
bdi GDB
JTAG debug interface for GNU Debugger

ARM11 / Cortex

User Manual
Manual Version 1.13 for BDI2000

©1997-2011 by Abatron AG

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 2
1 Introduction ... 4
1.1 BDI2000... 4
1.2 BDI Configuration .. 5

2 Installation ... 6
2.1 Connecting the BDI2000 to Target ..6

2.1.1 Changing Target Processor Type ..8
2.1.2 Adaptive Clocking .. 9
2.1.3 Serial Wire Debug ..11

2.2 Connecting the BDI2000 to Power Supply ..12
2.3 Status LED «MODE»... 13
2.4 Connecting the BDI2000 to Host ...14

2.4.1 Serial line communication ..14
2.4.2 Ethernet communication ..15

2.5 Installation of the Configuration Software..16
2.5.1 Configuration with a Linux / Unix host..17
2.5.2 Configuration with a Windows host ..19
2.5.3 Recover procedure...20

2.6 Testing the BDI2000 to host connection..21
2.7 TFTP server for Windows..21

3 Using bdiGDB.. 22
3.1 Principle of operation... 22
3.2 Configuration File... 22

3.2.1 Part [INIT]... 23
3.2.2 Part [TARGET] ...26
3.2.3 Part [HOST].. 32
3.2.4 Part [FLASH] .. 34
3.2.5 Part [REGS] ... 41

3.3 Debugging with GDB ... 43
3.3.1 Target setup ... 43
3.3.2 Connecting to the target...43
3.3.3 Breakpoint Handling...44
3.3.4 GDB monitor command..44
3.3.5 Target serial I/O via BDI...45
3.3.6 Target DCC I/O via BDI..46
3.3.7 Target Serial Wire Output via BDI..47

3.4 Telnet Interface.. 48
3.4.1 Command list ... 49
3.4.2 CPxx Registers ..51

3.5 Multi-Core Support... 52
3.5.1 JTAG Daisy Chained Cores ...52
3.5.2 ARM7 cores connected via JTAG-AP ..52

4 Specifications.. 53

5 Environmental notice.. 54

6 Declaration of Conformity (CE)..54
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 3
7 Abatron Warranty and Support Terms..55
7.1 Hardware ... 55
7.2 Software .. 55
7.3 Warranty and Disclaimer ...55
7.4 Limitation of Liability .. 55

7.4 Appendices

A Troubleshooting ... 56

B Maintenance.. 57

C Trademarks ... 59
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 4
1 Introduction
bdiGDB enhances the GNU debugger (GDB), with JTAG debugging for ARM11 and Cortex-A8/M3
based targets. With the builtin Ethernet interface you get a very fast download speed of up to 200
Kbytes/sec. No target communication channel (e.g. serial line) is wasted for debugging purposes.
Even better, you can use fast Ethernet debugging with target systems without network capability. The
host to BDI communication uses the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset,
program flash memory).

The following figure shows how the BDI2000 interface is connected between the host and the target:

1.1 BDI2000

The BDI2000 is the main part of the bdiGDB system. This small box implements the interface be-
tween the JTAG pins of the target CPU and a 10Base-T ethernet connector. The firmware and the
programable logic of the BDI2000 can be updated by the user with a simple Windows / Linux config-
uration program. The BDI2000 supports 1.8 – 5.0 Volts target systems (3.0 – 5.0 Volts target systems
with Rev. A/B).
.

GNU Debugger
(GDB)

BDI2000

Target System

COP Interface

Ethernet (10 BASE-T)

ARM

Unix / PC Host
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 5
1.2 BDI Configuration

As an initial setup, the IP address of the BDI2000, the IP address of the host with the configuration
file and the name of the configuration file is stored within the flash of the BDI2000.
Every time the BDI2000 is powered on, it reads the configuration file via TFTP.
Following an example of a typical configuration file:

; bdiGDB configuration for ARM Integrator CM1136JF-S
; --
;
[INIT]
WM32 0x1000000C 0x00000005 ;REMAP=1, MISC LED ON
;

[TARGET]
CPUTYPE ARM1136
CLOCK 1 ;JTAG clock (0=Adaptive,1=16MHz,2=8MHz,3=4MHz, ...)
POWERUP 3000 ;start delay after power-up detected in ms
ENDIAN LITTLE ;memory model (LITTLE | BIG)
VECTOR CATCH 0x1f ;catch D_Abort, P_Abort, SWI, Undef and Reset
BREAKMODE HARD ;SOFT or HARD
;
SCANPRED 0 0 ;no JTAG devices before the ARM1136
SCANSUCC 1 4 ;the ETMBUF after the ARM1136 core
;

[HOST]
IP 151.120.25.119
FILE E:\cygwin\home\demo\pid7t\fibo.x
FORMAT ELF
LOAD MANUAL ;load file MANUAL or AUTO after reset

[FLASH]
WORKSPACE 0x00001000 ;workspace in target RAM for fast programming algorithm
CHIPTYPE AM29BX8 ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16)
CHIPSIZE 0x100000 ;The size of one flash chip in bytes
BUSWIDTH 32 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE $arm1136.cfg
FORMAT BIN 0x00010000

[REGS]
FILE $reg1136.def

Based on the information in the configuration file, the target is automatically initialized after every re-
set.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 6
2 Installation
2.1 Connecting the BDI2000 to Target

The enclosed cables to the target system are designed for the ARM Development Boards. In case
where the target system has the same connector layout, the cable (14 pin or 20 pin) can be directly
connected.

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not
exceed 20 cm (8").

For BDI MAIN / TARGET A connector signals see table on next page.

!

BDI TRGT MODE BDI MAIN BDI OPTION

14 pin Target

BDI2000

Target System

ARM

9

 1 13

 14 2

1

10 2

The green LED «TRGT» marked light up when target is powered up

Rev. A
 1 19

 20 2

 Connector

 1 - Vcc Target
 2 - NC
 3 - TRST
 4 - NC
 5 - TDI
 6 - NC
 7 - TMS
 8 - GROUND
 9 - TCK
10 - GROUND
11 - NC
12 - NC
13 - TDO
14 - NC
15 - RESET
16 - NC
17 - NC
18 - NC
19 - NC
20 - NC

 1 - Vcc Target
 2 - GROUND
 3 - TRST
 4 - GROUND
 5 - TDI
 6 - NC
 7 - TMS
 8 - NC
 9 - TCK
10 - NC
11 - TDO
12 - RESET
13 - NC
14 - NC

20 pin Multi-ICE
 Connector

BDI2000

Target System

ARM 1 13

 14 2

The green LED «TRGT» marked light up when target is powered up

BDI TRGT MODE TARGET A TARGET B

9 1

10 2

Rev. B/C

14 pin Target
 Connector

 1 - Vcc Target
 2 - GROUND
 3 - TRST
 4 - GROUND
 5 - TDI
 6 - NC
 7 - TMS
 8 - NC
 9 - TCK
10 - NC
11 - TDO
12 - RESET
13 - NC
14 - NC

 1 - Vcc Target
 2 - NC
 3 - TRST
 4 - NC
 5 - TDI
 6 - NC
 7 - TMS
 8 - GROUND
 9 - TCK
10 - GROUND
11 - NC
12 - NC
13 - TDO
14 - NC
15 - RESET
16 - NC
17 - NC
18 - NC
19 - NC
20 - NC

20 pin Multi-ICE
 Connector

 1 19

 20 2
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 7
BDI MAIN / TARGET A Connector Signals

The BDI2000 works also with targets which have no dedicated TRST pin. For this kind of targets, the
BDI cannot force the target to debug mode immediately after reset. The target always begins execu-
tion of application code until the BDI has finished programming the Debug Control Register.

Note:
For targets with a 10-pin or 20-pin Cortex Debug Connector (Samtec 0.05" micro header) a special
adapter is available. This Cortex Adapter can be ordered separately from Abatron (p/n 90085).

Pin Name Describtion

1 reserved This pin is currently not used.

2 TRST JTAG Test Reset
This open-drain / push-pull output of the BDI2000 resets the JTAG TAP controller on the
target. Default driver type is open-drain.

3+5 GND System Ground

4 TCK JTAG Test Clock
This output of the BDI2000 connects to the target TCK line.

6 TMS JTAG Test Mode Select
This output of the BDI2000 connects to the target TMS line.

7 RESET This open collector output of the BDI2000 is used to reset the target system.

8 TDI JTAG Test Data In
This output of the BDI2000 connects to the target TDI line.

9 Vcc Target 1.8 – 5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

3.0 – 5.0V with Rev. A/B :
This input to the BDI2000 is used to detect if the target is powered up. If there is a current
limiting resistor between this pin and the target Vdd, it should be 100 Ohm or less.

10 TDO JTAG Test Data Out
This input to the BDI2000 connects to the target TDO line.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 8
2.1.1 Changing Target Processor Type

Before you can use the BDI2000 with an other target processor type (e.g. ARM <--> PPC), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected
from the target system. The BDI2000 needs to be supplied with 5 Volts via the BDI OPTION connec-
tor (Rev. A) or via the POWER connector (Rev. B/C). For more information see chapter 2.2.1
«External Power Supply»).

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU.

!

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 9
2.1.2 Adaptive Clocking

Adaptive clocking is a feature which ensures that the BDI2000 never loses synchronization with the
target device, whatever the target clock speed is. To achieve this, BDI2000 uses two signals TCK
and RTCK. When adaptive clocking is selected, BDI2000 issues a TCK signal and waits for the Re-
turned TCK (RTCK) to come back. BDI2000 does not progress to the next TCK until RTCK is re-
ceived. For more information about adaptive clocking see ARM documentation.

Note:
Adaptive clocking is only supported with BDI2000 Rev.B/C and a special target cable. This special
cable can be ordered separately from Abatron (p/n 90052).

For TARGET B connector signals see table on next page.

BDI2000

Target System

ARM

The green LED «TRGT» marked light up when target is powered up

Rev. B/C

 1 - Vcc Target
 2 - NC
 3 - TRST
 4 - NC
 5 - TDI
 6 - NC
 7 - TMS
 8 - GROUND
 9 - TCK
10 - GROUND
11 - RTCK
12 - NC
13 - TDO
14 - NC
15 - RESET
16 - NC
17 - NC
18 - NC
19 - NC
20 - NC

20 pin Multi-ICE
 Connector

 1 19

 20 2

BDI TRGT MODE TARGET A TARGET B

15 1

16 2
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 10
BDI TARGET B Connector Signals:

Pin Name Describtion

1 TDO JTAG Test Data Out
This input to the BDI2000 connects to the target TDO line.

2 reserved

3 TDI JTAG Test Data In
This output of the BDI2000 connects to the target TDI line.

4 reserved

5 RTCK Returned JTAG Test Clock
This input to the BDI2000 connects to the target RTCK line.

6 Vcc Target 1.8 – 5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

3.0 – 5.0V with Rev. A/B :
This input to the BDI2000 is used to detect if the target is powered up. If there is a current
limiting resistor between this pin and the target Vdd, it should be 100 Ohm or less.

