137

IVOR14 SPR Interrupt Vector Offset Register 14 0x19E Supervisor R/W 137

IVOR15 SPR Interrupt Vector Offset Register 15 0x19F Supervisor R/W 137

IVPR SPR Interrupt Vector Prefix Register 0x03F Supervisor R/W 138

LR SPR Link Register 0x008 User R/W 53

MCSR SPR Machine Check Status Register 0x23C Supervisor R/W 140

MCSRR0 SPR Machine Check Save Restore Register 0 0x23A Supervisor R/W 135

MCSRR1 SPR Machine Check Save Restore Register 1 0x23B Supervisor R/W 136

MMUCR SPR Memory Management Unit Control Register 0x3B2 Supervisor R/W 117

MSR MSR Machine State Register NA Supervisor R/W 133

PID SPR Process ID 0x030 Supervisor R/W 120

PIR SPR Processor ID Register 0x11E Supervisor Read-only 61

PVR SPR Processor Version Register 0x11F Supervisor Read-only 60

RSTCFG SPR Reset Configuration 0x39B Supervisor Read-only 65

SPRG0 SPR Special Purpose Register General 0 0x110 Supervisor R/W 60

SPRG1 SPR Special Purpose Register General 1 0x111 Supervisor R/W 60

SPRG2 SPR Special Purpose Register General 2 0x112 Supervisor R/W 60

SPRG3 SPR Special Purpose Register General 3 0x113 Supervisor R/W 60

SPRG4 SPR Special Purpose Register General 4 0x104 User Read-only 60

SPRG4 SPR Special Purpose Register General 4 0x114 Supervisor Write-only 60

SPRG5 SPR Special Purpose Register General 5 0x105 User Read-only 60

SPRG5 SPR Special Purpose Register General 5 0x115 Supervisor Write-only 60

SPRG6 SPR Special Purpose Register General 6 0x106 User Read-only 60

SPRG6 SPR Special Purpose Register General 6 0x116 Supervisor Write-only 60

SPRG7 SPR Special Purpose Register General 7 0x107 User Read-only 60

Table 9-2. Alphabetical Listing of Processor Core Registers (continued) 

Register Type Description Address Model Access See page
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SPRG7 SPR Special Purpose Register General 7 0x117 Supervisor Write-only 60

SRR0 SPR Save/Restore Register 0 0x01A Supervisor R/W 134

SRR1 SPR Save/Restore Register 1 0x01B Supervisor R/W 134

TBL SPR Time Base Lower 0x10C User Read-only 174

TBL SPR Time Base Lower 0x11C Supervisor Write-only 174

TBU SPR Time Base Upper 0x10D User Read-only 174

TBU SPR Time Base Upper 0x11D Supervisor Write-only 174

TCR SPR Timer Control Register 0x154 Supervisor R/W 178

TSR SPR Timer Status Register 0x150 Supervisor Read/Clear 179

USPRG0 SPR User Special Purpose Register General 0 0x100 User R/W 60

XER SPR Integer Exception Register 0x001 User R/W 57

Table 9-2. Alphabetical Listing of Processor Core Registers (continued) 

Register Type Description Address Model Access See page
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Appendix A. Instruction Summary
This appendix describes the various instruction formats, and lists all of the PPC440 instructions summarized 
alphabetically and by opcode.

Appendix A.1 on page 411 illustrates the PPC440 instruction forms (allowed arrangements of fields within 
instructions).

Appendix A.2 on page 416 lists all PPC440 mnemonics, including extended mnemonics. A short functional 
description is included for each mnemonic.

Appendix A.3 on page 445 identifies those opcodes which are allocated by PowerPC Book-E for implementation-
dependent usage, including auxiliary processors.

Appendix A.4 on page 445 identifies those opcodes which are identified by PowerPC Book-E as “preserved” for 
compatibility with previous versions of the architecture.

Appendix A.5 on page 446 indentifies those opcodes which are “reserved” for use by future versions of the 
architecture.

Appendix A.6 on page 446, lists all instructions implemented within the PPC440, sorted by primary and secondary 
opcodes. Extended mnemonics are not included in the opcode list, but allocated, preserved, and reserved-nop 
opcodes are included.

A.1 Instruction Formats

Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode in 
another field. Remaining instruction bits contain additional fields. All instruction fields belong to one of the following 
categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The instruction format diagrams 
specify the values of defined fields.

• Variable

These fields contain operands, such as GPR selectors and immediate values, that can vary from execution to 
execution. The instruction format diagrams specify the operands in the variable fields.

• Reserved

Bits in reserved fields should be set to 0. In the instruction format diagrams, /, //, or /// indicate reserved fields.

If any bit in a defined field does not contain the expected value, the instruction is illegal and an illegal instruction 
exception occurs. If any bit in a reserved field does not contain 0, the instruction form is invalid; its result is 
architecturally undefined. The PPC440 executes all invalid instruction forms without causing an illegal instruction 
exception.

A.1.1 Instruction Fields

PPC440 instructions contain various combinations of the following fields, as indicated in the instruction format 
diagrams that follow the field definitions. Numbers, enclosed in parentheses, that follow the field names indicate bit 
positions; bit fields are indicated by starting and stopping bit positions separated by colons.
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AA (30) Absolute address bit.

0 The immediate field represents an address relative to the current instruction address (CIA). 
The effective address (EA) of the branch is either the sum of the LI field sign-extended to 32 
bits and the branch instruction address, or the sum of the BD field sign-extended to 32 bits and 
the branch instruction address.

1 The immediate field represents an absolute address. The EA of the branch is either the LI field 
or the BD field, sign-extended to 32 bits.

BA (11:15) Specifies a bit in the CR used as a source of a CR-logical instruction.

BB (16:20) Specifies a bit in the CR used as a source of a CR-logical instruction.

BD (16:29) An immediate field specifying a 14-bit signed twos complement branch displacement. This field is 
concatenated on the right with 0b00 and sign-extended to 32 bits.

BF (6:8) Specifies a field in the CR used as a target in a compare or mcrf instruction.

BFA (11:13) Specifies a field in the CR used as a source in a mcrf instruction.

BI (11:15) Specifies a bit in the CR used as a source for the condition of a conditional branch instruction.

BO (6:10) Specifies options for conditional branch instructions. See “Branch Instruction BO Field” on 
page 51.

BT (6:10) Specifies a bit in the CR used as a target as the result of a CR-Logical instruction.

D (16:31) Specifies a 16-bit signed two’s-complement integer displacement for load/store instructions.

DCRF (11:20) Specifies a device control register (DCR). This field represents the DCR Number (DCRN) with the 
upper and lower five bits reversed (that is, DCRF = DCRN[5:9] || DCRN[0:4]).

FXM (12:19) Field mask used to identify CR fields to be updated by the mtcrf instruction.

IM (16:31) An immediate field used to specify a 16-bit value (either signed integer or unsigned).

LI (6:29) An immediate field specifying a 24-bit signed twos complement branch displacement; this field is 
concatenated on the right with b'00' and sign-extended to 32 bits.

LK (31) Link bit.

0 Do not update the link register (LR).
1 Update the LR with the address of the next instruction.

MB (21:25) Mask begin.

Used in rotate-and-mask instructions to specify the beginning bit of a mask.

ME (26:30) Mask end.

Used in rotate-and-mask instructions to specify the ending bit of a mask.

MO (6:10) Memory Ordering.

Provides a storage ordering function for storage accesses executing prior to an mbar instruction. 
MO is ignored and treated as 0 in the PPC440 CPU core.

NB (16:20) Specifies the number of bytes to move in an immediate string load or store.

OPCD (0:5) Primary opcode. Primary opcodes, in decimal, appear in the instruction format diagrams 
presented with individual instructions. The OPCD field name does not appear in instruction 
descriptions.

OE (21) Enables setting the OV and SO fields in the fixed-point exception register (XER) for extended 
arithmetic.

RA (11:15) A GPR used as a source or target.

RB (16:20) A GPR used as a source.
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Rc (31) Record bit.

0 Do not set the CR.
1 Set the CR to reflect the result of an operation.

See “Condition Register (CR)” on page 54 for a further discussion of how the CR bits are set.

RS (6:10) A GPR used as a source.

RT (6:10) A GPR used as a target.

SH (16:20) Specifies a shift amount.

SPRF (11:20) Specifies a special purpose register (SPR). This field represents the SPR Number (SPRN) with the 
upper and lower five bits reversed (that is, SPRF = SPRN[5:9] || SPRN[0:4]).

TO (6:10) Specifies the conditions on which to trap, as described under tw and twi instructions.

WS (16:20) Specifies the portion of a TLB entry to be read/written by tlbre/tlbwe.

XO (21:30) Extended opcode for instructions without an OE field. Extended opcodes, in decimal, appear in the 
instruction format diagrams presented with individual instructions. The XO field name does not 
appear in instruction descriptions.

XO (22:30) Extended opcode for instructions with an OE field. Extended opcodes, in decimal, appear in the 
instruction format diagrams presented with individual instructions. The XO field name does not 
appear in instruction descriptions.

A.1.2 Instruction Format Diagrams

The instruction formats (also called “forms”) illustrated in Figure A-1 through Figure A-9 are valid combinations of 
instruction fields. Table A-5 on page 447 indicates which “form” is utilized by each PPC440 opcode. Fields 
indicated by slashes (/, //, or ///) are reserved. The figures are adapted from the PowerPC User Instruction Set 
Architecture.
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A.1.2.1 I-Form

A.1.2.2 B-Form

A.1.2.3 SC-Form

A.1.2.4 D-Form

Figure A-1. I Instruction Format 

OPCD LI

0 6 31

Figure A-2. B Instruction Format 

OPCD BO BI BD AA LK

0 6 11 16 30 31

Figure A-3. SC Instruction Format 

OPCD /// /// /// 1 /

0 6 11 16 30 31

Figure A-4. D Instruction Format 

OPCD RT RA D

OPCD RS RA SI

OPCD RS RA D

OPCD RS RA UI

OPCD BF / L RA SI

OPCD BF / L RA UI

OPCD TO RA SI

0 6 11 16 31
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A.1.2.5 X-Form

Figure A-5. X Instruction Format 

OPCD RT RA RB XO Rc

OPCD RT RA RB XO /

OPCD RT RA NB XO /

OPCD RT RA WS XO /

OPCD RT /// RB XO /

OPCD RT /// /// XO /

OPCD RS RA RB XO Rc

OPCD RS RA RB XO 1

OPCD RS RA RB XO /

OPCD RS RA NB XO /

OPCD RS RA WS XO /

OPCD RS RA SH XO Rc

OPCD RS RA /// XO Rc

OPCD RS /// RB XO /

OPCD RS /// /// XO /

OPCD BF / L RA RB XO /

OPCD BF // BFA // /// XO Rc

OPCD BF // /// /// XO /

OPCD BF // /// U XO Rc

OPCD BF // /// /// XO /

OPCD TO RA RB XO /

OPCD BT /// /// XO Rc

OPCD MO /// /// XO /

OPCD /// RA RB XO /

OPCD /// /// /// XO /

OPCD /// /// E // XO /

0 6 11 16 21 31
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A.1.2.6 XL-Form

A.1.2.7 XFX-Form

A.1.2.8 XO-Form

A.1.2.9 M-Form

A.2 Alphabetical Summary of Implemented Instructions

Table A-1 summarizes the PPC440 instruction set, including required extended mnemonics. All mnemonics are 
listed alphabetically, without regard to whether the mnemonic is realized in hardware or software. When an 
instruction supports multiple hardware mnemonics (for example, b, ba, bl, bla are all forms of b), the instruction is 

Figure A-6. XL Instruction Format 

OPCD BT BA BB XO /

OPCD BC BI /// XO LK

OPCD BF // BFA // /// XO /

OPCD /// /// /// XO /

0 6 11 16 21 31

Figure A-7. XFX Instruction Format 

OPCD RT SPRF XO /

OPCD RT DCRF XO /

OPCD RT / FXM / XO /

OPCD RS SPRF XO /

OPCD RS DCRF XO /

0 6 11 16 21 31

Figure A-8. XO Instruction Format 

OPCD RT RA RB OE XO Rc

OPCD RT RA RB OE XO Rc

OPCD RT RA /// / XO Rc

0 6 11 16 21 22 31

Figure A-9. M Instruction Format 

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

0 6 11 16 21 26 31
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alphabetized under the root form. The hardware instructions are described in detail in Chapter 8, “Instruction Set,” 
which is also alphabetized under the root form. Section 8 also describes the instruction operands and notation.

Programming Note: Bit 4 of the BO instruction field provides a hint about the most likely outcome of a 
conditional branch. (See “Branch Prediction” on page 52 for a detailed description of branch prediction.) 
Assemblers should set BO4 = 0 unless a specific reason exists otherwise. In the BO field values specified in 
Table A-1, BO4 = 0 has always been assumed. The assembler must enable the programmer to specify branch 
prediction. To do this, the assembler supports suffixes for the conditional branch mnemonics:

+ Predict branch to be taken.

– Predict branch not to be taken.

For example, bc also could be coded as bc+ or bc–, and bne also could be coded 
bne+ or bne–. These alternate codings set BO4 = 1 only if the requested 
prediction differs from the standard prediction. See “Branch Prediction” on 
page 52 for more information. 

Table A-1. PPC440 Instruction Syntax Summary  
Mnemonic Operands Function Other Registers Changed Page

add

RT, RA, RB
Add (RA) to (RB).
Place result in RT.

214
add. CR[CR0]
addo XER[SO, OV]

addo. CR[CR0]
XER[SO, OV]

addc

RT, RA, RB
Add (RA) to (RB).
Place result in RT.
Place carry-out in XER[CA].

215
addc. CR[CR0]
addco XER[SO, OV]

addco. CR[CR0]
XER[SO, OV]

adde

RT, RA, RB
Add XER[CA], (RA), (RB).
Place result in RT.
Place carry-out in XER[CA].

216
adde. CR[CR0]
addeo XER[SO, OV]

addeo. CR[CR0]
XER[SO, OV]

addi RT, RA, IM
Add EXTS(IM) to (RA|0).
Place result in RT.

217

addic RT, RA, IM
Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

218

addic. RT, RA, IM
Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0] 219

addis RT, RA, IM
Add (IM || 160) to (RA|0).
Place result in RT.

220

addme

RT, RA
Add XER[CA], (RA), (-1).
Place result in RT.
Place carry-out in XER[CA].

221
addme. CR[CR0]
addmeo XER[SO, OV]

addmeo. CR[CR0]
XER[SO, OV]

addze

RT, RA
Add XER[CA] to (RA).
Place result in RT.
Place carry-out in XER[CA].

222
addze. CR[CR0]
addzeo XER[SO, OV]

addzeo. CR[CR0]
XER[SO, OV]
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and 
RA, RS, RB

AND (RS) with (RB).
Place result in RA.

