
| Last Modified: 12-04-2024                                                                | 6.11:8.1.0   | <b>Doc ID:</b> RM100000029GSV |  |  |  |
|------------------------------------------------------------------------------------------|--------------|-------------------------------|--|--|--|
| Model Year Start: 2023                                                                   | Model: Prius | Prod Date Range: [12/2022 - ] |  |  |  |
| Title: NETWORKING: CAN COMMUNICATION SYSTEM (for HEV Model): Motor Generator Control ECU |              |                               |  |  |  |
| Communication Stop Mode; 2023 - 2024 MY Prius [12/2022 - ]                               |              |                               |  |  |  |

**Motor Generator Control ECU Communication Stop Mode** 

# **DESCRIPTION**

| DETECTION ITEM                                         | SYMPTOM                                                                                                   | TROUBLE AREA                                                                                                                                                                                     |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor Generator Control ECU<br>Communication Stop Mode | Communication stop for "Motor Generator" is indicated on the "Communication Bus Check" screen of the GTS. | Inverter with converter assembly connector     Power source circuit of inverter with converter assembly     Inverter with converter assembly ground circuit     Inverter with converter assembly |

# **WIRING DIAGRAM**



# **CAUTION / NOTICE / HINT**

### **CAUTION:**

When performing the confirmation driving pattern, obey all speed limits and traffic laws.

#### **NOTICE:**

• Because the order of diagnosis is important to allow correct diagnosis, make sure to begin troubleshooting using How to Proceed with Troubleshooting when CAN communication system related DTCs are output.

Click here

- Before measuring the resistance of the CAN bus, turn the ignition switch off and leave the vehicle for 1 minute
  or more without operating the key or any switches, or opening or closing the doors. After that, disconnect the
  cable from the negative (-) auxiliary battery terminal and leave the vehicle for 10 minutes or more before
  measuring the resistance.
- After the ignition switch is turned off, there may be a waiting time before disconnecting the negative (-) auxiliary battery terminal.

Click here NFO

• When disconnecting and reconnecting the auxiliary battery.

#### HINT:

When disconnecting and reconnecting the auxiliary battery, there is an automatic learning function that completes learning when the respective system is used.

Click here

Some parts must be initialized and set when replacing or removing and installing parts.

Click here NFO

• After performing repairs, perform the DTC check procedure and confirm that the DTCs are not output again.

DTC check procedure: Turn the ignition switch to ON and wait for 1 minute or more. Then operate the suspected malfunctioning system and drive the vehicle at 60 km/h (37 mph) or more for 5 minutes or more.

• After the repair, perform the CAN bus check and check that all the ECUs and sensors connected to the CAN communication system are displayed as normal.

Click here NFO

• Inspect the fuses for circuits related to this system before performing the following procedure.

#### **HINT:**

1.

- Before disconnecting related connectors for inspection, push in on each connector body to check that the connector is not loose or disconnected.
- When a connector is disconnected, check that the terminals and connector body are not cracked, deformed or corroded.

## **PROCEDURE**

## CHECK HARNESS AND CONNECTOR (POWER SOURCE CIRCUIT)

- (a) Disconnect the cable from the negative (-) auxiliary battery terminal.
- (b) Disconnect the A88 inverter with converter assembly connector.
- (c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:



Click Location & Routing(A88)
Click Connector(A88)

| TESTER CONNECTION              | CONDITION                                                       | SPECIFIED CONDITION |
|--------------------------------|-----------------------------------------------------------------|---------------------|
| A88-4 (GND1) - Body ground     | Cable disconnected from negative (-) auxiliary battery terminal | Below 1 Ω           |
| A88-12 (GND2) - Body<br>ground | Cable disconnected from negative (-) auxiliary battery terminal | Below 1 Ω           |

- (d) Reconnect the cable to the negative (-) auxiliary battery terminal.
- (e) Measure the voltage according to the value(s) in the table below. Standard Voltage:



### <u>Click Location & Routing(A88)</u> <u>Click Connector(A88)</u>

| TESTER CONNECTION          | CONDITION          | SPECIFIED CONDITION |
|----------------------------|--------------------|---------------------|
| A88-1 (IGC1) - Body ground | Ignition switch ON | 11 to 14 V          |
| A88-9 (IGC2) - Body ground | Ignition switch ON | 11 to 14 V          |



NG REPAIR OR REPLACE HARNESS OR CONNECTOR (POWER SOURCE CIRCUIT)