7 TCK JTAG Test Clock
This output of the BDI2000 connects to the target TCK line.

8 TRST JTAG Test Reset
This open-drain / push-pull output of the BDI2000 resets the JTAG TAP controller on the
target. Default driver type is open-drain.

9 TMS JTAG Test Mode Select
This output of the BDI2000 connects to the target TMS line.

10 reserved

11 reserved

12 GROUND System Ground

13 RESET System Reset
This open-drain output of the BDI2000 is used to reset the target system.

14 reseved

15 reseved

16 GROUND System Ground
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 11
2.1.3 Serial Wire Debug

For Cortex-M3 / Cortex-A8 the BDI2000 supports also the „Serial Wire Debug Port“ (SW-DP). In or-
der to use SW-DP a different firmware/logic has to be loaded into the BDI2000 (included on the CD).
Also a special target cable is available on request (p/n 90054).

BDI MAIN / TARGET A Connector Signals

Pin Name Describtion

3 GND System Ground

4 SWCLK Serial Wire Clock

6 SWDIO Serial Wire Debug Data Input/Output

10 SWO/SWV Serial Wire Output / Viewer (optional trace data output)

7 RESET This open collector output of the BDI2000 can be used to hard reset the target system.

9 Vcc Target 1.8 – 5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

3.0 – 5.0V with Rev. A/B :
This input to the BDI2000 is used to detect if the target is powered up. If there is a current
limiting resistor between this pin and the target Vdd, it should be 100 Ohm or less.

BDI2000

Target System

Cortex

The green LED «TRGT» marked light up when target is powered up

BDI TRGT MODE TARGET A TARGET B

9 1

10 2

Rev. A/B/C

SWCLK

SWDIO

Reset

Vcc Target

Ground

C

D

R

+

grey

grey

grey

red

black

SWO/SWVV
grey
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 12
2.2 Connecting the BDI2000 to Power Supply

The BDI2000 needs to be supplied with 5 Volts (max. 1A) via the POWER connector. The available
power supply from Abatron (option) or the enclosed power cable can be directly connected. In order
to ensure reliable operation of the BDI2000, keep the power supply cable as short as possible.

For error-free operation, the power supply to the BDI2000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

Please switch on the system in the following sequence:

• 1 --> external power supply

• 2 --> target system

!

BDI TRGT MODE TARGET A TARGET B

POWER

 1 - Vcc (+5V)
 2 - VccTGT
 3 - GROUND
 4 - NOT USED

 Connector

The green LED «BDI» marked light up when 5V power is connected to the BDI2000

RS232 POWER LI TX RX 10 BASE-T

1 Vcc

2

 GND 3

 4

Rev. B Version
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 13
2.3 Status LED «MODE»

The built in LED indicates the following BDI states:

MODE LED BDI STATES

OFF The BDI is ready for use, the firmware is already loaded.

ON The power supply for the BDI2000 is < 4.75VDC.

BLINK The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).

BDI TRGT MODE TARGET A TARGET B

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 14
2.4 Connecting the BDI2000 to Host

2.4.1 Serial line communication

Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication
cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the
BDI and for the Host side (Refer to Figure below).

RS232 Connector
(for PC host)

BDI2000

Target System

RS232

Host

1 - NC
2 - RXD data from host
3 - TXD data to host
4 - NC
5 - GROUND
6 - NC
7 - NC
8 - NC
9 - NC

RS232 POWER LI TX RX 10 BASE-T

54321

9876

ARM
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 15
2.4.2 Ethernet communication

The BDI2000 has a built-in 10 BASE-T Ethernet interface (see figure below). Connect an UTP (Un-
shilded Twisted Pair) cable to the BD2000. For thin Ethernet coaxial networks you can connect a
commercially available media converter (BNC-->10 BASE-T) between your network and the
BDI2000. Contact your network administrator if you have questions about the network.

The following explains the meanings of the built-in LED lights:

LED Name Description

LI Link When this LED light is ON, data link is successful between the UTP

port of the BDI2000 and the hub to which it is connected.

TX Transmit When this LED light BLINKS, data is being transmitted through the UTP

port of the BDI2000

RX Receive When this LED light BLINKS, data is being received through the UTP

port of the BDI2000

10 BASE-T

PC / Unix
Host

Target System

Ethernet (10 BASE-T)

 1 - TD+
 2 - TD-
 3 - RD+
 4 - NC
 5 - NC
 6 - RD-
 7 - NC
 8 - NC

Connector

BDI2000

RS232 POWER LI TX RX 10 BASE-T

1 8 ARM
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 16
2.5 Installation of the Configuration Software

On the enclosed CD you will find the BDI configuration software and the firmware required for the
BDI2000. For Windows users there is also a TFTP server included.

The following files are on the CD.

gdba1121.zip ZIP achive with the JTAG Mode firmware

gdbswd21.zip ZIP archive with the Serial Wire Mode firmware

The following files are in the ZIP archives.

b20a11gd.exe / b20swdgd.exe Windows configuration program

b20a11gd.hlp / b20swdgd.hlp Windows help file for the configuration program

b20a11gd.xxx / b20swdgd.xxx Firmware for the BDI2000

armjed20.xxx / swdjed20.xxx JEDEC file for the BDI2000 (Rev. A/B) logic device

armjed21.xxx / swdjed21.xxx JEDEC file for the BDI2000 (Rev. C) logic device

tftpsrv.exe TFTP server for Windows (WIN32 console application)

*.cfg Configuration files

*.def Register definition files

bdisetup.zip ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:

• Create a new directory on your hard disk

• Copy the entire contents of the enclosed CD into this directory

• Linux only: extract the setup tool sources and build the setup tool

• Use the setup tool to load/update the BDI firmware/logic
Note: A new BDI has no firmware/logic loaded.

• Use the setup tool to transmit the initial configuration parameters
- IP address of the BDI.
- IP address of the host with the configuration file.
- Name of the configuration file. This file is accessed via TFTP.
- Optional network parameters (subnet mask, default gateway).

Activating BOOTP:
The BDI can get the network configuration and the name of the configuration file also via BOOTP.
For this simple enter 0.0.0.0 as the BDI’s IP address (see following chapters). If present, the subnet
mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in
RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option:
[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57

The MAC address is derived from the serial number as follows:
MAC: 00-0C-01-xx-xx-xx , repace the xx-xx-xx with the 6 left digits of the serial number
Example: SN# 93123457 ==>> 00-0C-01-93-12-34
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 17
2.5.1 Configuration with a Linux / Unix host

The firmware / logic update and the initial configuration of the BDI2000 is done with a command line
utility. In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this
utility can be found at the top in the bdisetup.c source file. There is also a make file included.
Starting the tool without any parameter displays information about the syntax and parameters.

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU (see Chapter 2.1.1).

Following the steps to bring-up a new BDI2000:

1. Build the setup tool:
The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host.
To build the tool, simply start the make utility.

[root@LINUX_1 bdisetup]# make
cc -O2 -c -o bdisetup.o bdisetup.c
cc -O2 -c -o bdicnf.o bdicnf.c
cc -O2 -c -o bdidll.o bdidll.c
cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:
With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with infor-
mation about the current loaded firmware and network configuration.
Note: Login as root, otherwise you probably have no access to the serial port.

[root@LINUX_1 bdisetup]# ./bdisetup -v -p/dev/ttyS0 -b57
BDI Type : BDI2000 Rev.C (SN: 92152150)
Loader : V1.05
Firmware : unknown
Logic : unknown
MAC : 00-0c-01-92-15-21
IP Addr : 255.255.255.255
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 255.255.255.255
Config : ??????????????????

3. Load/Update the BDI firmware/logic:
With "bdisetup -u" the firmware is loaded and the CPLD within the BDI2000 is programmed. This con-
figures the BDI for the target you are using. Based on the parameters -a and -t, the tool selects the
correct firmware / logic files. If the firmware / logic files are in the same directory as the setup tool,
there is no need to enter a -d parameter.

[root@LINUX_1 bdisetup]# ./bdisetup -u -p/dev/ttyS0 -b57 -aGDB -tARM11
Connecting to BDI loader
Erasing CPLD
Programming firmware with ./b20armgd.103
Programming CPLD with ./armjed21.102

Note: for Serial Wire Mode use -tARMSWD instead of -tARM11

!

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 18
4. Transmit the initial configuration parameters:
With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI.
The following parameters are used to configure the BDI:

BDI IP Address The IP address for the BDI2000. Ask your network administrator for as-
signing an IP address to this BDI2000. Every BDI2000 in your network
needs a different IP address.

Subnet Mask The subnet mask of the network where the BDI is connected to. A subnet
mask of 255.255.255.255 disables the gateway feature. Ask your network
administrator for the correct subnet mask. If the BDI and the host are in
the same subnet, it is not necessary to enter a subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI2000 after every start-up.

Configuration file Enter the full path and name of the configuration file. This file is read via
TFTP. Keep in mind that TFTP has it’s own root directory (usual /tftpboot).
You can simply copy the configuration file to this directory and the use the
file name without any path.
For more information about TFTP use "man tftpd".

[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57 \
> -i151.120.25.101 \
> -h151.120.25.118 \
> -feval7t.cnf
Connecting to BDI loader
Writing network configuration
Writing init list and mode
Configuration passed

5. Check configuration and exit loader mode:
The BDI is in loader mode when there is no valid firmware loaded or you connect to it with the setup
tool. While in loader mode, the Mode LED is flashing. The BDI will not respond to network requests
while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off
the BDI, wait some time (1min.) and power-on it again to exit loader mode.

[root@LINUX_1 bdisetup]# ./bdisetup -v -p/dev/ttyS0 -b57 -s
BDI Type : BDI2000 Rev.C (SN: 92152150)
Loader : V1.05
Firmware : V1.03 bdiGDB for ARM11
Logic : V1.02 ARM
MAC : 00-0c-01-92-15-21
IP Addr : 151.120.25.101
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 151.120.25.118
Config : eval7t.cnf

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

[root@LINUX_1 bdisetup]# telnet 151.120.25.101
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 19
2.5.2 Configuration with a Windows host

First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

To avoid data line conflicts, the BDI2000 must be disconnected from the target system while
programming the logic for an other target CPU (see Chapter 2.1.1).

dialog box «BDI2000 Update/Setup»

Before you can use the BDI2000 together with the GNU debugger, you must store the initial config-
uration parameters in the BDI2000 flash memory. The following options allow you to do this:

Channel Select the communication port where the BDI2000 is connected during
this setup session.