223
and. CR[CR0]
andc

RA, RS, RB 
AND (RS) with ¬(RB).
Place result in RA.

224
andc. CR[CR0]

andi. RA, RS, IM
AND (RS) with (160 || IM).
Place result in RA.

CR[CR0] 225

andis. RA, RS, IM
AND (RS) with (IM || 160).
Place result in RA.

CR[CR0] 226

b

target

Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

227

ba
Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

bl
Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

(LR) ← CIA + 4

bla
Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

(LR) ← CIA + 4

bc

BO, BI, target

Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0

228

bca
Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0

bcl
Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0
(LR) ← CIA + 4

bcla
Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0
(LR) ← CIA + 4

bcctr
BO, BI

Branch conditional to address in CTR.
Using (CTR) at exit from instruction,
NIA ← CTR0:29 || 20

CTR if BO2 = 0
233

bcctrl CTR if BO2 = 0
(LR) ← CIA + 4

bclr
BO, BI

Branch conditional to address in LR.
Using (LR) at entry to instruction,
NIA ← LR0:29 || 20

CTR if BO2 = 0
236

bclrl CTR if BO2 = 0
(LR) ← CIA + 4

bctr
Branch unconditionally to address in CTR.
Extended mnemonic for

bcctr 20,0 233

bctrl Extended mnemonic for
bcctrl 20,0 (LR) ← CIA + 4

bdnz

target

Decrement CTR.
Branch if CTR ≠ 0
Extended mnemonic for

bc 16,0,target

228bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target (LR) ← CIA + 4

bdnzla Extended mnemonic for
bcla 16,0,target (LR) ← CIA + 4

Table A-1. PPC440 Instruction Syntax Summary (continued) 
Mnemonic Operands Function Other Registers Changed Page
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bdnzlr

Decrement CTR.
Branch if CTR ≠ 0 to address in LR.
Extended mnemonic for

bclr 16,0 236

bdnzlrl Extended mnemonic for
bclrl 16,0 (LR) ← CIA + 4

bdnzf

cr_bit, target

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0
Extended mnemonic for

bc 0,cr_bit,target

228bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target (LR) ← CIA + 4

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target (LR) ← CIA + 4

bdnzflr
cr_bit

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0 to address in LR.
Extended mnemonic for

bclr 0,cr_bit 236

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit (LR) ← CIA + 4

bdnzt

cr_bit, target

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.
Extended mnemonic for

bc 8,cr_bit,target

228bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target (LR) ← CIA + 4

bdnztla Extended mnemonic for
bcla 8,cr_bit,target (LR) ← CIA + 4

bdnztlr
cr_bit

Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1 to address in LR.
Extended mnemonic for

bclr 8,cr_bit 236

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit (LR) ← CIA + 4

bdz

target

Decrement CTR.
Branch if CTR = 0
Extended mnemonic for

bc 18,0,target

228bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target (LR) ← CIA + 4

bdzla Extended mnemonic for
bcla 18,0,target (LR) ← CIA + 4

bdzlr

Decrement CTR.
Branch if CTR = 0 to address in LR.
Extended mnemonic for

bclr 18,0 236

bdzlrl Extended mnemonic for
bclrl 18,0 (LR) ← CIA + 4

Table A-1. PPC440 Instruction Syntax Summary (continued) 
Mnemonic Operands Function Other Registers Changed Page
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bdzf

cr_bit, target

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0
Extended mnemonic for

bc 2,cr_bit,target

228bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target (LR) ← CIA + 4

bdzfla Extended mnemonic for
bcla 2,cr_bit,target (LR) ← CIA + 4

bdzflr
cr_bit

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0 to address in LR.
Extended mnemonic for

bclr 2,cr_bit 236

bdzflrl Extended mnemonic for
bclrl 2,cr_bit (LR) ← CIA + 4

bdzt

cr_bit, target

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.
Extended mnemonic for

bc 10,cr_bit,target

228bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target (LR) ← CIA + 4

bdztla Extended mnemonic for
bcla 10,cr_bit,target (LR) ← CIA + 4

bdztlr
cr_bit

Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1to address in LR.
Extended mnemonic for

bclr 10,cr_bit 236

bdztlrl Extended mnemonic for
bclrl 10,cr_bit (LR) ← CIA + 4

beq

[cr_field], target

Branch if equal.
UseCR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 12,4*cr_field+2,target

228beqa Extended mnemonic for
bca 12,4*cr_field+2,target

beql Extended mnemonic for
bcl 12,4*cr_field+2,target (LR) ← CIA + 4

beqla Extended mnemonic for
bcla 12,4*cr_field+2,target (LR) ← CIA + 4

beqctr
[cr_field]

Branch if equal to address in CTR.
UseCR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 12,4*cr_field+2 233

beqctrl Extended mnemonic for
bcctrl 12,4*cr_field+2 (LR) ← CIA + 4

beqlr
[cr_field]

Branch if equal to address in LR.
UseCR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 12,4*cr_field+2 236

beqlrl Extended mnemonic for
bclrl 12,4*cr_field+2 (LR) ← CIA + 4
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bf

cr_bit, target

Branch if CRcr_bit = 0.
Extended mnemonic for

bc 4,cr_bit,target

228
bfa Extended mnemonic for

bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target (LR) ← CIA + 4

bfla Extended mnemonic for
bcla 4,cr_bit,target (LR) ← CIA + 4

bfctr
cr_bit

Branch if CRcr_bit = 0 to address in CTR.
Extended mnemonic for

bcctr 4,cr_bit 233

bfctrl Extended mnemonic for
bcctrl 4,cr_bit (LR) ← CIA + 4

bflr
cr_bit

Branch if CRcr_bit = 0 to address in LR.
Extended mnemonic for

bclr 4,cr_bit 236

bflrl Extended mnemonic for
bclrl 4,cr_bit (LR) ← CIA + 4

bge

[cr_field], target

Branch if greater than or equal.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+0,target

228bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target (LR) ← CIA + 4

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target (LR) ← CIA + 4

bgectr
[cr_field]

Branch if greater than or equal to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4∗cr_field+0 233

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0 (LR) ← CIA + 4

bgelr
[cr_field]

Branch if greater than or equal to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+0 236

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0 (LR) ← CIA + 4

bgt

[cr_field], target

Branch if greater than.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 12,4∗cr_field+1,target

228bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target (LR) ← CIA + 4

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target (LR) ← CIA + 4
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bgtctr
[cr_field]

Branch if greater than to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 12,4∗cr_field+1 233

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1 (LR) ← CIA + 4

bgtlr
[cr_field]

Branch if greater than to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 12,4∗cr_field+1 236

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1 (LR) ← CIA + 4

ble

[cr_field], target

Branch if less than or equal.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4∗cr_field+1,target

228blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target (LR) ← CIA + 4

blela Extended mnemonic for
bcla 4,4*cr_field+1,target (LR) ← CIA + 4

blectr
[cr_field]

Branch if less than or equal to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4*cr_field+1 233

blectrl Extended mnemonic for
bcctrl 4,4*cr_field+1 (LR) ← CIA + 4

blelr
[cr_field]

Branch if less than or equal to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4∗cr_field+1 236

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1 (LR) ← CIA + 4

blr
Branch unconditionally to address in LR.
Extended mnemonic for

bclr 20,0 236

blrl Extended mnemonic for
bclrl 20,0 (LR) ← CIA + 4

blt

[cr_field], target

Branch if less than.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 12,4*cr_field+0,target

228blta Extended mnemonic for
bca 12,4*cr_field+0,target

bltl Extended mnemonic for
bcl 12,4*cr_field+0,target (LR) ← CIA + 4

bltla Extended mnemonic for
bcla 12,4*cr_field+0,target (LR) ← CIA + 4

bltctr
[cr_field]

Branch if less than to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 12,4*cr_field+0 233

bltctrl Extended mnemonic for
bcctrl 12,4*cr_field+0 (LR) ← CIA + 4
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bltlr
[cr_field]

Branch if less than to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 12,4*cr_field+0 236

bltlrl Extended mnemonic for
bclrl 12,4*cr_field+0 (LR) ← CIA + 4

bne

[cr_field], target

Branch if not equal.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4*cr_field+2,target

228bnea Extended mnemonic for
bca 4,4*cr_field+2,target

bnel Extended mnemonic for
bcl 4,4*cr_field+2,target (LR) ← CIA + 4

bnela Extended mnemonic for
bcla 4,4*cr_field+2,target (LR) ← CIA + 4

bnectr
[cr_field]

Branch if not equal to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4*cr_field+2 233

bnectrl Extended mnemonic for
bcctrl 4,4*cr_field+2 (LR) ← CIA + 4

bnelr
[cr_field]

Branch if not equal to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4*cr_field+2 236

bnelrl Extended mnemonic for
bclrl 4,4*cr_field+2 (LR) ← CIA + 4

bng

[cr_field], target

Branch if not greater than.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4*cr_field+1,target

228bnga Extended mnemonic for
bca 4,4*cr_field+1,target

bngl Extended mnemonic for
bcl 4,4*cr_field+1,target (LR) ← CIA + 4

bngla Extended mnemonic for
bcla 4,4*cr_field+1,target (LR) ← CIA + 4

bngctr
[cr_field]

Branch if not greater than to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4*cr_field+1 233

bngctrl Extended mnemonic for
bcctrl 4,4*cr_field+1 (LR) ← CIA + 4

bnglr
[cr_field]

Branch if not greater than to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4*cr_field+1 236

bnglrl Extended mnemonic for
bclrl 4,4*cr_field+1 (LR) ← CIA + 4
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bnl

[cr_field], target

Branch if not less than.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4*cr_field+0,target

228bnla Extended mnemonic for
bca 4,4*cr_field+0,target

bnll Extended mnemonic for
bcl 4,4*cr_field+0,target (LR) ← CIA + 4

bnlla Extended mnemonic for
bcla 4,4*cr_field+0,target (LR) ← CIA + 4

bnlctr
[cr_field]

Branch if not less than to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4*cr_field+0 233

bnlctrl Extended mnemonic for
bcctrl 4,4*cr_field+0 (LR) ← CIA + 4

bnllr
[cr_field]

Branch if not less than to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4*cr_field+0 236

bnllrl Extended mnemonic for
bclrl 4,4*cr_field+0 (LR) ← CIA + 4

bns

[cr_field], target

Branch if not summary overflow.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4*cr_field+3,target

228bnsa Extended mnemonic for
bca 4,4*cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4*cr_field+3,target (LR) ← CIA + 4

bnsla Extended mnemonic for
bcla 4,4*cr_field+3,target (LR) ← CIA + 4

bnsctr
[cr_field]

Branch if not summary overflow to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4*cr_field+3 233

bnsctrl Extended mnemonic for
bcctrl 4,4*cr_field+3 (LR) ← CIA + 4

bnslr
[cr_field]

Branch if not summary overflow to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4*cr_field+3 236

bnslrl Extended mnemonic for
bclrl 4,4*cr_field+3 (LR) ← CIA + 4

bnu

[cr_field], target

Branch if not unordered.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 4,4*cr_field+3,target

228bnua Extended mnemonic for
bca 4,4*cr_field+3,target

bnul
Extended mnemonic for
bcl 4,4*cr_field+3,target

(LR) ← CIA + 4

bnula Extended mnemonic for
bcla 4,4*cr_field+3,target (LR) ← CIA + 4
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bnuctr
[cr_field]

Branch if not unordered to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 4,4*cr_field+3 233

bnuctrl Extended mnemonic for
bcctrl 4,4*cr_field+3 (LR) ← CIA + 4

bnulr
[cr_field]

Branch if not unordered to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 4,4*cr_field+3 236

bnulrl Extended mnemonic for
bclrl 4,4*cr_field+3 (LR) ← CIA + 4

bso

[cr_field], target

Branch if summary overflow.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 12,4*cr_field+3,target

228bsoa Extended mnemonic for
bca 12,4*cr_field+3,target

bsol Extended mnemonic for
bcl 12,4*cr_field+3,target (LR) ← CIA + 4

bsola Extended mnemonic for
bcla 12,4*cr_field+3,target (LR) ← CIA + 4

bsoctr
[cr_field]

Branch if summary overflow to address in CTR.
UseCR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 12,4*cr_field+3 233

bsoctrl Extended mnemonic for
bcctrl 12,4*cr_field+3 (LR) ← CIA + 4

bsolr
[cr_field]

Branch if summary overflow to address in LR.
UseCR[CR0] if cr_field is omitted.
Extended mnemonic for
bclr 12,4*cr_field+3 236

bsolrl Extended mnemonic for
bclrl 12,4*cr_field+3 (LR) ← CIA + 4

bt

cr_bit, target

Branch if CRcr_bit = 1.
Extended mnemonic for

bc 12,cr_bit,target

228
bta Extended mnemonic for

bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target (LR) ← CIA + 4

btla Extended mnemonic for
bcla 12,cr_bit,target (LR) ← CIA + 4

btctr
cr_bit

Branch if CRcr_bit = 1 to address in CTR.
Extended mnemonic for

bcctr 12,cr_bit 233

btctrl Extended mnemonic for
bcctrl 12,cr_bit (LR) ← CIA + 4

btlr
cr_bit

Branch if CRcr_bit = 1,
to address in LR.
Extended mnemonic for

bclr 12,cr_bit 236

btlrl Extended mnemonic for
bclrl 12,cr_bit (LR) ← CIA + 4

Table A-1. PPC440 Instruction Syntax Summary (continued) 
Mnemonic Operands Function Other Registers Changed Page
AMCC Proprietary       425



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
bun

[cr_field], target

Branch if unordered.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bc 12,4*cr_field+3,target

228buna Extended mnemonic for
bca 12,4*cr_field+3,target

bunl Extended mnemonic for
bcl 12,4*cr_field+3,target (LR) ← CIA + 4

bunla Extended mnemonic for
bcla 12,4*cr_field+3,target (LR) ← CIA + 4

bunctr
[cr_field]

Branch if unordered to address in CTR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bcctr 12,4*cr_field+3 233

bunctrl Extended mnemonic for
bcctrl 12,4*cr_field+3 (LR) ← CIA + 4

bunlr
[cr_field]

Branch if unordered,
to address in LR.
Use CR[CR0] if cr_field is omitted.
Extended mnemonic for

bclr 12,4*cr_field+3
236

bunlrl Extended mnemonic for
bclrl 12,4*cr_field+3 (LR) ← CIA + 4

clrlwi
RA, RS, n

Clear left immediate. (n < 32)
(RA)0:n-1 ← n0
Extended mnemonic for

rlwinm RA,RS,0,n,31 356

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31 CR[CR0]

clrlslwi
RA, RS, b, n

Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b–n:31–n ← (RS)b:31
(RA)32–n:31 ← n0
(RA)0:b–n–1 ← b–n0
Extended mnemonic for

rlwinm RA,RS,n,b-n,31-n

356

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n CR[CR0]

clrrwi
RA, RS, n

Clear right immediate. (n < 32)
(RA)32–n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,0,0,31−n 356

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n CR[CR0]

cmp BF, 0, RA, RB
Compare (RA) to (RB), signed.
Results in CR[CRn], where n = BF.