Baudrate Select the baudrate used to communicate with the BDI2000 loader during
this setup session.

Connect Click on this button to establish a connection with the BDI2000 loader.
Once connected, the BDI2000 remains in loader mode until it is restarted
or this dialog box is closed.

Current Press this button to read back the current loaded BDI2000 software and
logic versions. The current loader, firmware and logic version will be
displayed.

Update This button is only active if there is a newer firmware or logic version pres-
ent in the execution directory of the bdiGDB setup software. Press this but-
ton to write the new firmware and/or logic into the BDI2000 flash memory
/ programmable logic.

!

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 20
BDI IP Address Enter the IP address for the BDI2000. Use the following format:
xxx.xxx.xxx.xxx e.g.151.120.25.101
Ask your network administrator for assigning an IP address to this
BDI2000. Every BDI2000 in your network needs a different IP address.

Subnet Mask Enter the subnet mask of the network where the BDI is connected to.
Use the following format: xxx.xxx.xxx.xxxe.g.255.255.255.0
A subnet mask of 255.255.255.255 disables the gateway feature.
Ask your network administrator for the correct subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value..

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI2000 after every start-up.

Configuration file Enter the full path and name of the configuration file.
e.g. D:\ada\target\config\bdi\evs332.cnf
For information about the syntax of the configuration file see the bdiGDB
User manual. This name is transmitted to the TFTP server when reading
the configuration file.

Transmit Click on this button to store the configuration in the BDI2000 flash
memory.

2.5.3 Recover procedure

In rare instances you may not be able to load the firmware in spite of a correctly connected BDI (error
of the previous firmware in the flash memory). Before carrying out the following procedure, check
the possibilities in Appendix «Troubleshooting». In case you do not have any success with the
tips there, do the following:

• Switch OFF the power supply for the BDI and open the unit as
described in Appendix «Maintenance»

• Place the jumper in the «INIT MODE» position

• Connect the power cable or target cable if the BDI is powered
from target system

• Switch ON the power supply for the BDI again and wait until the
LED «MODE» blinks fast

• Turn the power supply OFF again

• Return the jumper to the «DEFAULT» position

• Reassemble the unit as described in Appendix «Maintenance»

INIT MODE

DEFAULT
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 21
2.6 Testing the BDI2000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI2000.
There is no need for a target configuration file and no TFTP server is needed on the host.

• If not already done, connect the bdiGDB system to the network.

• Power-up the BDI2000.

• Start a Telnet client on the host and connect to the BDI2000 (the IP address you entered dur-
ing initial configuration).

• If everything is okay, a sign on message like «BDI Debugger for ARM» should be displayed
in the Telnet window.

2.7 TFTP server for Windows

The bdiGDB system uses TFTP to access the configuration file and to load the application program.
Because there is no TFTP server bundled with Windows NT, Abatron provides a TFTP server appli-
cation tftpsrv.exe. This WIN32 console application runs as normal user application (not as a system
service).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request
from the client are granted. This is the normal working mode. The bdiGDB system needs only read
access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it.
The parameter [w] enables write accesses to the host file system.
The parameter [d] allows to define a root directory.

tftpsrv p Starts the TFTP server and enables protocol output

tftpsrv p w Starts the TFTP server, enables protocol output and write accesses are
allowed.

tftpsrv dC:\tftp\ Starts the TFTP server and allows only access to files in C:\tftp and its
subdirectories. As file name, use relative names.
For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"

You may enter the TFTP server into the Startup group so the server is started every time you logon.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 22
3 Using bdiGDB
3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers
via the JTAG interface. There is no need for any debug software on the target system. After loading
the code via TFTP debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

3.2 Configuration File

The configuration file is automatically read by the BDI2000 after every power on.
The syntax of this file is as follows:

; comment
[part name]
core# identifier parameter1 parameter2 parameterN ; comment
core# identifier parameter1 parameter2 parameterN
.....
[part name]
core# identifier parameter1 parameter2 parameterN
core# identifier parameter1 parameter2 parameterN
.....

etc.

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

The core# is optional. If not present the BDI assume core #0. See also chapter "Multi-Core Support".

Power On

initial
configuration

valid?

Get configuration file
via TFTP

Reset System and

Power OFF

activate BDI2000 loader

Power OFF

no

yes

Process target init list

Process GDB requests
Process Telnet commands
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 23
3.2.1 Part [INIT]

The part [INIT] defines a list of commands which are be executed every time the target comes out of
reset (except in STARTUP RUN mode). The commands are used to get the target ready for loading
the program file.

WGPR register value Write value to the selected general purpose register.
register the register number 0 .. 15
value the value to write into the register
Example: WGPR 0 5

WREG name value Write value to the selected CPU register by name
name the register name (CPSR)
value the value to write into the register
Example: WREG CPSR 0x600000D3

WCPn register value Write value to the selected Coprocessor register.
n the CP number (0 .. 15)
register the register number (see chapter CPx registers)
value the value to write into the register
Example: WCP15 2 0x00004000 ; set Translation Base 0

WM8 address value Write a byte (8bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM8 0xFFFFFA21 0x04 ; SYPCR: watchdog disable ...

WM16 address value Write a half word (16bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM16 0x02200200 0x0002 ; TBSCR

WM32 address value Write a word (32bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM32 0x02200000 0x01632440 ; SIUMCR

WAPB address value Cortex-A8: Write a word (32bit) to the Debug APB memory.
address the APB memory address
value the value to write to the APB memory
Example: WAPB 0xd4012014 0x08000014 ; RCSR
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 24
WBIN address filename Write a binary image to the selected memory place. The binary image is
read via TFTP from the host. Up to 4 such entries are supported.

address the memory address
filename the filename including the full path
Example: WBIN 0x4000 pagetable.bin

RM8 address value Read a byte (8bit) from the selected memory place.
address the memory address
Example: RM8 0x00000000

RM16 address value Read a half word (16bit) from the selected memory place.
address the memory address
Example: RM16 0x00000000

RM32 address value Read a word (32bit) from the selected memory place.
address the memory address
Example: RM32 0x00000000

MMAP start end Because a memory access to an invalid memory space via JTAG leads to
a deadlock, this entry can be used to define up to 32 valid memory ranges.
If at least one memory range is defined, the BDI checks against this
range(s) and avoids accessing of not mapped memory ranges.

start the start address of a valid memory range
end the end address of this memory range
Example: MMAP 0xFFE00000 0xFFFFFFFF ;Boot ROM

DELAY value Delay for the selected time.
value the delay time in milliseconds (1...30000)
Example: DELAY 500 ; delay for 0.5 seconds

CLOCK value This entry allows to change the JTAG clock frequency during processing
of the init list. But the final JTAG clock after processing the init list is taken
from the CLOCK entry in the [TARGET] section. This entry maybe of in-
terest to speed-up JTAG clock as soon as possible (after PLL setup).

value see CLOCK parameter in [TARGET] section
Example: CLOCK 2 ; switch to 8 MHz JTAG clock

EXEC addr [time] This entry causes the CPU to start executing the code at addr. The option-
al second parameter defines a maximal execution time in ms (default 1
second). But normally the code should stop with a BKPT instruction.

addr the start address of the code to execute
time the maximal time in ms the BDI let the CPU run
Example: EXEC 0x20000000 ; execute watchdog disable code
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 25
Using a startup program to initialize the target system:
For targets where initialization can not be done with a simple initialization list, there is the possibility
to download and execute a special startup code. The startup code must be present in a file on the
host. The last instruction in this startup code should be a BKPT. After processing the initlist, the BDI
downloads this startup code to RAM, starts it and waits until it completes. If there is no BKPT instruc-
tion in the startup code, the BDI terminates it after a timeout of 5 seconds.

FILE filename The name of the file with the startup code. This name is used to access
the startup code via TFTP.

filename the filename including the full path
Example: FILE F:\gdb\target\config\pid7t\startup.hex

FORMAT format The format of the startup file. Currently COFF, S-Record, a.out, Binary and
ELF file formats are supported. If the startup code is already stored in
ROM on the target, select ROM as the format.

format COFF, SREC, AOUT, BIN, ELF or ROM
Example: FORMAT COFF

START address The address where to start the startup code. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the code.

address the address where to start the startup code
Example: START 0x10000

Note:
If an init list and a startup code file are present, the init list is processed first and then the startup code
is loaded and executed. Therefore it is possible first to enable some RAM with the init list before the
startup code is loaded and executed.

[INIT]
WM32 0x0B000020 0x00000000 ;Clear Reset Map

FILE d:\gdb\bdi\startup.hex
FORMAT SREC
START 0x100
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 26
3.2.2 Part [TARGET]

The part [TARGET] defines some target specific values.

CPUTYPE type [{ port | index | addr }]
This value gives the BDI information about the connected CPU.

type The CPU type from the following list:
ARM1136, ARM1156, ARM1176, MPCORE, ARM7
CORTEX-M0, CORTEX-M3, CORTEX-M4
CORTEX-A8, CORTEX-A9, CORTEX-R4
OMAP3, OMAP3400, OMAP3500, AM3500,

port For ARM7 the port values defines the used JTAG-AP
port (0...7).

index Defines which core debug component to select(0..7).
addr Specifies the APB address of the core debug compo-

nent. There is no ROM table search in this case. The ad-
dress value has to be >= 0x80000000 (bit31 set).

Example: CPUTYPE ARM1136
CPUTYPE CORTEX-A9 0x9F310000
CPUTYPE CORTEX-A9 0 ; use first found
CPUTYPE CORTEX-A9 1 ; use second found

CLOCK main [init] [SLOW]With this value(s) you can select the JTAG clock rate the BDI2000 uses
when communication with the target CPU. The "main" entry is used after
processing the initialization list. The "init" value is used after target reset
until the initialization list is processed. If there is no "init" value defined, the
"main" value is used all the times.
Adaptive clocking is only supported with BDI2000 Rev.B/C and needs a
special target connector cable. Add also SLOW if the CPU clock frequency
may fall below 6 MHz during adaptive clocking.

main,init: 0 = Adaptive
1 = 16 MHz 6 = 200 kHz
2 = 8 MHz 7 = 100 kHz
3 = 4 MHz 8 = 50 kHz
4 = 1 MHz 9 = 20 kHz
5 = 500 kHz 10 = 10 kHz

Example: CLOCK 1 ; JTAG clock is 16 MHz

TRST type Normally the BDI uses an open drain driver for the TRST signal. This is in
accordance with the ARM recommendation. For boards where TRST is
simply pulled low with a weak resistor, TRST will always be asserted and
JTAG debugging is impossible. In that case, the TRST driver type can be
changed to push-pull. Then the BDI actively drives also high level.

type OPENDRAIN (default)
PUSHPULL

Example: TRST PUSHPULL ; Drive TRST also high
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 27
RESET type [time] [pwr] Normally the BDI drives the reset line during a reset sequence. If reset
type is NONE or SOFT, the BDI does not assert a hardware reset. If reset
type SOFT is supported depends on the connected target.

type NONE
SOFT (soft reset via a debug register)
HARD (default)

time The time in milliseconds the BDI assert the reset signal.
pwr A different reset type can be defined for the initial power-

up reset (NONE, SOFT, HARD).
Example: RESET SOFT ; reset ARM core via RCSR

RESET HARD 1000 ; assert RESET for 1 second

STARTUP mode [runtime]This parameter selects the target startup mode. The following modes are
supported:

HALT This default mode tries to forces the target to debug
mode immediately out of reset.