240

cmpi BF, 0, RA, IM
Compare (RA) to EXTS(IM), signed.
Results in CR[CRn], where n = BF.

241

cmpl BF, 0, RA, RB
Compare (RA) to (RB), unsigned.
Results in CR[CRn], where n = BF.

242

cmpli BF, 0, RA, IM
Compare (RA) to (160 || IM), unsigned.
Results in CR[CRn], where n = BF.

243

cmplw [BF,] RA, RB

Compare Logical Word.
UseCR[CR0] if BF is omitted.
Extended mnemonic for

cmpl BF,0,RA,RB

242
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cmplwi [BF,] RA, IM

Compare Logical Word Immediate.
UseCR[CR0] if BF is omitted.
Extended mnemonic for

cmpli BF,0,RA,IM

243

cmpw [BF,] RA, RB

Compare Word.
UseCR[CR0] if BF is omitted.
Extended mnemonic for

cmp BF,0,RA,RB

240

cmpwi [BF,] RA, IM

Compare Word Immediate.
UseCR[CR0] if BF is omitted.
Extended mnemonic for

cmpi BF,0,RA,IM

241

cntlzw
RA, RS

Count leading zeros in RS.
Place result in RA.

244
cntlzw. CR[CR0]

crand BT, BA, BB
AND bit (CRBA) with (CRBB).
Place result in CRBT.

245

crandc BT, BA, BB
AND bit (CRBA) with ¬(CRBB).
Place result in CRBT.

246

crclr bx
Condition register clear.
Extended mnemonic for

crxor bx,bx,bx
252

creqv BT, BA, BB
Equivalence of bit CRBA with CRBB.
CRBT ← ¬(CRBA ⊕ CRBB)

247

crmove bx, by
Condition register move.
Extended mnemonic for

cror bx,by,by
250

crnand BT, BA, BB
NAND bit (CRBA) with (CRBB).
Place result in CRBT.

248

crnor BT, BA, BB
NOR bit (CRBA) with (CRBB).
Place result in CRBT.

249

crnot bx, by
Condition register not.
Extended mnemonic for

crnor bx,by,by
249

cror BT, BA, BB
OR bit (CRBA) with (CRBB).
Place result in CRBT.

250

crorc BT, BA, BB
OR bit (CRBA) with ¬(CRBB).
Place result in CRBT.

251

crset bx
Condition register set.
Extended mnemonic for

creqv bx,bx,bx
247

crxor BT, BA, BB
XOR bit (CRBA) with (CRBB).
Place result in CRBT.

252

dcba RA, RB Treated as a no-op. 253

dcbf RA, RB Flush (store, then invalidate) the data cache block which con-
tains the effective address (RA|0) + (RB). 254

dcbi RA, RB Invalidate the data cache block which contains the effective 
address (RA|0) + (RB). 255

dcbst RA, RB Store the data cache block which contains the effective 
address (RA|0) + (RB). 256

dcbt RA, RB Load the data cache block which contains the effective address 
(RA|0) + (RB). 257

dcbtst RA,RB Load the data cache block which contains the effective address 
(RA|0) + (RB). 258

dcbz RA, RB Zero the data cache block which contains the effective address 
(RA|0) + (RB). 259
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dccci RA, RB Invalidate the data cache array. 260

dcread RT, RA, RB

Read tag and data information from the data cache line 
selected using effective address bits 17:26. The effective 
address is calculated by (RA|0) + (RB).
Place the data word selected by effective address bits 27:29 in 
GPR RT; place the tag information in DCDBTRH and DCDB-
TRL.

261

divw

RT, RA, RB
Divide (RA) by (RB), signed.
Place result in RT.

263
divw. CR[CR0]
divwo XER[SO, OV]

divwo. CR[CR0]
XER[SO, OV]

divwu

RT, RA, RB
Divide (RA) by (RB), unsigned.
Place result in RT.

264
divwu. CR[CR0]
divwuo XER[SO, OV]

divwuo. CR[CR0]
XER[SO, OV]

dlmzb

RA, RS, RB

d ← (RS) || (RB)
i, x, y ← 0
do while (x < 8) ∧ (y = 0)

x ← x + 1
if di:i + 7 = 0 then

y ← 1
else

i ← i + 8
(RA) ← x
XER[TBC] ← x
if Rc = 1 then

CR[CR0]3 ←XER[SO]
if y = 1 then

if x < 5 then
CR[CR0]0:2 ← 0b010
else
CR[CR0]0:2 ← 0b100

else
CR[CR0]0:2 ← 0b001

XER[TBC], RA

265
dlmzb. XER[TBC], RA, CR[CR0]

eqv
RA, RS, RB

Equivalence of (RS) with (RB).
(RA) ← ¬((RS) ⊕ (RB))

266
eqv. CR[CR0]

extlwi
RA, RS, n, b

Extract and left justify immediate. (n > 0)
(RA)0:n–1 ← (RS)b:b+n–1
(RA)n:31 ← 32–n0
Extended mnemonic for

rlwinm RA,RS,b,0,n−1
356

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1 CR[CR0]

extrwi
RA, RS, n, b

Extract and right justify immediate. (n > 0)
(RA)32–n:31 ← (RS)b:b+n–1
(RA)0:31–n ← 32–n0
Extended mnemonic for

rlwinm RA,RS,b+n,32−n,31
356

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31 CR[CR0]

extsb
RA, RS

Extend the sign of byte (RS)24:31.
Place the result in RA.

267
extsb. CR[CR0]
extsh

RA, RS
Extend the sign of halfword (RS)16:31.
Place the result in RA.

268
extsh. CR[CR0]

icbi RA, RB Invalidate the instruction cache block which contains the effec-
tive address (RA|0) + (RB). 269
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icbt RA, RB Load the instruction cache block which contains the effective 
address (RA|0) + (RB). 267

iccci RA, RB Invalidate the instruction cache array. 272

icread RA, RB

Read tag and data information from the instruction cache line 
selected using effective address bits 17:26. The effective 
address is calculated by (RA|0) + (RB).
Place the instruction selected by effective address bits 27:29 in 
ICDBDR; place the tag information in ICDBTRH and ICDBTRL.

273

inslwi
RA, RS, n, b

Insert from left immediate. (n > 0)
(RA)b:b+n–1 ← (RS)0:n–1
Extended mnemonic for

rlwimi RA,RS,32−b,b,b+n−1 355

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1 CR[CR0]

insrwi
RA, RS, n, b

Insert from right immediate. (n > 0)
(RA)b:b+n–1 ← (RS)32–n:31
Extended mnemonic for

rlwimi RA,RS,32−b−n,b,b+n−1 355

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1 CR[CR0]

isel RT, RA, RB, 
CRb RT ← (RA|0) if CRb = 1, else RT ← (RB) 275

isync Synchronize execution context by flushing the prefetch queue. 276

la RT, D(RA)

Load address. (RA ≠ 0)
D is an offset from a base address that is assumed to be (RA).
(RT) ← (RA) + EXTS(D)
Extended mnemonic for

addi RT,RA,D

217

lbz RT, D(RA)
Load byte from EA = (RA|0) + EXTS(D) and pad left with 
zeroes,
(RT) ← 240 || MS(EA,1).

277

lbzu RT, D(RA)

Load byte from EA = (RA|0) + EXTS(D) and pad left with 
zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

278

lbzux RT, RA, RB

Load byte from EA = (RA|0) + (RB) and pad left with zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

279

lbzx RT, RA, RB
Load byte from EA = (RA|0) + (RB) and pad left with zeroes,
(RT) ← 240 || MS(EA,1).

280

lha RT, D(RA)
Load halfword from EA = (RA|0) + EXTS(D) and sign extend,
(RT) ← EXTS(MS(EA,2)).

281

lhau RT, D(RA)

Load halfword from EA = (RA|0) + EXTS(D) and sign extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

282

lhaux RT, RA, RB

Load halfword from EA = (RA|0) + (RB) and sign extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

283

lhax RT, RA, RB
Load halfword from EA = (RA|0) + (RB) and sign extend,
(RT) ← EXTS(MS(EA,2)).

284
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lhbrx RT, RA, RB
Load halfword from EA = (RA|0) + (RB), then reverse byte 
order and pad left with zeroes,
(RT) ← 160 || MS(EA+1,1) || MS(EA,1).

285

lhz RT, D(RA)
Load halfword from EA = (RA|0) + EXTS(D) and pad left with 
zeroes,
(RT) ← 160 || MS(EA,2).

286

lhzu RT, D(RA)

Load halfword from EA = (RA|0) + EXTS(D) and pad left with 
zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

287

lhzux RT, RA, RB

Load halfword from EA = (RA|0) + (RB) and pad left with 
zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

288

lhzx RT, RA, RB
Load halfword from EA = (RA|0) + (RB) and pad left with 
zeroes,
(RT) ← 160 || MS(EA,2).

289

li RT, IM

Load immediate.
(RT) ← EXTS(IM)
Extended mnemonic for

addi RT,0,value

217

lis RT, IM

Load immediate shifted.
(RT) ← (IM || 160)
Extended mnemonic for

addis RT,0,value

220

lmw RT, D(RA)
Load multiple words starting from EA = (RA|0) + EXTS(D).
Place into consecutive registers RT through GPR(31).
RA is not altered unless RA = GPR(31).

290

lswi RT, RA, NB

Load consecutive bytes from EA=(RA|0).
Number of bytes n=32 if NB=0, else n=NB.
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.

291

lswx RT, RA, RB

Load consecutive bytes from EA=(RA|0)+(RB).
Number of bytes n=XER[TBC].
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.
RB is not altered unless RB = RFINAL.
If n=0, content of RT is undefined.

293

lwarx RT, RA, RB
Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Set the Reservation bit.

295

lwbrx RT, RA, RB
Load word from EA = (RA|0) + (RB) then reverse byte order,
(RT) ← MS(EA+3,1) || MS(EA+2,1) ||
 MS(EA+1,1) || MS(EA,1).

296

lwz RT, D(RA)
Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).

297
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lwzu RT, D(RA)

Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

298

lwzux RT, RA, RB

Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

299

lwzx RT, RA, RB
Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).

300

macchw

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

301
macchw. CR[CR0]
macchwo XER[SO, OV]

macchwo. CR[CR0]
XER[SO, OV]

macchwu

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

304
macchwu. CR[CR0]
macchwuo XER[SO, OV]

macchwuo. CR[CR0]
XER[SO, OV]

macchws

RT, RA, RB

prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then

(RT) ← (RT0 ∨ 31(¬RT0))
else (RT) ← temp1:32

302
macchws. CR[CR0]
macchwso XER[SO, OV]

macchwso. CR[CR0]
XER[SO, OV]

macchwsu

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 31temp0)

303
macchwsu. CR[CR0]
macchwsuo XER[SO, OV]

macchwsuo. CR[CR0]
XER[SO, OV]

machhw

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

305
machhw. CR[CR0]
machhwo XER[SO, OV]

machhwo. CR[CR0]
XER[SO, OV]

machhwu

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

308
machhwu. CR[CR0]
machhwuo XER[SO, OV]

machhwuo. CR[CR0]
XER[SO, OV]

machhws

RT, RA, RB

prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then

(RT) ← (RT0 ∨ 31(¬RT0))
else (RT) ← temp1:32

306
machhws. CR[CR0]
machhwso XER[SO, OV]

machhwso. CR[CR0]
XER[SO, OV]

machhwsu

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 31temp0)

307
machhwsu. CR[CR0]
machhwsuo XER[SO, OV]

machhwsuo. CR[CR0]
XER[SO, OV]
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maclhw

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

309
maclhw. CR[CR0]
maclhwo XER[SO, OV]

maclhwo. CR[CR0]
XER[SO, OV]

maclhwu

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

312
maclhwu. CR[CR0]
maclhwuo XER[SO, OV]

maclhwuo. CR[CR0]
XER[SO, OV]

maclhws

RT, RA, RB

prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then

(RT) ← (RT0 ∨ 31(¬RT0))
else (RT) ← temp1:32

310
maclhws. CR[CR0]
maclhwso XER[SO, OV]

maclhwso. CR[CR0]
XER[SO, OV]

maclhwsu

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 31temp0)

311
maclhwsu. CR[CR0]
maclhwsuo XER[SO, OV]

maclhwsuo. CR[CR0]
XER[SO, OV]

mbar
Storage synchronization. All loads and stores that precede the 
mbar instruction complete before any loads and stores that fol-
low the instruction access main storage.

313

mcrf BF, BFA Move CR field, (CR[CRn]) ← (CR[CRm])
where m ← BFA and n ← BF 314

mcrxr BF
Move XER[0:3] into field CRn, where n←BF.
CR[CRn] ← (XER[SO, OV, CA])
(XER[SO, OV, CA]) ← 30

315

mfcr RT
Move from CR to RT,
(RT) ← (CR).

316

mfdcr RT, DCRN
Move from DCR to RT,
(RT) ← (DCR(DCRN)).

317

mfmsr RT
Move from MSR to RT,
(RT) ← (MSR).

318
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mfccr0
mfccr1
mfcsrr0
mfcsrr1
mfctr
mfdac1
mfdac2
mfdbcr0
mfdbcr1
mfdbcr2
mfdbdr
mfdbsr
mfdcdbtrh
mfdcdbtrl
mfdear
mfdec
mfdnv0
mfdnv1
mfdnv2
mfdnv3
mfdtv0
mfdtv1
mfdtv2
mfdtv3
mfdvc1
mfdvc2
mfdvlim
mfesr
mfiac1
mfiac2
mfiac3
mfiac4
mficdbdr
mficdbtrh
mficdbtrl
mfinv0
mfinv1
mfinv2
mfinv3
mfitv0
mfitv1
mfitv2
mfitv3
mfivlim
mfivor0
mfivor1
mfivor2
mfivor3
mfivor4
mfivor5
mfivor6
mfivor7
mfivor8
mfivor9
mfivor10
mfivor11
mfivor12
mfivor13
mfivor14
mfivor15
mfivpr
mflr
mfmcsr
mfmcsrr0
mfmcsrr1
mfmmucr

RT

Move from special purpose register (SPR) SPRN.
Extended mnemonic for

mfspr RT,SPRN
See Table 9-1 Special Purpose Registers Sorted by SPR Num-
ber on page 403 for listing of valid SPRN values.