STOP In this mode, the BDI lets the target execute code for
"runtime" milliseconds after reset. This mode is useful
when boot code should initialize the target system.

RUN After reset, the target executes code until stopped by the
Telnet "halt" command. The init list is not processed in
this mode.

WAIT Sets the debug request bit in the target. Once the target
is released from reset it will enter debug mode.

Example: STARTUP STOP 3000 ; let the CPU run for 3 seconds

WAKEUP time This entry in the init list allows to define a delay time (in ms) the BDI inserts
between releasing the reset line and starting communicating with the tar-
get. This delay is necessary when a target needs some wake-up time after
a reset.

time the delay time in milliseconds
Example: WAKEUP 3000 ; insert 3sec wake-up time

BDIMODE mode param This parameter selects the BDI debugging mode. The following modes are
supported:

LOADONLY Loads and starts the application code. No debugging via
JTAG interface.

AGENT The debug agent runs within the BDI. There is no need
for any debug software on the target. This mode accepts
a second parameter.
If RUN is entered as a second parameter, the loaded ap-
plication will be started immediately, otherwise only the
PC is set and BDI waits for GDB requests.
If QUIET is entered as a second parameter, the BDI no
polls the debug status register. The target is not influ-
enced in any way while it is running. But in this mode, the
BDI cannot detect any debug mode entry.

Example: BDIMODE AGENT RUN
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 28
ENDIAN format This entry defines the endiannes of the memory system.
format The endiannes of the target memory:

LITTLE (default)
BIG

Example: ENDIAN LITTLE

VECTOR CATCH mask When this line is present, the BDI catches exceptions. The mask is used
to setup the ARM Vector catch register.

mask selects the exceptions to catch
Example: VECTOR CATCH 0x1B ;catch Abort, Undef, Reset

BREAKMODE mode This parameter defines how breakpoints are implemented.
SOFT This is the normal mode. Breakpoints are implemented

by replacing code with a BKPT instruction.
HARD In this mode, the breakpoint hardware is used. Only 6

breakpoints at a time are supported.
Example: BREAKMODE HARD

STEPMODE mode For ARM11 and Cortex-A8 the BDI supports two different single-step
modes.

OVER This is the default mode. Single-step is implemented by
setting one or two hardware breakpoint on the next in-
struction address(es). This way we step over excep-
tions.

INTO In this mode, the BDI sets a hardware breakpoint on all
addresses except the current instruction address. This
way we step into exceptions.

Example: STERPMODE INTO

MEMACCES mode [wait] For Cortex, this parameter defines how memory is accessed. Either via
the ARM core by executing ld and st instructions or via the AHB access
port. The current mode can also be changed via the Telnet interface. The
optional wait parameter allows to define a time the BDI waits before it ex-
pects that a value is ready or written. This allows to optimize download
performance. The wait time is (8 x wait) TCK’s in Run-Test/Idle state.
For Cortex-M3, only AHB access is supported.
The following modes are supported:

CORE The CORE (default) mode requires that the core is halt-
ed and makes use of the memory management unit
(MMU) and cache.

AHB The AHB access mode can access memory even when
the core is running but bypasses MMU and cache.
Note: Not all Cortex-A8 based SoC support an AHB ac-
cess port.

Example: MEMACCES CORE 5 ; 40 TCK's access delay
MEMACCES AHB 4 ; access via AHB, 32 TCK delay
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 29
SIO port [baudrate] When this line is present, a TCP/IP channel is routed to the BDI’s RS232
connector. The port parameter defines the TCP port used for this BDI to
host communication. You may choose any port except 0 and the default
Telnet port (23). On the host, open a Telnet session using this port. Now
you should see the UART output in this Telnet session. You can use the
normal Telnet connection to the BDI in parallel, they work completely in-
dependent. Also input to the UART is implemented.

port The TCP/IP port used for the host communication.
baudrate The BDI supports 2400 ... 115200 baud
Example: SIO 7 9600 ;TCP port for virtual IO

DCC port When this line is present, a TCP/IP channel is routed to the ARM debug
communication channel (DCC). The port parameter defines the TCP port
used for this BDI to host communication. You may choose any port except
0 and the default Telnet port (23). On the host, open a Telnet session us-
ing this port. Now you should see the DCC output in this Telnet session.
You can use the normal Telnet connection to the BDI in parallel, they work
completely independent. Also input to DCC is implemented.

port The TCP/IP port used for the host communication.
Example: DCC 7 ;TCP port for DCC I/O

SWO port baudrate Only supported in Serial Wire Mode!
When this line is present, a TCP/IP channel is routed to the Serial Wire
Output (SWO/SWV). The port parameter defines the TCP port used for
this BDI to host communication. You may choose any port except 0 and
the default Telnet port (23). If an even port number is used (raw mode),
the BDI sends all data received via SWO in hexadecimal format to the
host. For an odd port number (ASCII mode), the bytes received in the
range 4 to 127 are directly forwared to the host, all other bytes are discard-
ed. On the host, open a Telnet session using this port. Now you should
see the Serial Wire Output in this Telnet session.

port The TCP/IP port used for the host communication.
baudrate The BDI2000 supports 2400 ... 115200 baud and

122kb, 130kb, 139kb, 149kb, 160kb, 174kb, 189kb,
208kb, 232kb, 260kb, 298kb, 347kb, 417kb, 520kb

Example: SWO 8023 260000 ;map ASCII SWO to odd port 8023
SWO 8020 260000 ;map raw SWO to even port 8020

DAPPC address This parameter is necessary for some TI processors (for example
OMAP3, OMAP4, ...). It defines the address/number of a special debug/
clock/power/reset control register. If the address is >=0x80000000 (bit31
set) then this register is accessed via the APB memory space. Otherwise
it defines an ICEPick register.

address APB address or ICEPick register block/number
Example: DAPPC 0xD4159008 ;DAP-PC Cortex-A9#0

DAPPC 0xD415900C ;DAP-PC Cortex-A9#1
DAPPC 0x60 ;non-JTAG register 0
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 30
Daisy chained JTAG devices:
For ARM targets, the BDI can also handle systems with multiple devices connected to the JTAG scan
chain. In order to put the other devices into BYPASS mode and to count for the additional bypass
registers, the BDI needs some information about the scan chain layout. Enter the number (count) and
total instruction register (irlen) length of the devices present before the ARM chip (Predecessor). En-
ter the appropriate information also for the devices following the ARM chip (Successor):

SCANPRED count irlen This value gives the BDI information about JTAG devices present before
the ARM chip in the JTAG scan chain.

count The number of preceding devices
irlen The sum of the length of all preceding instruction regis-

ters (IR).
Example: SCANPRED 1 8 ; one device with an IR length of 8

SCANSUCC count irlen This value gives the BDI information about JTAG devices present after the
ARM chip in the JTAG scan chain.

count The number of succeeding devices
irlen The sum of the length of all succeeding instruction reg-

isters (IR).
Example: SCANSUCC 2 12 ; two device with an IR length of 8+4

Note:
For Serial Wire Mode, the following parameters are not relevant, have no function:
TRST, SCANPRED, SCANSUCC, SCANINIT, SCANPOST
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 31
Low level JTAG scan chain configuration (not supported for SW-DP):
Sometimes it is necessary to configure the test access port (TAP) of the target before the ARM debug
interface is visible and accessible in the usual way. The BDI supports this configuration in a very ge-
neric way via the SCANINIT and SCANPOST configuration commands. Both accept a string that de-
fines the JTAG sequences to execute. The following example shows how to use these commands:

; Configure ICEPick module to make ARM926 TAP visible
SCANINIT t1:w1000:t0:w1000: ;toggle TRST
SCANINIT i6=07:d8=89:i6=02: ;connect and select router
SCANINIT d32=81000082: ;set IP control
SCANINIT d32=a018206f: ;configure TAP0
SCANINIT d32=a018216f:cl5: ;enable TAP0, clock 5 times in RTI
SCANINIT i10=ffff ;scan bypass
;
; Between SCANINIT and SCANPOST the ARM ICEBreaker is configured
; and the DBGRQ bit in the ARM debug control register is set.
;
SCANPOST i10=002f: ;IP(router) - ARM(bypass)
SCANPOST d33=0102000106: ;IP control = SysReset
SCANPOST i10=ffff ;scan bypass

The following low level JTAG commands are supported in the string. Use ":" between commands.

 I<n>=<...b2b1b0> write IR, b0 is first scanned
 D<n>=<...b2b1b0> write DR, b0 is first scanned
 n : the number of bits 1..256
 bx : a data byte, two hex digits
 W<n> wait for n (decimal) micro seconds
 T1 assert TRST
 T0 release TRST
 R1 assert RESET
 R0 release RESET
 CH<n> clock TCK n (decimal) times with TMS high
 CL<n> clock TCK n (decimal) times with TMS low

The following diagram shows the parts of the standard reset sequence that are replaced with the
SCAN string. Only the appropriate part of the reset sequence is replaced. If only a SCANINIT string
is defined, then the standard "post" sequence is still executed.

If (reset mode == hard) Assert reset
Toggle TRST

If (reset mode == hard) Delay for reset time
Execute SCANINIT string

Check if Bypass register(s) present
Read and display ID code

Check if debug module is accessible
If (startup == reset) catch reset exception

If (reset mode == hard) Release reset
Wait until reset is really release

Delay for wake-up time
Execute SCANPOST string
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 32
3.2.3 Part [HOST]

The part [HOST] defines some host specific values.

IP ipaddress The IP address of the host.
ipaddress the IP address in the form xxx.xxx.xxx.xxx
Example: IP 151.120.25.100

FILE filename The default name of the file that is loaded into RAM using the Telnet ’load’
command. This name is used to access the file via TFTP. If the filename
starts with a $, this $ is replace with the path of the configuration file name.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\demo\arm\test.elf

FILE $test.elf

FORMAT format [offset] The format of the image file and an optional load address offset. If the im-
age is already stored in ROM on the target, select ROM as the format. The
optional parameter "offset" is added to any load address read from the im-
age file.

format SREC, BIN, AOUT, ELF, COFF or ROM
Example: FORMAT ELF

FORMAT ELF 0x10000

LOAD mode In Agent mode, this parameters defines if the code is loaded automatically
after every reset.

mode AUTO, MANUAL
Example: LOAD MANUAL

START address The address where to start the program file. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the target. This means, the program starts at the normal reset ad-
dress (0x00000000).

address the address where to start the program file
Example: START 0x10000

DEBUGPORT port [RECONNECT]
The TCP port GDB uses to access the target. If the RECONNECT param-
eter is present, an open TCP/IP connection (Telnet/GDB) will be closed if
there is a connect request from the same host (same IP address).

port the TCP port number (default = 2001)
Example: DEBUGPORT 2001
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 33
PROMPT string This entry defines a new Telnet prompt. The current prompt can also be
changed via the Telnet interface.

Example: PROMPT ARM11>

DUMP filename The default file name used for the DUMP command from a Telnet session.
filename the filename including the full path
Example: DUMP dump.bin

TELNET mode By default the BDI sends echoes for the received characters and supports
command history and line editing. If it should not send echoes and let the
Telnet client in "line mode", add this entry to the configuration file.

mode ECHO (default), NOECHO or LINE
Example: TELNET NOECHO ; use old line mode
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 34
3.2.4 Part [FLASH]

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has
to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to
erase in case the ERASE command is entered without any parameter.

CHIPTYPE type This parameter defines the type of flash used. It is used to select the cor-
rect programming algorithm.

format AM29F, AM29BX8, AM29BX16, I28BX8, I28BX16,
AT49, AT49X8, AT49X16, STRATAX8, STRATAX16,
MIRROR, MIRRORX8, MIRRORX16,
M58X32, AM29DX16, AM29DX32,
STM32F10, STM32L15, FTFL,
LM3S, SAM3U, SAM3S, LPC1000, EFM32

Example: CHIPTYPE AM29F

CHIPSIZE size The size of one flash chip in bytes (e.g. AM29F010 = 0x20000). This value
is used to calculate the starting address of the current flash memory bank.

size the size of one flash chip in bytes
Example: CHIPSIZE 0x80000

BUSWIDTH width Enter the width of the memory bus that leads to the flash chips. Do not en-
ter the width of the flash chip itself. The parameter CHIPTYPE carries the
information about the number of data lines connected to one flash chip.
For example, enter 16 if you are using two AM29F010 to build a 16bit flash
memory bank.

with the width of the flash memory bus in bits (8 | 16 | 32)
Example: BUSWIDTH 16

FILE filename The default name of the file that is programmed into flash using the Telnet
’prog’ command. This name is used to access the file via TFTP. If the file-
name starts with a $, this $ is replace with the path of the configuration file
name. This name may be overridden interactively at the Telnet interface.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\arm\bootrom.hex

FILE $bootrom.hex

FORMAT format [offset] The format of the file and an optional address offset. The optional param-
eter "offset" is added to any load address read from the program file.

format SREC, BIN, AOUT, ELF or COFF
Example: FORMAT SREC

FORMAT ELF 0x10000

WORKSPACE address If a workspace is defined, the BDI uses a faster programming algorithm
that runs out of RAM on the target system. Otherwise, the algorithm is pro-
cessed within the BDI. The workspace is used for a 1kByte data buffer and
to store the algorithm code. There must be at least 2kBytes of RAM avail-
able for this purpose.

address the address of the RAM area
Example: WORKSPACE 0x00000000
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 35
ERASE addr [increment count] [mode [wait]]
The flash memory may be individually erased or unlocked via the Telnet
interface. In order to make erasing of multiple flash sectors easier, you can
enter an erase list. All entries in the erase list will be processed if you enter
ERASE at the Telnet prompt without any parameter. This list is also used
if you enter UNLOCK at the Telnet without any parameters. With the "in-
crement" and "count" option you can erase multiple equal sized sectors
with one entry in the erase list.

address Address of the flash sector, block or chip to erase
increment If present, the address offset to the next flash sector
count If present, the number of equal sized sectors to erase
mode BLOCK, CHIP, UNLOCK

Without this optional parameter, the BDI executes a sec-
tor erase. If supported by the chip, you can also specify
a block or chip erase. If UNLOCK is defined, this entry is
also part of the unlock list. This unlock list is processed
if the Telnet UNLOCK command is entered without any
parameters.
Note: Chip erase does not work for large chips because
the BDI time-outs after 3 minutes. Use block erase.

wait The wait time in ms is only used for the unlock mode. Af-
ter starting the flash unlock, the BDI waits until it pro-
cesses the next entry.

Example: ERASE 0xff040000 ;erase sector 4 of flash
ERASE 0xff060000 ;erase sector 6 of flash
ERASE 0xff000000 CHIP ;erase whole chip(s)
ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms
ERASE 0xff000000 0x10000 7 ; erase 7 sectors

Example for the ARM PID7T board (AM29F010 in U12):

[FLASH]
WORKSPACE 0x00000000 ;Workspace in target RAM for faster programming algorithm
CHIPTYPE AM29F ;Flash type
CHIPSIZE 0x20000 ;The size of one flash chip in bytes
BUSWIDTH 8 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE C:\gdb\pid7t\bootrom.hex ;The file to program
ERASE 0x04000000 ;erase sector 0 of flash SIMM
ERASE 0x04004000 ;erase sector 1 of flash SIMM
ERASE 0x04008000 ;erase sector 2 of flash SIMM
ERASE 0x0400C000 ;erase sector 3 of flash SIMM
ERASE 0x04010000 ;erase sector 4 of flash SIMM
ERASE 0x04014000 ;erase sector 5 of flash SIMM
ERASE 0x04018000 ;erase sector 6 of flash SIMM
ERASE 0x0401C000 ;erase sector 7 of flash SIMM

the above erase list maybe replaced with:

ERASE 0x04000000 0x4000 8 ;erase 8 sectors
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 36
STM32F10xx Internal Flash Memory:

The BDI supports programming of the STM32F10xx internal flash memory. Mass and Sector Erase
of the Main Flash memory is supported. Option byte programming is not directly supported but can
be done manually via Telnet mm/md commands.

[FLASH]
WORKSPACE 0x20000000 ;workspace in internal SRAM
CHIPTYPE STM32F10
CHIPSIZE 0x20000
BUSWIDTH 16
FILE E:/temp/dump16k.bin
FORMAT BIN 0x08010000
ERASE 0x08010000 0x400 16 ;erase 16 sectors

Mass erase via Telnet:

BDI> erase 0x08000000 mass

STM32L15xx Internal Flash Memory:

The BDI supports programming of the STM32L15xx internal flash memory. Option byte programming
is not directly supported but can be done manually via Telnet mm/md commands.

[FLASH]
CHIPTYPE STM32L15
CHIPSIZE 0x20000 ;128 kB FLASH
BUSWIDTH 32 ;32 bit flash access
FILE E:/temp/dump16k.bin
FORMAT BIN 0x08010000
ERASE 0x08010000 256 64 ;erase 64 x 256 byte pages

Stellaris LM3S Internal Flash Memory:

The BDI supports programming of the Luminary Micro Stellaris LM3S internal flash memory. Mass
and Sector Erase of the Flash memory is supported. Before Erasing/Programming make sure the
correct value is loaded into the Flash USec Reload register (USECRL).

[INIT]
.....
WM32 0x400FE140 49 ;USECRL: Flash USec Reload for 50 MHz
;

[FLASH]
WORKSPACE 0x20000000 ;workspace in internal SRAM
CHIPTYPE LM3S
CHIPSIZE 0x40000
BUSWIDTH 32
FILE E:/temp/dump16k.bin
FORMAT BIN 0x00030000
ERASE 0x00030000 0x400 16

Mass erase via Telnet:

BDI> erase 0x00000000 mass
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 37
AT91SAM3U/S Internal Flash:

The BDI supports programming of the Atmel AT91SAM3U/S internal flash. Before using any flash
function it is important that the EEFC_FMR is programmed with the correct value for FWS. This can
be done via the initialization list. Have a look at the at91sam3u.cfg configuration example.

[INIT]
WGPR 13 0x20007ffc ;set SP to top of internal SRAM0
WM32 0x400E1208 0xa5000401 ;User reset enable (allows BDI to hard reset the system)
;
; Setup Internal Flash Wait States
WM32 0x400E0800 0x00000200 ;EEFC0_FMR: Flash mode (FWS=2)
WM32 0x400E0A00 0x00000200 ;EEFC1_FMR: Flash mode (FWS=2)
;
; setup clocks
WM32 0x400E0420 0x00373f09 ;CKGR_MOR: enable Main Oscillator
DELAY 100
WM32 0x400E0420 0x01373f09 ;CKGR_MOR: select Main Oscillator
DELAY 100
WM32 0x400E0428 0x20073f01 ;CKGR_PLLAR: Set PLLA to 96 MHz
DELAY 100
WM32 0x400E0430 0x00000011 ;PMC_MCKR: set PRES = 1 (clk/2)
DELAY 100
WM32 0x400E0430 0x00000012 ;PMC_MCKR: set CSS = 2 (select PLLA)
DELAY 100
;

[TARGET]
CPUTYPE CORTEX-M3
CLOCK 1 4 ;BDI2000: start with 1MHz then use 16MHz
POWERUP 3000 ;start delay after power-up detected in ms
RESET HARD 100 ;assert reset for 100 ms
WAKEUP 100 ;wait after reset released
STARTUP HALT ;halt immediatelly at the reset vector
MEMACCESS AHB 1 ;memory access via AHB (8 TCK's access delay)

[FLASH]
CHIPTYPE SAM3U ;Don't forget to set EEFC_FMR[FWS]
CHIPSIZE 0x20000 ;size of one block
BUSWIDTH 32
FILE E:/temp/dump16k.bin
FORMAT BIN 0x00094000
ERASE 0x00094000 0x100 64 ;erase 64 pages (16kB)

An explicit erase is not necessary because a page is automatically erased during programming. But
the BDI supports also erasing a page or a complete flash memory block. The ERASE command sup-
ports a second parameter, PAGE (default) or BLOCK can be used. A page is erased by programming
it with all 0xFF. Following an example how to erase the complete flash via Telnet:

For SAM3U4:
BDI> erase 0x00080000 block
BDI> erase 0x00100000 block

For SAM3S4:
BDI> erase 0x00400000 block
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 38
LPC1000 Internal Flash:

The LPC1xxx internal flash is programmed using the LPC1xxx built-in flash programming driver via
the so called IAP Commands. Details about the IAP commands you find in the LPC1xxx user's man-
ual. This driver needs the current System Clock Frequency (CCLK) in kHz. This frequency has to be
provided via the CHIPTYPE parameter:

CHIPTYPE LPC1000 <fsys(kHz)>
CHIPTYPE LPC1000 96000 ;LPC1768 flash, CCLK = 96.000 MHz

The erase parameter has a different meaning. It is not an address but a bit map of the sectors
to erase (bit0 = erase sector 0, bit1 = erase). If you add BLANK after the sector map, then a blank
check is executed after the erase. Following some examples:

ERASE 0x000000F0 BLANK ;erase sector 4...7 with blank check
ERASE 0x00007FFF BLANK ;erase sector 0...14 with blank check
ERASE 0x0FF00000 BLANK ;erase sector 20...27 with blank check
ERASE 0x00000002 ;erase only sector 1, no blank check

The BDI needs a workspace of 1.5 kbytes (0x600) in the internal SRAM. It is used to store the data
to program and to create a context from which the flash drivers can be called.