319
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mfpid
mfpir
mfpvr
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mftbl
mftbu
mftcr
mftsr
mfusprg0
mfxer

Move from special purpose register (SPR) SPRN.
Extended mnemonic for

mfspr RT,SPRN
See Table 9-1 Special Purpose Registers Sorted by SPR Num-
ber on page 403 for listing of valid SPRN values.

mfspr RT, SPRN
Move from SPR to RT,
(RT) ← (SPR(SPRN)).

319

mr
RT, RS

Move register.
(RT) ← (RS)
Extended mnemonic for

or RT,RS,RS 348

mr. Extended mnemonic for
or. RT,RS,RS CR[CR0]

msync
Synchronization. All instructions that precede msync complete 
before any instructions that follow msync begin.
When msync completes, all storage accesses initiated prior to 
msync will have completed.

322

mtcr RS
Move to Condition Register.
Extended mnemonic for

mtcrf 0xFF,RS
323

mtcrf FXM, RS

Move some or all of the contents of RS into CR as specified by 
FXM field,
mask ← 4(FXM0) || 4(FXM1) || ... ||

4(FXM6) || 4(FXM7).
(CR)←((RS) ∧ mask) ∨ (CR) ∧ ¬mask).

323

mtdcr DCRN, RS
Move to DCR from RS,
(DCR(DCRN)) ← (RS).

324

mtmsr RS
Move to MSR from RS,
(MSR) ← (RS).

325
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mtccr0
mtccr1
mtcsrr0
mtcsrr1
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbcr2
mtdbdr
mtdbsr
mtdear
mtdec
mtdecar
mtdnv0
mtdnv1
mtdnv2
mtdnv3
mtdtv0
mtdtv1
mtdtv2
mtdtv3
mtdvc1
mtdvc2
mtdvlim
mtesr
mtiac1
mtiac2
mtiac3
mtiac4
mtinv0
mtinv1
mtinv2
mtinv3
mtitv0
mtitv1
mtitv2
mtitv3
mtivlim
mtivor0
mtivor1
mtivor2
mtivor3
mtivor4
mtivor5
mtivor6
mtivor7
mtivor8
mtivor9
mtivor10
mtivor11
mtivor12
mtivor13
mtivor14
mtivor15
mtivpr
mtlr
mtmcsr
mtmcsrr0
mtmcsrr1
mtmmucr
mtpid

RS

Move to SPR SPRN.
Extended mnemonic for

mtspr SPRN,RS

See Table 9-1 Special Purpose Registers Sorted by SPR Num-
ber on page 403 for listing of valid SPRN values.

326
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mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mttbl
mttbu
mttcr
mttsr
mtusprg0
mtxer

mtspr SPRN, RS
Move to SPR from RS,
(SPR(SPRN)) ← (RS).

326

mulchw
RT, RA, RB (RT)0:31 ← (RA)16:31 × (RB)0:15 (signed) 329

mulchw. CR[CR0]
mulchwu

RT, RA, RB (RT)0:31 ← (RA)16:31 × (RB)0:15 (unsigned) 330
mulchwu. CR[CR0]
mulhhw

RT, RA, RB (RT)0:31 ← (RA)0:15 × (RB0:15 (signed) 331
mulhhw. CR[CR0]
mulhhwu

RT, RA, RB (RT)0:31 ← (RA)0:15 × (RB)0:15 (unsigned) 332
mulhhwu. CR[CR0]
mulhw

RT, RA, RB

Multiply (RA) and (RB), signed.
Place high-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod0:31.

333
mulhw. CR[CR0]

mulhwu

RT, RA, RB

Multiply (RA) and (RB), unsigned.
Place high-order result in RT.
prod0:63 ← (RA) × (RB) (unsigned).
(RT) ← prod0:31.

334
mulhwu. CR[CR0]

mullhw
RT, RA, RB (RT)0:31 ← (RA)16:31 × (RB16:31 (signed) 335

mullhw. CR[CR0]
mullhwu

RT, RA, RB (RT)16:31 ← (RA)0:15 × (RB)16:31 (unsigned) 336
mullhwu. CR[CR0]

mulli RT, RA, IM

Multiply (RA) and IM, signed.
Place low-order result in RT.
prod0:47 ← (RA) × IM (signed)
(RT) ← prod16:47

337

mullw

RT, RA, RB

Multiply (RA) and (RB), signed.
Place low-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod32:63.

338
mullw. CR[CR0]
mullwo XER[SO, OV]

mullwo. CR[CR0]
XER[SO, OV]

nand
RA, RS, RB

NAND (RS) with (RB).
Place result in RA.

339
nand. CR[CR0]
neg

RT, RA
Negative (two’s complement) of RA.
(RT) ← ¬(RA) + 1

340
neg. CR[CR0]
nego XER[SO, OV]

nego. CR[CR0]
XER[SO, OV]
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nmacchw

RT, RA, RB
prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← –prod0:31 + (RT)
(RT) ← temp1:32

341
nmacchw. CR[CR0]
nmacchwo XER[SO, OV]

nmacchwo. CR[CR0]
XER[SO, OV]

nmacchws

RT, RA, RB

prod0:31 ← (RA)16:31 × (RB)0:15
temp0:32 ← –prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then

(RT) ← (RT0 ∨ 31(¬RT0))
else (RT) ← temp1:32

342
nmacchws. CR[CR0]
nmacchwso XER[SO, OV]

nmacchwso. CR[CR0]
XER[SO, OV]

nmachhw

RT, RA, RB
prod0:31 ← (RA)0:15 × (RB)0:15
temp0:32 ← –prod0:31 + (RT)
(RT) ← temp1:32

343
nmachhw. CR[CR0]
nmachhwo XER[SO, OV]

nmachhwo. CR[CR0]
XER[SO, OV]

nmachhws

RT, RA, RB

prod0:31 ← (RA)0:15 × (RB)0:15
temp0:32 ← –prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then

(RT) ← (RT0 ∨ 31(¬RT0))
else (RT) ← temp1:32

344
nmachhws. CR[CR0]
nmachhwso XER[SO, OV]

nmachhwso. CR[CR0]
XER[SO, OV]

nmaclhw

RT, RA, RB
prod0:31 ← (RA16:31 × (RB)16:31
temp0:32 ← –prod0:31 + (RT)
(RT) ← temp1:32

345
nmaclhw. CR[CR0]
nmaclhwo XER[SO, OV]

nmaclhwo. CR[CR0]
XER[SO, OV]

nmaclhws

RT, RA, RB

prod0:31 ← (RA)16:31 × (RB)16:31
temp0:32 ← –prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then

(RT) ← (RT0 ∨ 31(¬RT0))
else (RT) ← temp1:32

346
nmaclhws. CR[CR0]
nmaclhwso XER[SO, OV]

nmaclhwso. CR[CR0]
XER[SO, OV]

nop
Preferred no-op, triggers optimizations based on no-ops.
Extended mnemonic for

ori 0,0,0
350

nor
RA, RS, RB

NOR (RS) with (RB).
Place result in RA.

347
nor. CR[CR0]

not
RA, RS

Complement register.
(RA) ← ¬(RS)
Extended mnemonic for

nor RA,RS,RS 347

not. Extended mnemonic for
nor. RA,RS,RS CR[CR0]

or
RA, RS, RB

OR (RS) with (RB).
Place result in RA.

348
or. CR[CR0]
orc

RA, RS, RB
OR (RS) with ¬(RB).
Place result in RA.

349
orc. CR[CR0]

ori RA, RS, IM
OR (RS) with (160 || IM).
Place result in RA.

350

oris RA, RS, IM
OR (RS) with (IM || 160).
Place result in RA.

351
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rfci
Return from critical interrupt
(PC) ← (CSRR0).
(MSR) ← (CSRR1).

352

rfi
Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

353

rfmci
Return from machine check interrupt
(PC) ← (MCSRR0).
(MSR) ← (MCSRR1).

354

rlwimi
RA, RS, SH, 
MB, ME

Rotate left word immediate, then insert according to mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

355
rlwimi. CR[CR0]

rlwinm
RA, RS, SH, 
MB, ME

Rotate left word immediate, then AND with mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

356
rlwinm. CR[CR0]

rlwnm
RA, RS, RB, 
MB, ME

Rotate left word, then AND with mask.
r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

358
rlwnm. CR[CR0]

rotlw
RA, RS, RB

Rotate left.
(RA) ← ROTL((RS), (RB)27:31)
Extended mnemonic for

rlwnm RA,RS,RB,0,31 358

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31 CR[CR0]

rotlwi
RA, RS, n

Rotate left immediate.
(RA) ← ROTL((RS), n)
Extended mnemonic for

rlwinm RA,RS,n,0,31 356

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31 CR[CR0]

rotrwi
RA, RS, n

Rotate right immediate.
(RA) ← ROTL((RS), 32−n)
Extended mnemonic for

rlwinm RA,RS,32−n,0,31 356

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31 CR[CR0]

sc

System call exception is generated.
(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || 0x0C00
(MSR[WE, PR, EE, PE, DR, IR]) ← 0

359

slw

RA, RS, RB

Shift left (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), n).
if (RB)26 = 0 then m ← MASK(0, 31 – n)
else m ← 320
(RA) ← r ∧ m.

360
slw. CR[CR0]

slwi
RA, RS, n

Shift left immediate. (n < 32)
(RA)0:31-n ← (RS)n:31
(RA)32-n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,n,0,31−n
356

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n CR[CR0]
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sraw

RA, RS, RB

Shift right algebraic (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0).

361
sraw. CR[CR0]

srawi

RA, RS, SH

Shift right algebraic (RS) by SH.
n ← SH.
r ← ROTL((RS), 32 – n).
m ← MASK(n, 31).
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m)≠0).

362
srawi. CR[CR0]

srw

RA, RS, RB

Shift right (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320
(RA) ← r ∧ m.

363
srw. CR[CR0]

srwi
RA, RS, n

Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31-n
(RA)0:n-1 ← n0
Extended mnemonic for

rlwinm RA,RS,32−n,n,31
356

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31 CR[CR0]

stb RS, D(RA)
Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).

364

stbu RS, D(RA)

Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

365

stbux RS, RA, RB

Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

366

stbx RS, RA, RB
Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).

367

sth RS, D(RA)
Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).

368

sthbrx RS, RA, RB
Store halfword (RS)16:31 byte-reversed in memory at EA = 
(RA|0) + (RB).
MS(EA, 2) ← (RS)24:31 || (RS)16:23

369

sthu RS, D(RA)

Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

370

sthux RS, RA, RB

Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

371

sthx RS, RA, RB
Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).

372

stmw RS, D(RA)
Store consecutive words from RS through GPR(31) in memory 
starting at
EA = (RA|0) + EXTS(D).

373
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stswi RS, RA, NB

Store consecutive bytes in memory starting at EA=(RA|0).
Number of bytes n=32 if NB=0, else n=NB.
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

373

stswx RS, RA, RB

Store consecutive bytes in memory starting at 
EA=(RA|0)+(RB).
Number of bytes n=XER[TBC].
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

375

stw RS, D(RA)
Store word (RS) in memory at
EA = (RA|0) + EXTS(D).

376

stwbrx RS, RA, RB

Store word (RS) byte-reversed in memory at EA = (RA|0) + 
(RB).
MS(EA, 4) ← (RS)24:31 || (RS)16:23 ||

(RS)8:15 || (RS)0:7

377

stwcx. RS, RA, RB

Store word (RS) in memory at EA = (RA|0) + (RB)
only if reservation bit is set.
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso.

378

stwu RS, D(RA)

Store word (RS) in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

380

stwux RS, RA, RB

Store word (RS) in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

381

stwx RS, RA, RB
Store word (RS) in memory at
EA = (RA|0) + (RB).

382

sub

RT, RA, RB

Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Extended mnemonic for

subf RT,RB,RA

383sub. Extended mnemonic for
subf. RT,RB,RA CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]

subc

RT, RA, RB

Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].
Extended mnemonic for

subfc RT,RB,RA

384subc. Extended mnemonic for
subfc. RT,RB,RA CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]
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subf

RT, RA, RB
Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.

383
subf. CR[CR0]
subfo XER[SO, OV]

subfo. CR[CR0]
XER[SO, OV]

subfc

RT, RA, RB
Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.
Place carry-out in XER[CA].

384
subfc. CR[CR0]
subfco XER[SO, OV]

subfco. CR[CR0]
XER[SO, OV]

subfe

RT, RA, RB
Subtract (RA) from (RB) with carry-in.
(RT) ← ¬(RA) + (RB) + XER[CA].
Place carry-out in XER[CA].

385
subfe. CR[CR0]
subfeo XER[SO, OV]

subfeo. CR[CR0]
XER[SO, OV]

subfic RT, RA, IM
Subtract (RA) from EXTS(IM).
(RT) ← ¬(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].

386

subfme

RT, RA, RB
Subtract (RA) from (–1) with carry-in.
(RT) ← ¬(RA) + (–1) + XER[CA].
Place carry-out in XER[CA].

387
subfme. CR[CR0]
subfmeo XER[SO, OV]

subfmeo. CR[CR0]
XER[SO, OV]

subfze

RT, RA, RB
Subtract (RA) from zero with carry-in.
(RT) ← ¬(RA) + XER[CA].
Place carry-out in XER[CA].

388
subfze. CR[CR0]
subfzeo XER[SO, OV]

subfzeo. CR[CR0]
XER[SO, OV]

subi RT, RA, IM

Subtract EXTS(IM) from (RA|0).
Place result in RT.
Extended mnemonic for

addi RT,RA,−IM

217

subic RT, RA, IM

Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].
Extended mnemonic for

addic RT,RA,−IM

218

subic. RT, RA, IM

Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].
Extended mnemonic for

addic. RT,RA,−IM

CR[CR0] 219

subis RT, RA, IM

Subtract (IM || 160) from (RA|0).
Place result in RT.
Extended mnemonic for

addis RT,RA,−IM

220
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tlbre RT, RA,WS

tlbentry ← TLB[(RA)26:31]
if WS = 0

(RT)0:27 ← tlbentry[EPN,V,TS,SIZE]
(RT)28:31 ← 

40
MMUCR[STID] ← tlbentry[TID] 

else if WS = 1
(RT)0:21 ← tlbentry[RPN]
(RT)22:27 ← 

60
(RT)28:31 ← tlbentry[ERPN]

else if WS = 2
(RT)0:15 ← 

160
(RT)16:24 ← tlbentry[U0,U1,U2,U3,W,I,M,G,E]
(RT)25 ← 0
(RT)26:31 ← tlbentry[UX,UW,UR,SX,SW,SR]

else (RT), MMUCR[STID] ← undefined

389

tlbsx

RT,RA,RB

Search the TLB for a valid entry that translates the EA.
EA = (RA|0) + (RB)
if Rc = 1

CR[CR0]0 ← 0
CR[CR0]1 ← 0
CR[CR0]3 ← XER[SO}

if Valid TLB entry matching EA and MMUCR[STID,STS] is in 
the TLB then

(RT) ← Index of matching TLB Entry
if Rc = 1

CR[CR0]2 ← 1 
else

(RT) ← Undefined 
if Rc = 1

CR[CR0]2 ← 0

391
tlbsx. CR[CR0]

tlbsync

tlbsync does not complete until all previous TLB-update 
instructions executed by this processor have been received 
and completed by all other processors.
For the PPC440, tlbsync is a no-op.

392

tlbwe RS, RA,WS

tlbentry ← TLB[(RA)26:31]
if WS = 0

tlbentry[EPN,V,TS,SIZE] ← (RS)0:27
tlbentry[TID] ← MMUCR[STID]

else if WS = 1
tlbentry[RPN] ← (RS)0:21
tlbentry[ERPN] ← (RS)28:31

else if WS = 2
tlbentry[U0,U1,U2,U3,W,I,M,G,E] ← (RS)16:24
tlbentry[UX,UW,UR,SX,SW,SR] ← (RS)26:31

else tlbentry ← undefined

393
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trap
Trap unconditionally.
Extended mnemonic for

tw 31,0,0

394

tweq

RA, RB

Trap if (RA) equal to (RB).
Extended mnemonic for

tw 4,RA,RB

twge
Trap if (RA) greater than or equal to (RB).
Extended mnemonic for

tw 12,RA,RB

twgt
Trap if (RA) greater than (RB).
Extended mnemonic for

tw 8,RA,RB

twle
Trap if (RA) less than or equal to (RB).
Extended mnemonic for

tw 20,RA,RB

twlge
Trap if (RA) logically greater than or equal to (RB).
Extended mnemonic for

tw 5,RA,RB

twlgt
Trap if (RA) logically greater than (RB).
Extended mnemonic for

tw 1,RA,RB

twlle
Trap if (RA) logically less than or equal to (RB).
Extended mnemonic for

tw 6,RA,RB

twllt
Trap if (RA) logically less than (RB).
Extended mnemonic for

tw 2,RA,RB

twlng
Trap if (RA) logically not greater than (RB).
Extended mnemonic for

tw 6,RA,RB

twlnl
Trap if (RA) logically not less than (RB).
Extended mnemonic for

tw 5,RA,RB

twlt
Trap if (RA) less than (RB).
Extended mnemonic for

tw 16,RA,RB

twne
Trap if (RA) not equal to (RB).
Extended mnemonic for

tw 24,RA,RB

twng
Trap if (RA) not greater than (RB).
Extended mnemonic for
tw 20,RA,RB

twnl
Trap if (RA) not less than (RB).
Extended mnemonic for

tw 12,RA,RB

tw TO, RA, RB Trap exception is generated if, comparing (RA) with (RB), any 
condition specified by TO is true. 394
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tweqi

RA, IM

Trap if (RA) equal to EXTS(IM).
Extended mnemonic for 

wi 4,RA,IM

396

twgei
Trap if (RA) greater than or equal to EXTS(IM).
Extended mnemonic for

twi 12,RA,IM

twgti
Trap if (RA) greater than EXTS(IM).
Extended mnemonic for

twi 8,RA,IM

twlei
Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for

twi 20,RA,IM

twlgei
Trap if (RA) logically greater than or equal to EXTS(IM).
Extended mnemonic for 

wi 5,RA,IM

twlgti
Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for

twi 1,RA,IM

twllei
Trap if (RA) logically less than or equal to EXTS(IM).
Extended mnemonic for

twi 6,RA,IM

twllti
Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for

twi 2,RA,IM

twlngi
Trap if (RA) logically not greater than EXTS(IM).
Extended mnemonic for

twi 6,RA,IM

twlnli
Trap if (RA) logically not less than EXTS(IM).
Extended mnemonic for

twi 5,RA,IM

twlti
Trap if (RA) less than EXTS(IM).
Extended mnemonic for

twi 16,RA,IM

twnei
Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for

twi 24,RA,IM

twngi
Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for

twi 20,RA,IM

twnli
Trap if (RA) not less than EXTS(IM).
Extended mnemonic for

twi 12,RA,IM

twi TO, RA, IM Trap exception is generated if, comparing (RA) with EXTS(IM), 
any condition specified by TO is true. 396

wrtee RS Write value of RS16 to MSR[EE]. 398
wrteei E Write value of E to MSR[EE]. 399
xor

RA, RS, RB
XOR (RS) with (RB).
Place result in RA.

400
xor. CR[CR0]

xori RA, RS, IM
XOR (RS) with (160 || IM).
Place result in RA.

401

xoris RA, RS, IM
XOR (RS) with (IM || 160).
Place result in RA.

402
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A.3 Allocated Instruction Opcodes

Allocated instructions are provided for purposes that are outside the scope of PowerPC Book-E architecture, and 
are for implementation-dependent and application-specific use, including use within auxiliary processors.

Table A-2 lists the blocks of opcodes which have been allocated by PowerPC Book-E for these purposes. In the 
table, the character “u” designates a secondary opcode bit which can be set to any value. In some cases, the 
decimal value of a secondary opcode is shown in parentheses after the binary value.

All of the allocated opcodes listed in the table above are available for use by auxiliary processors attached to the 
PPC440, except for those which have already been implemented within the PPC440 for certain implementation-
specific purposes. As indicated in the table above, this is the case for certain secondary opcodes within primary 
opcodes 4 and 31. These opcodes are identified in Table A-5 on page 447, along with all of the defined, preserved, 
and reserved-nop class opcodes which are implemented within the PPC440.

A.4 Preserved Instruction Opcodes

The preserved instruction class is provided to support backward compatibility with the PowerPC Architecture, 
and/or earlier versions of the PowerPC Book-E architecture. This instruction class includes opcodes which were 
defined for these previous architectures, but which are no longer defined for PowerPC Book-E.

Table A-3 lists the reserved opcodes designated by PowerPC Book-E. The decimal value of the secondary opcode 
is shown in parentheses after the binary value.

Table A-2. Allocated Opcodes  
Primary Opcode Extended Opcodes PPC440 Usage

0
All instruction encodings (bits 6:31) except 0x00000000
(the instruction encoding of 0x00000000 is and always will be 
reserved-illegal)

None

4 All instruction encodings (bits 6:31) Various (see Table A-5 on 
page 447)

19 Secondary opcodes (bits 21:30) = 0buuuuu0u11u None

31

Secondary opcodes (bits 21:30) = 0buuuuu0011u
Secondary opcodes (bits 21:30) = 0buuuuu0u110
Secondary opcode (bits 21:30) = 0b0101010110 (342)
Secondary opcode (bits 21:30) = 0b0101110110 (374)
Secondary opcode (bits 21:30) = 0b1100110110 (822)

Various (see Table A-5 on 
page 447)

59 Secondary opcodes (bits 21:30) = 0buuuuu0u10u None

63 Secondary opcodes (bits 21:30) = 0buuuuu0u10u (except second-
ary opcode decimal 12, which is the fsrp defined instruction) None

Table A-3. Preserved Opcodes  
Primary Opcode Extended Opcode Preserved Mnemonic PPC440 Usage

31 0b0011010010 (210) mtsr
31 0b0011110010 (242) mtsrin
31 0b0101110010 (370) tlbia
31 0b0100110010 (306) tlbie
31 0b0101110011 (371) mftb Yes
31 0b1001010011 (595) mfsr
31 0b1010010011 (659) mfsrin
31 0b0100110110 (310) eciwx
31 0b0110110110 (438) ecowx
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As indicated in the table above, the only preserved opcode which is implemented within the PPC440 is the mftb 
instruction. See “Preserved Instruction Class” on page 43 for more information on PPC440 support for this 
instruction. All other preserved instructions are treated as reserved by PPC440 and will cause Illegal Instruction 
exception type Program interrupts if their execution is attempted.

The preserved opcode for mftb is included in Table A-5 on page 447, along with all of the defined, allocated, and 
reserved-nop class opcodes which are implemented within the PPC440.

A.5 Reserved Instruction Opcodes

This class of instructions consists of all instruction primary opcodes (and associated extended opcodes, if 
applicable) which do not belong to either the defined, allocated, or preserved instruction classes.

Reserved instructions are available for future versions of PowerPC Book-E architecture. That is, future versions of 
PowerPC Book-E may define any of these instructions to perform new functions or make them available for 
implementation-dependent use as allocated instructions. There are two types of reserved instructions: reserved-
illegal and reserved-nop.

Table A-4 lists the reserved-nop opcodes designated by PowerPC Book-E. In the table, the character “u” 
designates a secondary opcode bit which can be set to any value. All other reserved opcodes are in the reserved-
illegal class.

As shown in the table, there are a total of eight (8) secondary opcodes in the reserved-nop class. The PPC440 
implements all of the reserved-nop instruction opcodes as true no-ops. These opcodes are included in Table A-5 
on page 447, along with all of the defined, allocated, and preserved class opcodes which are implemented within 
the PPC440.

A.6 Implemented Instructions Sorted by Opcode

Table A-5 on page 447 lists all of the instructions which have been implemented within the PPC440, sorted by 
primary and secondary opcode. These include defined, allocated, preserved, and reserved-nop class instructions 
(see “Instruction Classes” on page 41 for a more detailed description of each of these instruction classes). 
Opcodes which are not implemented in the PPC440 are not shown in the table, and consist of the following:

• Defined instructions

These include the floating-point operations (which may be implemented in an auxiliary processor and executed 
via the AP interface), as well as the 64-bit operations and the tlbiva and mfapidi instructions, all of which are 
handled as reserved-illegal instructions by the PPC440.

• Allocated instructions

These include all of the allocated opcodes identified in Table A-2 on page 445 which are not already imple-
mented within the PPC440. If not implemented within an attached auxiliary processor, these instructions will be 
handled as reserved-illegal by the PPC440.

• Preserved instructions

Table A-4. Reserved-nop Opcodes  
Primary Opcode Extended Opcode

31 0b10uuu10010
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These include all of the preserved opcodes identified in Table A-3 on page 445 except for the mftb opcode 
(which is implemented and thus included in Table A-5). These instructions will be handled as reserved-illegal 
by the PPC440.

• Reserved instructions

These include all of the reserved opcodes as defined by Appendix A.5 on page 446, except for the reserved-
nop opcodes identified in Table A-4 on page 446. These instructions by definition are all in the reserved-illegal 
class and will be handled as such by the PPC440.

All PowerPC Book-E instructions are four bytes long and word aligned. All instructions have a primary opcode field 
(shown as field OPCD in Figure A-1 through Figure A-9, beginning on page 414) in bits 0:5. Some instructions also 
have a secondary opcode field (shown as field XO in Figure A-1 through Figure A-9). 

The “Form” indicated in the table refers to the arrangement of valid field combinations within the four-byte 
instruction. See Appendix A.1 on page 411, for the field layouts of each form.

Form X has a 10-bit secondary opcode field, while form XO uses only the low-order 9-bits of that field. Form XO 
uses the high-order secondary opcode bit (the tenth bit) as a variable; therefore, every form XO instruction really 
consumes two secondary opcodes from the 10-bit secondary-opcode space. The implicitly consumed secondary 
opcode is listed in parentheses for form XO instructions in the table below.

Table A-5. PPC440 Instructions by Opcode  
Primary Opcode Secondary Opcode Form Mnemonic Operands Page

3 D twi TO, RA, IM 396

4 8 X
mulhhwu

RT, RA, RB 332
mulhhwu.

4 12 (524) XO

machhwu

RT, RA, RB 308
machhwu.
machhwuo
machhwuo.

4 40 X
mulhhw

RT, RA, RB 331
mulhhw.

4 44 (556) XO

machhw

RT, RA, RB 305
machhw.
machhwo
machhwo.

4 46 (558) XO

nmachhw

RT, RA, RB 343
nmachhw.
nmachhwo
nmachhwo.

4 76 (588) XO

machhwsu

RT, RA, RB 307
machhwsu.
machhwsuo
machhwsuo.

4 108 (620) XO

machhws

RT, RA, RB 306
machhws.
machhwso
machhwso.

4 110 (622) XO

nmachhws

RT, RA, RB 344
nmachhws.
nmachhwso
nmachhwso.
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4 136 X
mulchwu

RT, RA, RB 330
mulchwu.

4 140 (652) XO

macchwu

RT, RA, RB 304
macchwu.
macchwuo
machhwuo.

4 168 X
mulchw

RT, RA, RB 329
mulchw.

4 172 (684) XO

macchw

RT, RA, RB 301
macchw.
macchwo
macchwo.

4 174 (686) XO

nmacchw

RT, RA, RB 341
nmacchw.
nmacchwo
nmacchwo.

4 204 (716) XO

macchwsu

RT, RA, RB 303
macchwsu.
macchwsuo
macchwsuo.

4 236 (748) XO

macchws

RT, RA, RB 302
macchws.
macchwso
macchwso.

4 238 (750) XO

nmacchws

RT, RA, RB 342
nmacchws.
nmacchwso
nmacchwso.

4 392 X
mullhwu

RT, RA, RB 336
mullhwu.

4 396 (908) XO

maclhwu

RT, RA, RB 312
maclhwu.
maclhwuo
maclhwuo.

4 424 X
mullhw

RT, RA, RB 335
mullhw.

4 428 (940) XO

maclhw

RT, RA, RB 309
maclhw.
maclhwo
maclhwo.

4 430 (942) XO

nmaclhw

RT, RA, RB 345
nmaclhw.
nmaclhwo
nmaclhwo.

4 460 (972) XO

maclhwsu

RT, RA, RB 311
maclhwsu.
maclhwsuo
maclhwsuo.
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4 492 (1004) XO

maclhws

RT, RA, RB 310
maclhws.
maclhwso
maclhwso.

4 494 (1006) XO

nmaclhws

RT, RA, RB 346
nmaclhws.
nmaclhwso
nmaclhwso.

7 D mulli RT, RA, IM 337
8 D subfic RT, RA, IM 386
10 D cmpli BF, 0, RA, IM 243
11 D cmpi BF, 0, RA, IM 241
12 D addic RT, RA, IM 218
13 D addic. RT, RA, IM 219
14 D addi RT, RA, IM 217
15 D addis RT, RA, IM 220

16 B

bc

BO, BI, target 228
bca
bcl
bcla

17 SC sc 359

18 I

b

target 227
ba
bl
bla

19 0 XL mcrf BF, BFA 314

19 16 XL
bclr

BO, BI 236
bclrl

19 33 XL crnor BT, BA, BB 249
19 38 XL rfmci 354
19 50 XL rfi 353
19 51 XL rfci 352
19 129 XL crandc BT, BA, BB 246
19 150 XL isync 276
19 193 XL crxor BT, BA, BB 252
19 225 XL crnand BT, BA, BB 248
19 257 XL crand BT, BA, BB 245
19 289 XL creqv BT, BA, BB 247
19 417 XL crorc BT, BA, BB 251
19 449 XL cror BT, BA, BB 250

19 528 XL
bcctr

BO, BI 233
bcctrl

20 M
rlwimi

RA, RS, SH, MB, ME 355
rlwimi.