Examples (see also LPC1114 and LPC1768 configuration files on the CD):

[FLASH]
CHIPTYPE LPC1000 96000 ;LPC1768 flash, CCLK = 96.000 MHz
CHIPSIZE 0x80000 ;512kB flash
WORKSPACE 0x10000000 ;internal SRAM for buffer, code and stack
FILE E:\temp\dump256k.bin
FORMAT BIN 0x00030000
ERASE 0x0FF00000 BLANK ;erase sector 20...27 with blank check

[FLASH]
CHIPTYPE LPC1000 12000 ;LPC1114 flash, CCLK = 12.000 MHz
CHIPSIZE 0x8000 ;32kB flash
WORKSPACE 0x10000000 ;internal SRAM for buffer, code and stack
FILE E:\temp\dump8k.bin
FORMAT BIN 0x00006000
ERASE 0x000000C0 BLANK ;erase sector 6...7 with blank check

Energy Micro EFM32 Internal Flash Memory:

The BDI supports programming of the Energy Micro EFM32 internal flash memory.

[FLASH]
CHIPTYPE EFM32
CHIPSIZE 0x20000 ;128 kB FLASH
FILE E:/temp/dump16k.bin
FORMAT BIN 0x00010000
ERASE 0x00010000 512 32 ;erase 32 x 512 byte pages
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 39
Freescale Kinetis Internal Flash Memory:

The BDI supports programming of the Freescale Kinetis internal flash memory (FTFL).

[FLASH]
CHIPTYPE FTFL
WORKSPACE 0x20000000
FILE E:/temp/dump64k.bin
FORMAT BIN 0x00020000
ERASE 0x00020000 0x800 32 ;erase 32 x 2kB sectors

Supported standard parallel NOR Flash Memories:
There are currently 3 standard flash algorithm supported. The AMD, Intel and Atmel AT49 algorithm.
Almost all currently available flash memories can be programmed with one of this algorithm. The
flash type selects the appropriate algorithm and gives additional information about the used flash.

For 8bit only flash: AM29F (MIRROR), I28BX8, AT49

For 8/16 bit flash in 8bit mode: AM29BX8 (MIRRORX8), I28BX8 (STRATAX8), AT49X8

For 8/16 bit flash in 16bit mode: AM29BX16 (MIRRORX16), I28BX16 (STRATAX16), AT49X16

For 16bit only flash: AM29BX16, I28BX16, AT49X16

For 16/32 bit flash in 16bit mode: AM29DX16

For 16/32 bit flash in 32bit mode: AM29DX32

For 32bit only flash: M58X32

Some newer Spansion MirrorBit flashes cannot be programmed with the MIRRORX16 algorithm be-
cause of the used unlock address offset. Use S29M32X16 for these flashes.

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm
does not check for the AMD status bit 5 (Exceeded Timing Limits).
Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49
algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip
does not support the selected mode, erasing will fail. The erase command sequence is different only
in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see
also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.
To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is
implemented that makes use of the write buffer. This algorithm needs a workspace, otherwise the
standard Intel/AMD algorithm is used.

On our web site (www.abatron.ch -> Debugger Support -> GNU Support -> Flash Support) there is a
PDF document available that shows the supported standard flash memories.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 40
Note:
Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked
state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WM16 0xFFF00000 0x0060 unlock block 0
WM16 0xFFF00000 0x00D0
WM16 0xFFF10000 0x0060 unlock block 1
WM16 0xFFF10000 0x00D0

....
WM16 0xFFF00000 0xFFFF select read mode

 or use the Telnet "unlock" command:

UNLOCK [<addr> [<delay>]]

addr This is the address of the sector (block) to unlock

delay A delay time in milliseconds the BDI waits after sending the unlock com-
mand to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are
processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI> unlock 0xFF000000 1000

To erase or unlock multiple, continuos flash sectors (blocks) of the same size, the following Telnet
commands can be used:

ERASE <addr> <step> <count>
UNLOCK <addr> <step> <count>

addr This is the address of the first sector to erase or unlock.

step This value is added to the last used address in order to get to the next sec-
tor. In other words, this is the size of one sector in bytes.

count The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to
0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI> unlock 0x00000000 0x20000 256
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 41
3.2.5 Part [REGS]

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a
register definition file. In this file, the user defines a name for the register and how the BDI should
access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register defi-
nition file and information for different registers type has to be defined in the configuration file.
The register name, type, address/offset/number and size are defined in a separate register definition
file. This way, you can create one register definition file for a specific target processor that can be
used for all possible positions of the internal memory map. You only have to change one entry in the
configuration file.

An entry in the register definition file has the following syntax:

name type addr size

name The name of the register (max. 12 characters)

type The register type
GPR General purpose register
CP15 Coprocessor 15 register
CP14 Coprocessor 14register
....
CP0 Coprocessor 0 register
MM Absolute direct memory mapped register
PMM Like MM but with disabled MMU during the access
DMM1...DMM4 Relative direct memory mapped register
IMM1...IMM4 Indirect memory mapped register
APB APB memory mapped register

addr The address, offset or number of the register

size The size (8, 16, 32) of the register, default is 32

The following entries are supported in the [REGS] part of the configuration file:

FILE filename The name of the register definition file. This name is used to access the
file via TFTP. The file is loaded once during BDI startup.

filename the filename including the full path
Example: FILE C:\bdi\regs\reg40400.def

DMMn base This defines the base address of direct memory mapped registers. This
base address is added to the individual offset of the register.

base the base address
Example: DMM1 0x01000

IMMn addr data This defines the addresses of the memory mapped address and data reg-
isters of indirect memory mapped registers. The address of a IMMn regis-
ter is first written to "addr" and then the register value is access using
"data" as address.

addr the address of the Address register
data the address of the Data register
Example: IMM1 0x04700000 0x04700004
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 42
Example for a register definition:

Entry in the configuration file:

[REGS]
FILE E:\cygwin\home\bdidemo\arm\reg1136.def

The register definition file:

;
;Coprocessor Register Numbers:
;
; +-----+-+-------+-----+-+-------+
; |opc_2|0| CRm |opc_1|0| nbr |
; +-----+-+-------+-----+-+-------+
;
;The 16bit register number is used to build the appropriate MCR/MRC instruction.
;
;
;name type addr size
;---
;
id CP15 0x0000 32 ;ID code
cache CP15 0x2000 32 ;Cache type
tcmstatus CP15 0x4000 32 ;TCM status
tcmtype CP15 0x6000 32 ;TCM type
;
ctr CP15 0x0001 32 ;Control
aux CP15 0x2001 32 ;Auxiliary Control
cpacc CP15 0x4001 32 ;Coprocessor Access
;
ttb0 CP15 0x0002 32 ;Translation Table Base 0
ttb1 CP15 0x2002 32 ;Translation Table Base 1
ttbc CP15 0x4002 32 ;Translation Table Base Control
;
pid CP15 0x000d 32 ;Process ID
context CP15 0x200d 32 ;Context ID
;
;
; CM1136JF-S core module control registers
;
cm_id MM 0x10000000
cm_proc MM 0x10000004
cm_osc MM 0x10000008
cm_ctrl MM 0x1000000c
cm_stat MM 0x10000010
;
;
;
; Cortex-A8 debug registers
dscr APB 0xd4011088 ;Debug Status and Control
prcr APB 0xd4011310 ;Device Power Down and Reset Control
prsr APB 0xd4011314 ;Device Power Down and Reset Status
authstatus APB 0xd4011fb8 ;Authentication Status
devid APB 0xd4011fc8 ;Device Identifier
devtype APB 0xd4011fcc ;Device type
;

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 43
3.3 Debugging with GDB

Because the target agent runs within BDI, no debug support has to be linked to your application.
There is also no need for any BDI specific changes in the application sources. Your application must
be fully linked because no dynamic loading is supported.

3.3.1 Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the
application. The setup in the configuration file must at least enable access to the target memory
where the application will be loaded. Disable the watchdog and setting the CPU clock rate should
also be done with the BDI configuration file. Application specific initializations like setting the timer
rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is
selected, the application is immediately started, otherwise only the target PC is set. BDI now waits
for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the fol-
lowing command at the GDB prompt:

(gdb)target remote bdi2000:2001

bdi2000 This stands for an IP address. The HOST file must have an appropriate
entry. You may also use an IP address in the form xxx.xxx.xxx.xxx

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes
to background debug mode.

Remember, every time the application is suspended, the target CPU is freezed. During this time no
hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI.
(gdb)...
(gdb)detach
... Wait until BDI has resetet the target and reloaded the image
(gdb)target remote bdi2000:2001

Note:
GDB sometimes fails to connect to the target after a reset because it tries to read an invalid stack
frame. With the following init list entries you can work around this GDB startup problem:

WGPR 11 0x00000020 ;set frame pointer to free RAM
WM32 0x00000020 0x00000028 ;dummy stack frame
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 44
3.3.3 Breakpoint Handling

There are two breakpoint modes supported. One of them (SOFT) is implemented by replacing appli-
cation code with a BKPT instruction. The other (HARD) uses the built in breakpoint logic. If HARD is
selected, only up to 6 breakpoints can be active at the same time.

The following example selects SOFT as the breakpoint mode:

BREAKMODE SOFT ;SOFT or HARD, HARD uses hardware breakpoints

The BDI supports only a GDB version that uses a Z-Packet to set breakpoints (GDB Version 5.0 or
newer). GDB tells the BDI to set / clear breakpoints with this special protocol unit. The BDI will re-
spond to this request by replacing code in memory with the BKPT instruction or by setting the appro-
priate hardware breakpoint.