21 M
rlwinm

RA, RS, SH, MB, ME 356
rlwinm.

23 M
rlwnm

RA, RS, RB, MB, ME 358
rlwnm.
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24 D ori RA, RS, IM 350
25 D oris RA, RS, IM 351
26 D xori RA, RS, IM 401
27 D xoris RA, RS, IM 402
28 D andi. RA, RS, IM 225
29 D andis. RA, RS, IM 226
31 0 X cmp BF, 0, RA, RB 240
31 4 X tw TO, RA, RB 394

31 8 (520) XO

subfc

RT, RA, RB 384
subfc.
subfco
subfco.

31 10 (522) XO

addc

RT, RA, RB 215
addc.
addco
addco.

31 11 (523) XO
mulhwu

RT, RA, RB 334
mulhwu.

31 15 XO isel RT, RA, RB 275
31 19 X mfcr RT 316
31 20 X lwarx RT, RA, RB 295
31 22 X icbt RA, RB 270
31 23 X lwzx RT, RA, RB 300

31 24 X
slw

RA, RS, RB 360
slw.

31 26 X
cntlzw

RA, RS 244
cntlzw.

31 28 X
and 

RA, RS, RB 223
and.

31 32 X cmpl BF, 0, RA, RB 242

31 40 (552) XO

subf

RT, RA, RB 383
subf.
subfo
subfo.

31 54 X dcbst RA, RB 258
31 55 X lwzux RT, RA, RB 299

31 60 X
andc

RA, RS, RB 224
andc.

31 75 (587) XO
mulhw

RT, RA, RB 333
mulhw.

31 78 X
dlmzb

RA, RS, RB 265
dlmzb.

31 83 X mfmsr RT 318
31 86 X dcbf RA, RB 254
31 87 X lbzx RT, RA, RB 280

Table A-5. PPC440 Instructions by Opcode (continued) 
Primary Opcode Secondary Opcode Form Mnemonic Operands Page
450       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
31 104 (616) XO

neg

RT, RA 340
neg.
nego
nego.

31 119 X lbzux RT, RA, RB 279

31 124 X
nor

RA, RS, RB 347
nor.

31 131 X wrtee RS 398

31 136 (648) XO

subfe

RT, RA, RB 385
subfe.
subfeo
subfeo.

31 138 (650) XO

adde

RT, RA, RB 216
adde.
addeo
addeo.

31 144 XFX mtcrf FXM, RS 323
31 146 X mtmsr RS 325
31 150 X stwcx. RS, RA, RB 378
31 151 X stwx RS, RA, RB 382
31 163 X wrteei E 399
31 183 X stwux RS, RA, RB 381

31 200 (712) XO

subfze

RT, RA, RB 388
subfze.
subfzeo
subfzeo.

31 202 (714) XO

addze

RT, RA 222
addze.
addzeo
addzeo.

31 215 X stbx RS, RA, RB 367

31 232 (744) XO

subfme

RT, RA, RB 387
subfme.
subfmeo
subfmeo.

31 234 (746) XO

addme

RT, RA 221
addme.
addmeo
addmeo.

31 235 (747) XO

mullw

RT, RA, RB 338
mullw.
mullwo
mullwo.

31 246 X dcbtst RA,RB 258
31 247 X stbux RS, RA, RB 365
31 262 X icbt RA, RB 270
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31 266 (778) XO

add

RT, RA, RB 214
add.
addo
addo.

31 278 X dcbt RA, RB 256
31 279 X lhzx RT, RA, RB 289

31 284 X
eqv

RA, RS, RB 266
eqv.

31 311 X lhzux RT, RA, RB 288

31 316 X
xor

RA, RS, RB 400
xor.

31 323 XFX mfdcr RT, DCRN 317
31 339 XFX mfspr RT, SPRN 319
31 343 X lhax RT, RA, RB 284
31 371 XFX mftb RT, SPRN 445
31 375 X lhaux RT, RA, RB 283
31 407 X sthx RS, RA, RB 372

31 412 X
orc

RA, RS, RB 349
orc.

31 439 X sthux RS, RA, RB 371

31 444 X
or

RA, RS, RB 348
or.

31 451 XFX mtdcr DCRN, RS 324
31 454 X dccci RA, RB 260

31 459 (971) XO

divwu

RT, RA, RB 264
divwu.
divwuo
divwuo.

31 467 XFX mtspr SPRN, RS 326
31 470 X dcbi RA, RB 255

31 476 X
nand

RA, RS, RB 339
nand.

31 486 X dcread RT, RA, RB 261

31 491 (1003) XO

divw

RT, RA, RB 263
divw.
divwo
divwo.

31 512 X mcrxr BF 315
31 530 Reserved-nop 446
31 533 X lswx RT, RA, RB 293
31 534 X lwbrx RT, RA, RB 296

31 536 X
srw

RA, RS, RB 363
srw.

31 562 Reserved-nop 446
31 566 X tlbsync 392
31 594 Reserved-nop 446
31 597 X lswi RT, RA, NB 291
31 598 X msync 322
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31 626 Reserved-nop 446
31 658 Reserved-nop 446
31 661 X stswx RS, RA, RB 375
31 662 X stwbrx RS, RA, RB 377
31 690 Reserved-nop 446
31 722 Reserved-nop 446
31 725 X stswi RS, RA, NB 373
31 754 Reserved-nop 446
31 758 X dcba RA, RB 253
31 790 X lhbrx RT, RA, RB 285

31 792 X
sraw

RA, RS, RB 361
sraw.

31 824 X
srawi

RA, RS, SH 362
srawi.

31 854 X mbar MO 313

31 914 X
tlbsx

RT,RA,RB 391
tlbsx.

31 918 X sthbrx RS, RA, RB 369

31 922 X
extsh

RA, RS 268
extsh.

31 946 X tlbre RT, RA,WS 389

31 954 X
extsb

RA, RS 267
extsb.

31 966 X iccci RA, RB 272
31 978 X tlbwe RS, RA,WS 393
31 982 X icbi RA, RB 269
31 998 X icread RA, RB 273
31 1014 X dcbz RA, RB 259
32 D lwz RT, D(RA) 297
33 D lwzu RT, D(RA) 298
34 D lbz RT, D(RA) 277
35 D lbzu RT, D(RA) 278
36 D stw RS, D(RA) 376
37 D stwu RS, D(RA) 380
38 D stb RS, D(RA) 364
39 D stbu RS, D(RA) 365
40 D lhz RT, D(RA) 286
41 D lhzu RT, D(RA) 287
42 D lha RT, D(RA) 281
43 D lhau RT, D(RA) 282
44 D sth RS, D(RA) 368
45 D sthu RS, D(RA) 370
46 D lmw RT, D(RA) 290
47 D stmw RS, D(RA) 373
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Appendix B. PPC440 Compiler Optimizations
This appendix describes some potential optimizations for compilers.

1. Place target addresses (subroutine entry points) on cache line boundaries (32-bytes)

2. Up to five instructions between a load and a use of the load result. Assuming a data cache hit, the worst case 
scenario for the PPC440 is five instructions between a load-use, in order to avoid any bubbles. The five 
instructions are:

• One dispatch, together with the load

• Two the cycle after

• Two the cycle after that

In the next cycle, the use of the load result can dispatch. Therefore, the compiler should try to schedule as 
many as five instructions between the load and use of the load result. However, if some of the instruction pairs 
between the load-use have pipeline dependencies (such that they cannot dispatch together), there is no bene-
fit in including the extra instructions between the load-use, and other scheduling optimizations could be made.

In the worst case of instruction pairings, the maximum performance can be achieved with only two instructions 
between the load and use of the load result. This is the case when the load instruction pairs with the instruction 
before it (instead of after it), and then the next two instructions require the same pipe, so only one can dispatch 
during the cycle after the load, and then third instruction after the load needs the same pipe as the second, so 
they cannot dispatch together either. In such a case, the third instruction after the load might as well be the use 
of the load result. See item 3 for information about which instruction pairings can dispatch together.

3. Pair instructions for dual dispatch. The rules for instruction dispatch in the PPC440 are as follows: loads and 
stores can only use the L-Pipe. Branches, CR-updates, XER-updates (“o” forms of arithmetic instructions), 
multiply, divide, system instructions (such as rfi and sc), and any SPR accesses (mtspr, mfspr) can only use 
the I-Pipe. All other instructions (primarily non-CR-updating and non-XER-updating arithmetic and logic 
instructions) can use either the J-Pipe or the I-Pipe. Instructions should be paired so that they can dispatch as 
pairs. For example, pair loads and stores with any other instructions. Pair CR-updates with non-CR-updating 
instructions and so on.

4. Do not bother to try to schedule instructions between CR-updates and branches that are conditional on those 
CR-updates (with some exceptions).

The exceptions are for CR-updates caused by multiply, divide, multiply-accumulate, mtcrf, tlbsx., and stwcx. 
instructions. If a branch depends on the CR result of one of these instructions, one or more instructions should 
be scheduled (if possible) between the CR update and the branch. Of course, it is also the general case (as 
pointed out in item 3) that the compiler should schedule instructions so they can issue in pairs, and a CR-
update and a branch both issue to the I-Pipe, so they cannot issue together. (The compiler should try to set 
things up so a CR-update and a following branch (regardless of any CR-dependency by the branch) can issue 
in pairs.) This can mean the CR-update can get paired with the instruction before it, and the branch with the 
instruction after it, such that there is dual issue in both cycles. However, if this pairing is not possible, an 
instruction should be inserted (if possible, of course; do not create no-ops for no reason) between the CR-
update and the branch to allow the dual issue. 

The point of this item is to explain that there is no need to separate the CR-update and the branch simply for 
the sake of the CR-dependency. That is, there is no extra cycle penalty associated with the CR-update/branch 
CR-dependency, beyond the “standard” penalty of the inability to dual issue, unless the CR-update is one of 
the types mentioned above.

If the CR-update is MAC or a 16 × 32 multiply, 1 to 3 instructions should be scheduled between the CR-update 
and the branch (0 or 1 instruction, depending on whether the CR-update pairs with the instruction before or 
after, or 1 to 2 instructions to issue between the issue of the CR-update and the issue of the branch, depending 
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on whether there is a single-issue or dual-issue opportunity for the instruction(s) which are scheduled between 
the CR-update and the branch).

Similarly, if the CR-update is 32 × 32 multiply, divide, tlbsx., or stwcx., schedule 3 to 5 instructions between 
the CR-update and the branch (two issue cycles of 2 to 4 instructions between, plus the 0 to 1 issuing with the 
CR-update). 

Finally, if the CR-update is mtcrf, schedule 5 to 7 instructions between (3 cycles of issue between them).

5. Avoid the use of string/multiple instructions (with some exceptions).

The exceptions have to do with cache effects (more cache misses due to more instructions if you use separate 
loads/stores instead of a string/multiple), and the specialized behavior of a string, where the bytes are inserted 
into the more-significant portion of the GPR, in preparation for a “string compare” operation to determine which 
string is “greater” than another. If the string/multiple is for a relatively small number of registers (or the expan-
sion into discrete loads/stores is known to not have an overall detrimental cache impact), and if a string is 
being used only for a copy operation and the size is known, performance can be improved by using discrete 
loads/stores. Essentially, due to hazard determination within the processor, string/multiples impose a couple of 
cycles of extra, “false” penalty on both the front-end and the back-end. On the other hand, if this penalty is 
amortized over a large number of registers (say 16 or so), the impact of the extra stalls is probably negligible.

6. Insert 10 or so instructions within a bdnz loop (loop unrolling).

7. Put 4 to 8 instructions between mtlr/mtctr and blr/bctr

8. Put 1 to 3 instructions between 16 × 32 multiply and the use of the result.

9. Put 2 to 5 instructions between 32 × 32 multiply and the use of the result.

10. Use the “without allocate” attribute appropriately on block copy operations, such as calls to the library memcpy 
function, or implicit structure copies.

11. Block move operations. If moving a block of memory using a series of load/store operations, perform the 
load/store operations in the following order: L1-L2-L3-S1-S2-S3, and repeat. Having the second and third 
loads between the first load and the first store fills the two-cycle load-use penalty.
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Index

A
add 214
add. 214
addc 215
addc. 215
addco 215
addco. 215
adde 216
adde. 216
addeo 216
addeo. 216
addi 217
addic 218
addic. 219
addis 220
addme 221
addme. 221
addmeo 221
addmeo. 221
addo 214
addo. 214
addressing 29
addressing modes 31

data storage 31
instruction storage 31

addze 222
addze. 222
addzeo 222
addzeo. 222
alignment

load and store 88
alignment interrupt 150
alignment interrupts 150
allocated instruction summary 50
allocation

data cache line on store miss 89
alphabetical summary of implemented instructions 416
and 223
and. 223
andc 224
andc. 224
andi. 225
andis. 226
arithmetic compare 56
arrays, shadow TLB 120
asynchronous interrupt class 127
attributes, storage 114
auxiliary processor unavailable interrupt 155