3.3.4 GDB monitor command

The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet
output is returned to GDB.

(gdb) target remote bdi2000:2001
Remote debugging using bdi2000:2001
0x10b2 in start ()
(gdb) monitor md 0 1
00000000 : 0xe59ff018 - 442503144 ...
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 45
3.3.5 Target serial I/O via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI2000. This way it is possible
to access the target’s serial I/O via a TCP/IP channel. For example, you can connect a Telnet session
to the appropriate BDI2000 port. Connecting GDB to a GDB server (stub) running on the target
should also be possible.

The configuration parameter "SIO" is used to enable this serial I/O routing.
The BDI asserts RTS and DTR when a TCP connection is established.

[TARGET]
....
SIO 7 9600 ;Enable SIO via TCP port 7 at 9600 baud

Warning!!!
Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either
disable SIO first or disconnect the BDI from the LAN while updating the firmware.

Target System

Ethernet (10 BASE-T)

BDI2000

ARM

RS
23

2

RS232 POWER LI TX RX 10 BASE-T

54321

9876

RS232 Connector

1 - CD
2 - RXD
3 - TXD
4 - DTR
5 - GROUND
6 - DSR
7 - RTS
8 - CTS
9 - RI

XXX BDI Output
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 46
3.3.6 Target DCC I/O via BDI

It is possible to route a TCP/IP port to the ARM’s debug communciation channel (DCC). This way,
the application running on the target can output messages via DCC that are displayed for example
in a Telnet window. The BDI routes every byte received via DCC to the connected TCP/IP channel
and vice versa. Below some simple functions you can link to your application in order to implement
IO via DCC.

#define DSCR_WDTR_FULL (1L<<29)
#define DSCR_RDTR_FULL (1L<<30)

static unsigned int read_dtr(void)
{
 unsigned int c;

 __asm__ volatile(
 "mrc p14, 0, %0, c0, c5\n"
 : "=r" (c));
 return c;
}

static void write_dtr(unsigned int c)
{
 __asm__ volatile(
 "mcr p14, 0, %0, c0, c5\n"
 :
 : "r" (c));
}

static unsigned int read_dscr(void)
{
 unsigned int ret;

 __asm__ volatile(
 "mrc p14, 0, %0, c0, c1\n"
 : "=r" (ret));
 return ret;
}

void write_dcc_char(unsigned int c)
{
 while(read_dscr() & DSCR_WDTR_FULL);
 write_dtr(c);
}

unsigned int read_dcc_char(void)
{
 while(!(read_dscr() & DSCR_RDTR_FULL));
 return read_dtr();
}

void write_dcc_string(const char* s)
{
 while (*s) write_dcc_char(*s++);
}

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 47
3.3.7 Target Serial Wire Output via BDI

It is possible to route a TCP/IP port to the Serial Wire Output (SWO/SWV). This way, the application
running on the target can output messages via SWO that are displayed for example in a Telnet win-
dow. In Raw mode (even TCP/IP port number), the BDI sends all bytes received via SWO as two
ascii hex digits to the host. In ASCII mode (odd TCP/IP port number), the BDI sends all bytes re-
ceived via SWO that are in the range 4 to 127 directly to the host without any conversion. All other
bytes are discarded.

Following an example how to setup ITM and TPIU for text output via SWO:

; prepare SWO ASCII output via Stimulus0
WM32 0xE00400F0 0x00000002 ;TPIU_PROTOCOL : async mode NRZ
WM32 0xE0040010 99 ;TPIU_PRESCALER : select 500000 baud
WM32 0xE0040304 0x00000100 ;TPIU_FF_CONTROL: formatter bypass
WM32 0xE0000FB0 0xC5ACCE55 ;ITM_LOCK_ACCESS: enable access
WM32 0xE0000E80 0x00000001 ;ITM_TRACE_CTRL : enable trace
WM32 0xE0000E00 0x00000001 ;ITM_TRACE_ENA : enable stimulus0

[TARGET]
...
SWO 8023 500000 ;map ASCII SWO to odd TCP port 8023

 Below a simple function you can link to your application for text output via SWO.

/* ITM Stimulus 0 */
#define SWO1 (*(vuint8 *)(0xE0000000))
#define SWO2 (*(vuint16 *)(0xE0000000))
#define SWO4 (*(vuint32 *)(0xE0000000))

void SWO_WriteStringA(const char* s)
{
 while (*s) {
 while ((SWO4 & 1) == 0);
 SWO1 = *s++;
 } /* while */
} /* SWO_WriteString */

or an optimized version:

void SWO_WriteStringB(const char* s)
{
 while (*s) {
 while ((SWO4 & 1) == 0);
 if (*(s+1) && *(s+2) && *(s+3)){
 SWO4 = (uint32)(*s)
 + ((uint32)(*(s+1)) << 8)
 + ((uint32)(*(s+2)) << 16)
 + ((uint32)(*(s+3)) << 24);
 s += 4;
 } /* if */
 else {
 SWO1 = *s++;
 } /* else */
 } /* while */
} /* SWO_WriteString */
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 48
3.4 Telnet Interface

A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error
messages and other information. Also some basic debug tasks may be done by using this interface.
Enter help at the Telnet command prompt to get a list of the available commands.

Telnet Debug features:

• Display and modify memory locations

• Display and modify registers

• Single step a code sequence

• Set hardware breakpoints (for code and data accesses)

• Load a code file from any host

• Start / Stop program execution

• Programming and Erasing Flash memory

During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware re-
set and reload the application code). It may be also useful during the first installation of the bdiGDB
system or in case of special debug needs.

Multiple commands separated by a semicolon can be entered on one line.

Example of a Telnet session:

ARM1136>info
 Core number : 0
 Core state : debug mode (ARM)
 Debug entry cause : Vector Catch (RESET)
 Current PC : 0x00000000
 Current CPSR : 0x000001d3 (Supervisor)
ARM1136>rd
GPR00: 000000fc f1c72a88 ff5ffdf7 3bb15ae6
GPR04: f87f47f7 3c7c6959 ba398649 ddff6fed
GPR08: fff3a7b1 ff3defdf fafb5fff fb99eb7d
GPR12: bdffedbf 7edfffd7 8ce356cf 00000000
PC : 00000000 CPSR: 000001d3
ARM1136>md 0
00000000 : 3de37365 ddaf8e8b 70a66636 52d11411 es.=....6f.p...R
00000010 : b672ee06 d6a94323 6e73fd29 a8d6e9a1 ..r.#C..).sn....
00000020 : 8f0a1aad 6c1a840f e1b1de9d 802e4839 l....9H..
00000030 : 9f9c2afa 9b818b86 63fdbab8 f2a63b91 .*.........c.;..
00000040 : 440f75a4 fa7b254e c5efff5b 8f4829a5 .u.DN%{.[....)H.

.....................

Notes:
The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/
Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to
get more information about the TFTP server on your host.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 49
3.4.1 Command list

"MD [<address>] [<count>] display target memory as word (32bit)",
"MDH [<address>] [<count>] display target memory as half word (16bit)",
"MDB [<address>] [<count>] display target memory as byte (8bit)",
"DUMP <addr> <size> [<file>] dump target memory to a file",
"MM <addr> <value> [<cnt>] modify word(s) (32bit) in target memory",
"MMH <addr> <value> [<cnt>] modify half word(s) (16bit) in target memory",
"MMB <addr> <value> [<cnt>] modify byte(s) (8bit) in target memory",
"MT <addr> <count> memory test",
"MC [<address>] [<count>] calculates a checksum over a memory range",
"MV verifies the last calculated checksum",
"RD [<name>] display general purpose or user defined register",
"RDUMP [<file>] dump all user defined register to a file",
"RDALL display all ARM registers ",
"RDCP [<cp>] <number> display CP register, default is CP15",
"RDFP display floating point register",
"RM {<nbr>|<name>} <value> modify general purpose or user defined register",
"RMCP [<cp>] <number><value> modify CP register, default is CP15",
"MMU {ENABLE | DISABLE} enable / disable MMU via control register",
"DTLB <from> [<to>] ARM1136: display Data TLB entries",
"ITLB <from> [<to>] ARM1136: display Inst TLB entries",
"LTLB <from> [<to>] ARM1136: display Lockable Main TLB entries",
"ATLB <from> [<to>] ARM1136: display Set-Associative Main TLB entries",
"DTAG <from> [<to>] ARM1136: display L1 Data Cache Tag(s) ",
"ITAG <from> [<to>] ARM1136: display L1 Inst Cache Tag(s) ",
"RESET [HALT | RUN [time]] reset the target system, change startup mode",
"GO [<pc>] set PC and start current core",
"GO <n> <n> [<n>[<n>]] start multiple cores in requested order",
"TI [<pc>] single step an instruction",
"HALT [<n>[<n>[<n>[<n>]]]] force core(s) to debug mode (n = core number)",
"BI <addr> set instruction breakpoint",
"BI <addr> [<mask>] Cortex-A8: set instruction breakpoint",
"CI [<id>] clear instruction breakpoint(s)",
"BD [R|W] <addr> set data watchpoint (32bit access)",
"BDH [R|W] <addr> set data watchpoint (16bit access)",
"BDB [R|W] <addr> set data watchpoint (8bit access)",
"BDM [R|W] <addr> [<mask>] Cortex-A8: set data watchpoint with address mask",
"CD [<id>] clear data watchpoint(s)",
"INTDIS disable target interrupts while running",
"INTENA enable target interrupts while running (default)",
"INFO display information about the current state",
"LOAD [<offset>] [<file> [<format>]] load program file to target memory",
"VERIFY [<offset>] [<file> [<format>]] verify a program file to target memory",
"PROG [<offset>] [<file> [<format>]] program flash memory",
" <format> : SREC, BIN, AOUT, ELF or COFF",
"ERASE [<address> [<mode>]] erase a flash memory sector, chip or block",
" <mode> : CHIP, BLOCK or SECTOR (default is sector)",
"ERASE <addr> <step> <count> erase multiple flash sectors",
"UNLOCK [<addr> [<delay>]] unlock a flash sector",
"UNLOCK <addr> <step> <count> unlock multiple flash sectors",
"FLASH <type> <size> <bus> change flash configuration",
"FENA <addr> <size> enable autoamtic programming to flash memory",
"FDIS disable autoamtic programming to flash memory",
"DELAY <ms> delay for a number of milliseconds",
"MEMACC {CORE | AHB [<hprot>]} Cortex-A8: select memory access mode",
"SELECT <core> change the current core",
"HOST <ip> change IP address of program file host",
"PROMPT <string> defines a new prompt string",
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 50
"CONFIG display or update BDI configuration",
"CONFIG <file> [<hostIP> [<bdiIP> [<gateway> [<mask>]]]]",
"HELP display command list",
"BOOT [loader] reboot the BDI and reload the configuration",
"QUIT terminate the Telnet session",

"---",
"Low level access to CoreSight debug system:",
"---",
"RDP <addr> display Debug Port (DP) register",
"RAP <addr> display Access Port (AP) register",
"RDBG <nbr> [<cnt>] display core debug register",
"WDP <addr> <value> modify Debug Port (DP) register",
"WAP <addr> <value> modify Access Port (AP) register",
"WDBG <nbr> <value> modify core debug register",
"MDAPB <addr> [<cnt>] display APB memory",
"MMAPB <addr> <value> modify APB memory",
"MDAHB <addr> [<cnt>] display AHB memory (32-bit)",
"MMAHB <addr> <value> modify AHB memory (32-bit)"
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 51
3.4.2 CPxx Registers

Via Telnet it is possible to access the Coprocessor 15,14,13 registers. Following the Telnet com-
mands that are used to access CP registers:

"RDCP <number> display control processor 15 register",
"RDCP 15 <number> display control processor 15 register",
"RDCP 14 <number> display control processor 14 register",
"RDCP 13 <number> display control processor 13 register",

....

"RMCP <number> <value> modify control processor 15 register",
"RMCP 15 <number> <value> modify control processor 15 register",
"RMCP 14 <number> <value> modify control processor 14 register",
"RMCP 13 <number> <value> modify control processor 13 register",

....

The parameter number selects the CPxx register. This parameter is used to build the appropriate
MCR or MRC instruction.

+-----+-+-------+-----+-+-------+
|opc_2|0| CRm |opc_1|0| nbr |
+-----+-+-------+-----+-+-------+

Some examples:

CP15 : ID register (CRn = 0, opcode_2 = 0)

BDI> rdcp 15 0x0000

CP15 : Cache Type (CRn = 0, opcode_2 = 1)

BDI> rdcp 15 0x2000

CP15 : Invalidate I cache line (CRn = 7, opcode_2 = 1, CRm = 5)

BDI> rmcp 15 0x2507 0xA0000000
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 52
3.5 Multi-Core Support

3.5.1 JTAG Daisy Chained Cores

The bdiGDB system supports concurrent debugging of up to 4 ARM cores (same family) connected
to the same JTAG scan chain. For every core you can start its own GDB session. The default port
numbers used to attach the remote targets are 2001 ... 2004. In the Telnet you switch between the
cores with the command "select <0..3>". In the configuration file, simply begin the line with the ap-
propriate core number. If there is no #n in front of a line, the BDI assumes core #0.

The following example defines two cores on the scan chain.

[TARGET]
CLOCK 1 ;JTAG clock (0=Adaptive, 1=8MHz, 2=4MHz, 3=2MHz)
WAKEUP 1000 ;wakeup time after reset

#0 CPUTYPE ARM1136
#0 SCANPRED 0 0 ;JTAG devices connected before this core
#0 SCANSUCC 1 4 ;JTAG devices connected after this core
#0 VECTOR CATCH ;catch unhandled exceptions
#0 BREAKMODE SOFT ;SOFT or HARD
#0 DCC 8 ;DCC I/O via TCP port 8

#1 CPUTYPE ARM1136
#1 SCANPRED 1 4 ;JTAG devices connected before this core
#1 SCANSUCC 0 0 ;JTAG devices connected after this core
#1 VECTOR CATCH ;catch unhandled exceptions
#1 BREAKMODE SOFT ;SOFT or HARD
#1 DCC 7 ;DCC I/O via TCP port 7

Note:
It is not possible to concurrent debug an ARM11 and a Cortex-A8 core even if they are located on
the same scan chain.

3.5.2 ARM7 cores connected via JTAG-AP

The bdiGDB system supports concurrent debugging of 1 Cortex-A8 core and up to 3 ARM7 cores
connected to the CoreSight JTAG-AP interface. For every core you can start its own GDB session.
The default port numbers used to attach the remote targets are 2001 ... 2004. In the Telnet you switch
between the cores with the command "select <0..3>". In the configuration file, simply begin the line
with the appropriate core number. If there is no #n in front of a line, the BDI assumes core #0.

[TARGET]
CLOCK 7 ;BDI3000: JTAG clock 1MHz
WAKEUP 100 ;wait after reset released
;
; Core#0 Cortex-A8
#0 CPUTYPE CORTEX-A8 ;main core is Cortex-A8
#0 STARTUP HALT ;halt immediatelly at the reset vector
#0 BREAKMODE HARD ;SOFT or HARD
#0 MEMACCESS CORE 8 ;memory access via Core (64 TCK's access delay)
;
; Core#1 ARM7 at JTAG-AP port 2
#1 CPUTYPE ARM7 2 ;ARM7 connected to JTAG-AP port 2
#1 STARTUP RUN ;let the core run
#1 BREAKMODE SOFT ;SOFT or HARD
#1 MEMACCESS CORE 2 ;Additonal 16 TCK DAP access delay
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 53
4 Specifications

Operating Voltage Limiting 5 VDC ± 0.25 V

Power Supply Current typ. 500 mA
max. 1000 mA

RS232 Interface: Baud Rates 9’600,19’200, 38’400, 57’600,115’200
Data Bits 8
Parity Bits none
Stop Bits 1

Network Interface 10 BASE-T

Serial Transfer Rate between BDI and Target up to 16 Mbit/s

Supported target voltage 1.8 – 5.0 V (3.0 – 5.0 V with Rev. A/B)

Operating Temperature + 5 °C ... +60 °C

Storage Temperature -20 °C ... +65 °C

Relative Humidity (noncondensing) <90 %rF

Size 190 x 110 x 35 mm

Weight (without cables) 420 g

Host Cable length (RS232) 2.5 m

Specifications subject to change without notice
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 54
5 Environmental notice
Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 55
7 Abatron Warranty and Support Terms

7.1 Hardware

ABATRON Switzerland warrants that the Hardware shall be free from defects in material and work-
manship for a period of 3 years following the date of purchase when used under normal conditions.
Failure in handling which leads to defects or any self-made repair attempts are not covered under
this warranty. In the event of notification within the warranty period of defects in material or workman-
ship, ABATRON will repair or replace the defective hardware. The customer must contact the distrib-
utor or Abatron for a RMA number prior to returning.

7.2 Software

License
Against payment of a license fee the client receives a usage license for this software product, which
is not exclusive and cannot be transferred.

Copies
The client is entitled to make copies according to the number of licenses purchased. Copies
exceeding this number are allowed for storage purposes as a replacement for defective storage
mediums.

Update and Support
The agreement includes free software maintenance (update and support) for one year from date of
purchase. After this period the client may purchase software maintenance for an additional year.

7.3 Warranty and Disclaimer

ABATRON AND ITS SUPPLIERS HEREBY DISCLAIMS AND EXCLUDES, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.

7.4 Limitation of Liability

IN NO EVENT SHALL ABATRON OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY DAMAGES,
INCLUDING, WITHOUT LIMITATION, ANY SPECIAL, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE HARDWARE AND/OR SOFTWARE, INCLUDING WITHOUT
LIMITATION, LOSS OF PROFITS, BUSINESS, DATA, GOODWILL, OR ANTICIPATED SAVINGS,
EVEN IF ADVISED OF THE POSSIBILITY OF THOSE DAMAGES.

The hardware and software product with all its parts, copyrights and any other rights remain in pos-
session of ABATRON. Any dispute, which may arise in connection with the present agreement shall
be submitted to Swiss Law in the Court of Zug (Switzerland) to which both parties hereby assign com-
petence.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 56
Appendices

A Troubleshooting
Problem
The firmware can not be loaded.

Possible reasons

• The BDI is not correctly connected with the target system (see chapter 2).

• The power supply of the target system is switched off or not in operating range
(4.75 VDC ... 5.25 VDC) --> MODE LED is OFF or RED

• The built in fuse is damaged --> MODE LED is OFF

• The BDI is not correctly connected with the Host (see chapter 2).

• A wrong communication port (Com 1...Com 4) is selected.

Problem
No working with the target system (loading firmware is ok).

Possible reasons

• Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).

• Target system initialization is not correctly --> enter an appropriate target initialization list.
• An incorrect IP address was entered (BDI2000 configuration)

• BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).

• The target system is damaged.

Problem
Network processes do not function (loading the firmware was successful)

Possible reasons
• The BDI2000 is not connected or not correctly connected to the network (LAN cable or media

converter)
• An incorrect IP address was entered (BDI2000 configuration)
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 57
B Maintenance
The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such
as gasoline may damage it.

If the BDI is connected correctly and it is still not responding, then the built in fuse might be damaged
(in cases where the device was used with wrong supply voltage or wrong polarity). To exchange the
fuse or to perform special initialization, please proceed according to the following steps:

Observe precautions for handling (Electrostatic sensitive device)
Unplug the cables before opening the cover.

Use exact fuse replacement (Microfuse MSF 1.6 AF).

!

1

2

3

1.1 Unplug the cables

BDI TRGT MODE BDI MAIN BDI OPTION

2.1 Remove the two plastic caps that cover the screws on target front side

2.2 Remove the two screws that hold the front panel

3.1 While holding the casing, remove the front panel and the red elastig sealing

(e.g. with a small knife)

front panel

elastic sealing

casing
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 58
Observe precautions for handling (Electrostatic sensitive device)
Unplug the cables before opening the cover.

Use exact fuse replacement (Microfuse MSF 1.6 AF).

4

5

4.1 While holding the casing, slide carefully the print in position as shown in

5.1 Slide back carefully the print. Check that the LEDs align with the holes in the

front panel

elastic sealing

Reinstallation

back panel.

5.2 Push carefully the front panel and the red elastig sealing on the casing.
Check that the LEDs align with the holes in the front panel and that the

5.3 Mount the screws (do not overtighten it)

5.4 Mount the two plastic caps that cover the screws

5.5 Plug the cables

position of the sealing is as shown in the figure below.

casing

figure below

Pull-out carefully the fuse and replace it
Type: Microfuse MSF 1.6AF
Manufacturer: Schurter

Jumper settings

DEFAULT INIT MODE

back panel

Fuse Position
Fuse Position
Version B

Version A

!

© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

bdiGDB for GNU Debugger, BDI2000 (ARM11 / Cortex) User Manual 59
C Trademarks
All trademarks are property of their respective holders.
© Copyright 1997-2011 by ABATRON AG Switzerland V 1.12