B
b 227
ba 227
bc 228

bca 228
bcctr 233
bcctrl 233
bcl 228
bcla 228
bclr 236
bclrl 236
bctr 233
bctrl 233
bdnz 229
bdnza 229
bdnzf 229
bdnzfa 229
bdnzfl 229
bdnzfla 229
bdnzflr 237
bdnzflrl 237
bdnzl 229
bdnzla 229
bdnzlr 237
bdnzlrl 237
bdnzt 229
bdnzta 229
bdnztl 229
bdnztla 229
bdnztlr 237
bdnztlrl 237
bdz 229
bdza 229
bdzf 229
bdzfa 229
bdzfl 229
bdzfla 229
bdzflr 237
bdzflrl 237
bdzl 229
bdzla 229
bdzlr 237
bdzlrl 237
bdzt 230
bdzta 230
bdztl 230
bdztla 230
bdztlr 237
bdztlrl 237
beq 230
beqa 230
beqctr 234
beqctrl 234
beql 230
beqlr 237
beqlrl 237
bf 230
bfa 230
bfctr 234
bfctrl 234
bfl 230
bfla 230
bflr 237
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bflrl 237
bge 230
bgea 230
bgectrl 234
bgel 230
bgela 230
bgelr 238
bgelrl 238
bgrctr 234
bgt 230
bgta 230
bgtctr 234
bgtctrl 234
bgtl 230
bgtla 230
bgtlr 238
bgtlrl 238
BI field on conditional branches 51
big endian

defined 32
structure mapping 33

bl 227
bla 227
ble 231
blea 231
blectr 234
blectrl 234
blel 231
blela 231
blelr 238
blelrl 238
blr 236
blrl 236
blt 231
blta 231
bltctr 234
bltctrl 234
bltl 231
bltla 231
bltlr 238
bltlrl 238
bne 231
bnea 231
bnectr 234
bnectrl 234
bnel 231
bnela 231
bnelr 238
bnelrl 238
bng 231
bnga 231
bngctr 234
bngctrl 234
bngl 231
bngla 231
bnglr 238
bnglrl 238
bnl 231
bnla 231

bnlctr 235
bnlctrl 235
bnll 231
bnlla 231
bnllr 238
bnllrl 238
bns 232
bnsa 232
bnsctr 235
bnsctrl 235
bnsl 232
bnsla 232
bnslr 238
bnslrl 238
bnu 232
bnua 232
bnuctr 235
bnuctrl 235
bnul 232
bnula 232
bnulr 239
bnulrl 239
BO field on conditional branches 51
boundary scan 182
Boundary Scan Description Language (BSDL) 182
branch instruction summary 47
branch instructions, exception priorities for 169
branch prediction 52, 417
branch processing 51
branch taken (BRT) debug events 196
branching control

BI field on conditional branches 51
BO field on conditional branches 51
branch addressing 51
branch prediction 52
registers 53

BSDL 182
bso 232
bsoa 232
bsoctr 235
bsoctrl 235
bsol 232
bsola 232
bsolr 239
bsolrl 239
bt 232
bta 232
btctr 235
btctrl 235
btl 232
btla 232
btlr 239
btlrl 239
bun 232
buna 232
bunctr 235
bunctrl 235
bunl 232
bunla 232
458       AMCC Proprietary 



Revision 1.09 – March 13, 2008

Preliminary User’s Manual
440 – PPC440 Processor
bunlr 239
bunlrl 239
byte ordering 32

big endian, defined 32
instructions 34
little endian, defined 33
structure mapping

big endian mapping 33
little endian mapping 34

C
cache block, defined 82
cache line

See also cache block
cache line locking 73
cache line replacement policy 72
cache locking transient mechanism 73
cache management instructions

summary
data cache 94
instruction cache 82

caching inhibited 115
CCR0 61, 83, 95
CCR1 63, 83, 95
change status management 123
clrlslwi 356
clrlslwi. 356
clrlwi 356
clrlwi. 356
clrrwi 356
clrrwi. 356
cmp 240
cmpi 241
cmpl 242
cmpli 243
cmplw 242
cmplwi 243
cmpw 240
cmpwi 241, 313
cntlzw 244
cntlzw. 244
code

self-modifying 80
coherence

data cache 94
coherency

instruction cache 80
compare

arithmetic 56
logical 56

condition register. See CR 41
context synchronization 67
control

data cache 94
instruction cache 82

conventions
notational 18

CR 41, 54
CR updating instructions 55
instructions

integer
CR 56

crand 245
crandc 246
crclr 252
creqv 247
critical input interrupt 143
critical interrupts 129
Critical Save/Restore Register 0 135
Critical Save/Restore Register 1 135
crmove 250
crnand 248
crnor 249
crnot 249
cror 250
crorc 251
crset 247
crxor 252
CSRR0 135
CSRR1 135
CTR 54

D
DAC

debug events
applied to instructions that result in multiple storage

accesses 193
applied to various instruction types 193
fields 190
overview 189
processing 192

registers
DAC1:DAC2 206

DAC1:DAC2 206
Data Address Compare Register (DAC1) 206
data address compare See also DAC 189
data addressing modes 31
data cache

coherency 94
data cache array organization and operation 71
data cache controller. See DCC
data cache line allocation on store miss 89
data read PLB interface requests

PLB interface 92
data read requests 92
data storage addressing modes 31
data storage interrupt 146
data storage interrupts 146
data TLB error interrupt 157
data TLB error interrupts 157
data value compare See also DVC 194
data write PLB interface requests

PLB interface 92
data write requests 92
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DBCR0 201
DBCR1 202
DBCR2 204
DBDR 207
DBSR 205
dcba

operation summary 94
dcbf 254

operation summary 94
dcbi 255

operation summary 94
dcbst 256

operation summary 94
dcbt

formal description 257
functional description 95
operation summary 95

dcbt and dcbtst operation 95
dcbtst

formal description 258
functional description 95
operation summary 95

dcbz 259
operation summary 95

DCC (data cache controller)
control 94
debug 94
features 86
operations 87

dccci 260
operation summary 95

DCDBTRH 96
DCDBTRL 96
dcread

functional description 96, 261
operation summary 95

DCRs 41
DEAR 136
debug

debug cache 94
instruction cache 82

debug events
BRT 196
DAC 189
DAC fields 190
DVC 194
DVC fields 195
IAC 186, 197
IAC fields 186
ICMP 198
IPRT 198
overview 185
RET 197
summary 200
TRAP 197
UDE 199

debug Interrupt 159
debug interrupts 159
debug modes

debug wait 184
external 184
internal 184
overview 183
trace 185

debug wait mode 184
debugging

boundary scan chain 182
debug events 185
debug interfaces 181

JTAG
debug port 181

JTAG connector 181
trace status interface 183

debug modes 183
development tool support 181
registers

DAC1:DAC2 206
DBCR0 201
DBCR1 202
DBCR2 204
DBDR 207
DBSR 205
DVC1:DVC2 206
IAC1:IAC4 206
overview 200

reset 200
timer freeze 200
trace port 183

DEC 175
DECAR 175
decrementer interrupt 155
decrementer interrupts 155
device control registers 41
device control registers. See DCRs 41
direct write to memory 89
divw 263
divw. 263
divwo 263
divwo. 263
divwu 264
divwu. 264
divwuo 264
divwuo. 264
dlmzb 265
dlmzb. 265
DVC

debug events
applied to instructions that result in multiple storage

accesses 196
applied to various instruction types 196
fields 195
overview 194
processing 196

registers
DVC1:DVC2 206

DVC1:DVC2 206
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E
E storage attribute 33, 116
effective address

calculation 31
endianness 32, 116
eqv 266
eqv. 266
ESR 138
exception

alignment exception 150
critical input exception 143
data storage exception 146
external input exception 150
illegal instruction exception 152
instruction storage exception 149
instruction TLB miss exception 158
machine check exception 144
privileged instruction exception 152
program exception 151
system call exception 154
trap exception 154

exception priorities 165
exception priorities for

all other instructions 171
allocated load and store instructions 167
branch instructions 169
floating-point load and store instructions 166
integer load, store, and cache management instructions 

166
other allocated instructions 168
other floating-point instructions 167
preserved instructions 170
privileged instructions 168
reserved instructions 170
return from interrupt instructions 170
system call instruction 169
trap instructions 169

exception syndrome register 138
exceptions 127
execution pipelines 24
execution synchronization 68
extended mnemonics

bctr 233
bctrl 233
bdnz 229
bdnza 229
bdnzf 229
bdnzfa 229
bdnzfkr 237
bdnzfl 229
bdnzfla 229
bdnzflrl 237
bdnzl 229
bdnzla 229
bdnzlr 237
bdnzlrl 237
bdnzt 229
bdnzta 229
bdnztl 229

bdnztla 229
bdnztlr 237
bdnztlrl 237
bdz 229
bdza 229
bdzf 229
bdzfa 229
bdzfl 229
bdzfla 229
bdzflr 237
bdzflrl 237
bdzl 229
bdzla 229
bdzlr 237
bdzlrl 237
bdzt 230
bdzta 230
bdztl 230
bdztla 230
bdztlr 237
bdztlrl 237
beq 230
beqa 230
beqctr 234
beqctrl 234
beql 230
beqlr 237
beqlrl 237
bf 230
bfa 230
bfctr 234
bfctrl 234
bfl 230
bfla 230
bflr 237
bflrl 237
bge 230
bgea 230
bgectr 234
bgectrl 234
bgel 230
bgela 230
bgelr 238
bgelrl 238
bgt 230
bgta 230
bgtctr 234
bgtctrl 234
bgtl 230
bgtla 230
bgtlr 238
bgtlrl 238
ble 231
blea 231
blectr 234
blectrl 234
blel 231
blela 231
blelr 238
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blelrl 238
blr 236
blrl 236
blt 231
blta 231
bltctr 234
bltctrl 234
bltl 231
bltla 231
bltlr 238
bltlrl 238
bne 231
bnea 231
bnectr 234
bnectrl 234
bnel 231
bnela 231
bnelr 238
bnelrl 238
bng 231
bnga 231
bngctr 234
bngctrl 234
bngl 231
bngla 231
bnglr 238
bnglrl 238
bnl 231
bnla 231
bnlctr 235
bnlctrl 235
bnll 231
bnlla 231
bnllr 238
bnllrl 238
bns 232
bnsa 232
bnsctr 235
bnsctrl 235
bnsl 232
bnsla 232
bnslr 238
bnslrl 238
bnu 232
bnua 232
bnuctr 235
bnuctrl 235
bnul 232
bnula 232
bnulr 239
bnulrl 239
bsalr 239
bso 232
bsoa 232
bsoctr 235
bsoctrl 235
bsol 232
bsola 232
bsolrl 239

bt 232
bta 232
btctr 235
btctrl 235
btl 232
btla 232
btlr 239
btlrl 239
bun 232
buna 232
bunctr 235
bunctrl 235
bunl 232
bunla 232
bunlr 239
bunlrl 239
clrlslwi 356
clrlslwi. 356
clrlwi 356
clrlwi. 356
clrrwi 356
clrrwi. 356
cmplw 242
cmplwi 243
cmpw 240
cmpwi 241, 313
crclr 252
crmove 250
crnot 249
crset 247
extlwi 357
extlwi. 357
extrwi 357
extrwi. 357
for addi 217
for addic 218
for addic. 219
for addis 220
for bc, bca, bcl, bcla 229
for bcctr, bcctrl 233
for bclr, bclrl 236
for cmp 240
for cmpi 241
for cmpl 242
for cmpli 243
for creqv 247
for crnor 249
for cror 250
for crxor 252
for mbar 0 313
for mfspr 320, 327
for mtcrf 323
for nor, nor. 347
for or, or. 348
for ori 350
for rlwimi, rlwimi. 355
for rlwinm, rlwinm. 356
for rlwnm, rlwnm. 358
for subf, subf., subfo, subfo. 383
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for subfc, subfc., subfco, subfco. 384
for tw 395
for twi 397
inslwi 355
inslwi. 355
insrwi 355
insrwi. 355
li 217
lis 220
mr 348
mr. 348
mtcr 323
nop 350
not 347
not. 347
rotlw 358
rotlw. 358
rotlwi 357
rotlwi. 357
rotrwi 357
rotrwi. 357
slwi 357
slwi. 357
srwi 357
srwi. 357
sub 383
sub. 383
subc 384
subc. 384
subco 384
subco. 384
subi 217
subic 218
subic. 219
subis 220
subo 383
subo. 383
trap 395
tweq 395
tweqi 397
twge 395
twgei 397
twgle 395
twgt 395
twgti 397
twle 395
twlei 397
twlgei 397
twlgt 395
twlgti 397
twlle 395
twllei 397
twllt 395
twllti 397
twlng 395
twlngi 397
twlnl 395
twlnli 397
twlt 395

twlti 397
twne 395
twnei 397
twng 395
twngi 397
twnl 395
twnli 397

external debug mode 184
external input interrupt 150
external input interrupts 150
extlwi 357
extlwi. 357
extrwi 357
extrwi. 357
extsb 267
extsb. 267

F
features

DCC 86
ICC 77

FIT 176
fixed interval timer 176
fixed interval timer interrupt 156
floating point interrupt unavailable interrupts 154
floating-point load and store instructions, exception priorities 

for 166
floating-point unavailable interrupt 154
freezing the timer facilities 180

G
G storage attribute 115
GPR0:GPR31 57
GPRs

general purpose registers. See GPRs 40
illustrated 57

guarded 115

I
I storage attribute 115
IAC

debug events
fields 186
overview 186, 197
processing 189

registers
IAC1:IAC4 206

IAC1:IAC4 206
icbi 269

operation summary 82
icbt

formal description 270
functional description 83
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operation summary 82
ICC (instruction cache controller)

control 82
debug 82
features 77
operations 78

iccci 272
operation summary 82

icread 273
functional description 83
operation summary 82

implemented instruction set summary 44
implicit update 56
imprecise interrupts 128
inslwi 355
inslwi. 355
insrwi 355
insrwi. 355
instruction

add 214
add. 214
addc 215
addc. 215
addco 215
addco. 215
adde 216
adde. 216
addeo 216
addeo. 216
addi 217
addic 218
addic. 219
addis 220
addme 221
addme. 221
addmeo 221
addmeo. 221
addo 214
addo. 214
addze 222
addze. 222
addzeo 222
addzeo. 222
and 223
and. 223
andc 224
andc. 224
andi. 225
andis. 226
b 227
ba 227
bc 228
bca 228
bcctr 233
bcctrl 233
bcl 228
bcla 228
bclr 236
bclrl 236

bl 227
bla 227
cmp 240
cmpi 241
cmpl 242
cmpli 243
cntlzw 244
cntlzw. 244
crand 245
crandc 246
creqv 247
crnand 248
crnor 249
cror 250
crorc 251
crxor 252
dcbf 254
dcbi 255
dcbst 256
dcbt 257
dcbtst 258
dcbz 259
dccci 260
dcread 261
divw 263
divw. 263
divwo 263
divwo. 263
divwu 264
divwu. 264
divwuo 264
divwuo. 264
dlmzb 265
dlmzb. 265
eqv 266
eqv. 266
extsb 267
extsb. 267
icbi 269
icbt 270
iccci 272
icread 273
isel 275
isync 276
lbz 277
lbzu 278
lbzx 280
lha 281
lhau 282
lhax 284
lhbrx 285
lhz 286
lhzu 287
lhzux 288
lhzx 289
lmw 290
lswi 291
lswx 293
lwarx 295
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lwzu 298
lwzux 299
lwzx 300
macchw 301
macchws 302
macchwsu 303
macchwu 304
machhw 305
machhwsu 307
machhwu 308
maclhw 309
maclhws 310, 346
maclhwu 312
mbar 313
mcrf 314
mcrxr 315
mfcr 316
mfdcr 317
mfmsr 318
mfspr 319
msync 322
mtcrf 323
mtdcr 324
mtspr 326
mulchw 329
mulchwu 330
mulhhw 331
mulhhwu 332
mulhwu 334
mulhwu. 334
mullhw 335
mullhwu 336
mulli 337
mullw 338
mullw. 338
mullwo 338
mullwo. 338
nand 339
nand. 339
neg 340
neg. 340
nego 340
nego. 340
nmacchw 341
nmacchws 342
nmachhw 343
nmachhws 344
nmaclhw 345
nmaclhws 346
nor 347
nor. 347
or 348
or. 348
orc 349
orc. 349
ori 350
oris 351
partially executed 131

rfci 352
rfi 353
rfmci 354
rlwimi 355
rlwimi. 355
rlwinm 356
rlwinm. 356
rlwnm 358
rlwnm. 358
sc 359
slw 360
slw. 360
sraw 361
sraw. 361
srawi 362
srawi. 362
srw 363
srw. 363
stb 364
stbu 365
stbux 366
stbx 367
sth 368
sthbrx 369
sthu 370
sthux 371
sthx 372
stmw 373
stswi 373
stw 376
stwbrx 377
stwcx. 378
stwu 380
stwux 381
stwx 382
subf 383
subf. 383
subfc 384
subfc. 384
subfco 384
subfco. 384
subfe 385
subfe. 385
subfeo 385
subfeo. 385
subfic 386
subfme 387
subfme. 387
subfmeo 387
subfmeo. 387
subfo 383
subfo. 383
subfze 388
subfze. 388
subfzeo 388
subfzeo. 388
tlbre 389
tlbsx 391
tlbsx. 391
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tlbsync 392
tlbwe 393
tw 394
twi 396
wrtee 398
wrteei 399
xor 400
xori 401

instruction address compare See also IAC 186, 197
instruction addressing modes 31
instruction cache array organization and operation 71
instruction cache coherency 80
instruction cache controller. See ICC
instruction cache synonyms 80
instruction complete (ICMP) debug events 198
instruction fields 411
instruction formats 210, 411

diagrams 413
instruction forms 411, 413

B-form 414
D-form 414
I-form 414
M-form 416
SC-form 414
X-form 415
XFX-form 416
XL-form 416
XO-form 416

instruction set
summary

allocated instructions 50
branch 47
cache management 49
CR logical 48
integer arithmetic 46
integer compare 46
integer logical 46
integer rotate 47
integer shift 47
integer storage access 45
integer trap 47
processor synchronization 49
register management 48
system linkage 48
TLB management 49

instruction set portability 210
instruction set summary 44
instruction storage addressing modes 31
instruction storage interrupt 149
instruction storage interrupts 149
instruction TLB error interrupt 158
instruction TLB error interrupts 158
Instructions

classes
allocated 42

instructions
all other, exception priorities for 171
allocated (other), exception priorities for 168
allocated instruction opcodes 445

allocated load and store, exception priorities for 167
alphabetical listing 213
alphabetical summary 416
branch, exception priorities for 169
byte ordering 34
byte-reverse 35
categories 209

allocated instruction summary 50
branch 47
integer 45
processor control 48
storage control 49
storage synchronization 50

classes
defined 41, 43
preserved 43

CR updating 55
DAC debug events applied to

cache management 193
instructions that result in multiple storage accesses

193
lswx, stswx 193
special cases 193
stwcx. 193
various 193

data cache management instruction summary 94
DVC debug events applied to

cache management 196
instructions that result in multiple storage accesses

196
lswx, stswx 196
special cases 196
stwcx. 196
various 196

floating-point (other), exception priorities for 167
floating-point load and store, exception priorities for 166
format diagrams 413
formats 411
forms 411, 413
implemented instruction set summary 44
instruction cache management instruction summary 82
integer compare

CR update 56
integer load, store, and cache management, exception 

priorities for 166
mfmsr 133
mtmsr 133
opcodes 446
partially executed 131
preserved instruction opcodes 445
preserved, exception priorities for 170
privileged 66
privileged instructions, exception priorities for 168
pseudocode operator precedence 213
register usage 213
reserved instruction opcodes 446
reserved, exception priorities for 170
reserved-illegal 446
reserved-nop 446
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rfi 134
sorted by opcode 446
syntax summary 417
system call, exception priorities for 169
trap, exception priorities for 169

integer instructions
arithmetic 46
compare 46
logical 46
rotate 47
shift 47
storage access 45
trap 47

integer load, store, and cache management instructions, 
exception priorities for 166

integer processing 57
internal debug mode 184
interrupt

alignment interrupt 150
data storage interrupt 146
external input interrupt 150
instruction

partially executed 131
instruction storage 149
instruction storage interrupt 149
instruction TLB miss interrupt 158
machine check interrupt 144
masking 162

guidelines for system software 164
ordering 162, 164

guidelines for system software 164
program interrupt 151

illegal instruction exception 152
privileged instruction exception 152
trap exception 154

system call interrupt 154
type

alignment 150
auxiliary processor unavailable 155
data storage 146
data TLB error 157
debug 159
decrementer 155
external input 150
fixed interval timer 156
floating-point unavailable 154
instruction TLB error 158
iritical input 143
machine check 144
program interrupt 151
system call 154
watchdog timer 156

interrupt (IRPT) debug events 198
interrupt and exception handling registers

ESR 138
interrupt classes

asynchronous 127
critical and non-critical 129

machine check 129
synchronous 127

interrupt processing 130
interrupt vector 130

interrupt vector 130
interrupts 127

definitions 141
imprecise 128
order 164
ordering and masking 162
ordering and software 163
partially executed instructions 131
precise 128
registers, processing 133
synchronous and imprecise 128
synchronous and precise 128
types

alignment 150
auxiliary processor unavailable 155
data storage 146
data TLB error 157
debug 159
decrementer 155
definitions 141
external inputs 150
fixed interval timer 156
floating point unavailable 154
instruction storage 149
instruction TLB error 158
machine check 144
program 151
watchdog timer 156

vectors 130
isel 275
isync 276
IVOR0:IVOR15 137
IVPR 138

J
JTAG

boundary scan 182
clock requirements 181
connector 181
instructions 182
JTAG Register (SDR0_JTAG) 183
reset requirements 181
signals 181
test access port (TAP) 181

L
lbz 277
lbzu 278
lbzx 280
lha 281
lhau 282
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lhax 284
lhbrx 285
lhz 286
lhzu 287
lhzux 288
lhzx 289
li 217
lis 220
little endian

structure mapping 34
little endian mapping 34
little endian, defined 33
lmw 290
load and store alignment 88
load operations 88
locking, cache lines 73
logical compare 56
LR 53
lswi 291
lswx 293
lwarx 295
lwz 297
lwzu 298
lwzux 299
lwzx 300

M
M storage attribute 115
macchw 301
macchws 302
macchwsu 303
macchwu 304
machhw 305
machhwsu 307
machhwu 308
machine check 129
machine check interrupt 144
machine check interrupts 129, 144
machine check save/restore register 0 135
machine state register. See MSR 41
maclhw 309
maclhws 310, 346
maclhwu 312
masking and ordering interrupts 162
mbar 313
mcrf 314
mcrxr 315
MCSR 140
MCSRR0 135
MCSRR1 136
memory coherence required 115
memory management. See also MMU
memory map 29
memory mapped registers 41
memory organization 29
mfcr 316
mfdcr 317

mfmsr 133, 318
mfspr 319
MMU

change status management 123
overview 103
page reference 123
PowerPC Book-E MMU Architecture, nonsupported fea-

tures 103
support for Power PC Book-E MMU architecture 103
TLB management instructions

overview 121
read/write (tlbre, tlbwe) 122
search (tlbsx) 121

MMUCR 117
mr 348
mr. 348
MSR 41, 133
msync 322
mtcr 323
mtcrf 323
mtdcr 324
mtmsr 133
mtspr 326
mulchw 329
mulchwu 330
mulhhw 331
mulhhwu 332
mulhwu 334
mulhwu. 334
mullhw 335
mullhwu 336
mulli 337
mullw 338
mullw. 338
mullwo 338
mullwo. 338

N
nand 339
nand. 339
neg 340
neg. 340
nego 340
nego. 340
nmacchw 341
nmacchws 342
nmachhw 343
nmachhws 344
nmaclhw 345
nmaclhws 346
non-critical interrupts 129
nop 350
nor 347
nor. 347
not 347
not. 347
notation 18, 211, 411
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O
opcodes 446

allocated instruction 445
preserved instruction 445

operands
storage 29

operations
DCC 87
ICC 78
line flush 91
load 88
store 89

or 348
or. 348
orc 349
orc. 349
ordering

storage access 93
ordering and masking interrupts 162
ori 350
oris 351

P
page management 123
partially executed instructions 131
PID 120
PIR 61
portability, instruction set 210
precise interrupts 128
prefetch mechanism, speculative 79
preserved instructions, exception priorities for 170
primary opcodes 446
priorities, exception 165
privileged instructions 66
privileged mode 65
privileged operation 65
privileged SPRs 66
problem state 65
processor control instruction summary 48
processor control instructions

CR logical 48
register management 48
synchronization 49
system linkage 48

processor control registers 60
processor core features 21
program interrupt 151
program interrupts 151
pseudocode 211
PVR 60

R
reading the time base 174
registers 36

branching control 53
CCR0 61, 83, 95
CCR1 63, 83, 95
CR 41, 54
CSRR0 135
CSRR1 135
CTR 54
DAC1:DAC2 206
DBCR0 201
DBCR1 202
DBCR2 204
DBDR 207
DBSR 205
DCDBTRH 96
DCDBTRL 96
DCR 41
DEAR 136
DEC 175
DECAR 175
DNVx 72
DTVx 72
DVC1:DVC2 206
DVLIM 73
ESR 138
GPR0:GPR31 57
GPRs 40, 57
IAC1:IAC4 206
interrupt processing 133
INVx 72
ITVx 72
IVLIM 73
IVOR0:IVOR15 137
IVPR 138
LR 53
MCSR 140
MCSRR0 135
MCSRR1 136
MMUCR 117
MSR 41, 133
PID 120
PIR 61
processor control 60
PVR 60
RSTCFG 65
SDR0_JTAG 183
SPRG0:SPRG7 60
SRR0 134
SRR1 134
storage control 116
TBL 174
TBU 174
TCR 176, 177, 178
TSR 177, 179
USPRG0 60
XER 57

registers, device control 41
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registers, memory mapped 41
registers, summary 36
replacement policy, cache line 72
requirements

software
interrupt ordering 163

reservation bit 295, 378
reserved instructions, exception priorities for 170
reserved-illegal instructions 446
reserved-nop instructions 446
reset

debug 200
return (RET) debug events 197
return from interrupt instructions, exception priorities for 170
rfci 352
rfi 134, 353
rfmci 354
rlwimi 355
rlwimi. 355
rlwinm 356
rlwinm. 356
rlwnm 358
rlwnm. 358
rotlw 358
rotlw. 358
rotlwi 357
rotlwi. 357
rotrwi 357
rotrwi. 357
RSTCFG 65

S
Save/Restore Register 0 134
Save/Restore Register 1 134
sc 359
SDR0_JTAG 183
secondary opcodes 446
self-modifying code 80
shadow TLB arrays 120
slw 360
slw. 360
slwi 357
slwi. 357
software

interrupt ordering requirements 163
speculative fetching 66
speculative prefetch mechamism 79
SPRG0:SPRG7 60
SPRs

special purpose registers. See SPRs 40
sraw 361
sraw. 361
srawi 362
srawi. 362
SRR0 134
SRR1 134
srw 363

srw. 363
srwi 357
srwi. 357
stb 364
stbu 365
stbux 366
stbx 367
sth 368
sthbrx 369
sthu 370
sthux 371
sthx 372
stmw 373
storage access ordering 93
storage attributes

caching inhibited 115
endian 116
guarded 115
Memory Coherence Required 115
supported combinations 116
user-definable (U0:U3) 116
write-through required 114

storage control instruction summary 49
storage control instructions

cache management 49
TLB management 49

storage operands 29
storage synchronization 68
storage synchronization instruction summary 50
store gathering 90
store miss

allocation of data cache line 89
store operations 89
structure mapping

big endian 33
little endian 34

stswi 373
stw 376
stwbrx 377
stwcx. 378
stwu 380
stwux 381
stwx 382
sub 383
sub. 383
subc 384
subc. 384
subco 384
subco. 384
subf 383
subf. 383
subfc 384
subfc. 384
subfco 384
subfco. 384
subfe 385
subfe. 385
subfeo 385
subfeo. 385
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subfic 386
subfme 387
subfme. 387
subfmeo 387
subfmeo. 387
subfo 383
subfo. 383
subfze 388
subfze. 388
subfzeo 388
subfzeo. 388
subi 217
subic 218
subic. 219
subis 220
subo 383
subo. 383
superscalar instruction unit 24
supervisor state 65
synchronization

architectural references 67
context 67
execution 68
storage 68

synchronous interrupt class 127
synonyms, instruction cache 80
system call instruction, exception priorities for 169
system call interrupt 154

T
TAP 181
TBL 174
TBU 174
TCR 177, 178
test access port See also TAP 181
time base

defined 174
reading 174
writing 174

timer freeze (debug) 200
timers

DEC 175
DECAR 175
decrementer 175
FIT 176
fixed interval timer 176
freezing the timer facilities 180
TCR 178
TSR 179
watchdog timer 176
watchdog timer state machine 178

TLB
entry fields

E 106
EPN 105
ERPN 105
G 106

I 106
M 106
RPN 105
SIZE 105
TID 105
TS 105
U0 106
U1 106
U2 106
U3 106
UR 107
UW 107
UX 107
V 105
W 106

overview 104
shadow arrays 120

TLB management instructions
overview 121

tlbre 389
tlbsx 391
tlbsx. 391
tlbsync 392
tlbwe 393
trace debug mode 185
trace port 183
transient mechanism, cache 73
translation lookaside buffer. See also TLB
trap 395
trap (TRAP) debug events 197
trap instructions

exception priorities for 169
TSR 177, 179
tw 394
tweq 395
tweqi 397
twge 395
twgei 397
twgle 395
twgt 395
twgti 397
twi 396
twle 395
twlei 397
twlgei 397
twlgt 395
twlgti 397
twlle 395
twllei 397
twllt 395
twllti 397
twlng 395
twlngi 397
twlnl 395
twlnli 397
twlt 395
twlti 397
twne 395
twnei 397
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twng 395
twngi 397
twnl 395
twnli 397

U
U0:U3 storage attributes 116
unconditional (UDE) debug events 199
user mode 65
USPRG0 60

W
W storage attribute 114
watchdog timer interrupt 156
watchdog timer interrupts 156
write-through required 114
writing the time base 174
wrtee 398
wrteei 399

X
XER 57

carry (CA) field 59
overflow (OV) field 59
summary overflow (SO) field 59
transfer byte count (TBC) field 59

xor 400
xori 401
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