Last Modified: 12-04-2024	6.11:8.1.0 Doc ID: RM100000002BI82				
Model Year Start: 2023	Model: Prius Prime	Prod Date Range: [03/2023 -]			
Title: HYBRID / BATTERY CONTROL: MOTOR GENERATOR CONTROL SYSTEM (for PHEV Model): P2C8C1C; DC/DC					
Converter Temperature Sensor "D" Circuit Range/Performance Circuit Voltage Out of Range; 2023 - 2024 MY Prius					
Prime [03/2023 -]					

DTC P2C8C1C DC/DC Converter Temperature Sensor "D" Circuit Range/Performance Circuit Voltage Out of Range

DTC SUMMARY

MALFUNCTION DESCRIPTION

These DTCs indicate that the boost converter temperature sensor (upper) value is abnormal. The cause of this malfunction may be one of the following:

Internal inverter malfunction

Inverter with converter assembly internal circuit malfunction

Hybrid cooling system malfunction

Coolant circulation abnormal (frozen or leaking, etc.)

Inverter low-voltage circuit malfunction

The connectors are not connected properly

DESCRIPTION

The motor generator control ECU, which is built into in the inverter with converter assembly, detects the temperature of the boost converter using the temperature sensor built into the boost converter. If necessary, the motor generator control ECU will limit inverter output to help prevent boost converter overheating. The motor generator control ECU also detects malfunctions in the sensor based on the temperature sensor values.

DTC NO.	DETECTION ITEM	DTC DETECTION CONDITION	TROUBLE AREA	MIL	WARNING INDICATE	DTC OUTPUT FROM	PRIORITY	NOTE
P2C8C1C	DC/DC Converter Temperature Sensor "D" Circuit Range/Performance Circuit Voltage Out of Range	· .	 Inverter cooling system Cooling fan system Inverter with converter assembly Wire harness or connector 	Comes	Master Warning: Comes on	Motor Generator	A	SAE Code: P2C8D

DTC NO.	DETECTION ITEM	DTC DETECTION CONDITION	TROUBLE AREA	MIL	WARNING INDICATE	DTC OUTPUT FROM	PRIORITY	NOTE
		temperature exceeds a threshold for 10 seconds, or after a long soak, the boost converter temperature (upper) sensor value differs from the values of other sensors. (1 trip detection logic)						

MONITOR DESCRIPTION

If the motor generator control ECU detects a malfunction of the DC/DC Converter Temperature sensor "A", The ECU will illuminate the MIL and store a DTC.

MONITOR STRATEGY

Related DTCs	P2C8D (INF P2C8C1C): DC/DC converter temperature sensor "A" malfunction (deviation)
Required sensors/components	Inverter, boost converter
Frequency of operation	Continuous
Duration	TMC's intellectual property
MIL operation	1 driving cycle
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not stored	TMC's intellectual property
Other conditions belong to TMC's intellectual property	-

TYPICAL MALFUNCTION THRESHOLDS

TMC's intellectual property	_
-----------------------------	---

COMPONENT OPERATING RANGE

Motor generator control ECU

DTC P2C8D (INF P2C8C1C) is not detected

CONFIRMATION DRIVING PATTERN

HINT:

 After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

Click here

When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

Click here NFO

- 1. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
- 2. Turn the ignition switch off and wait for 2 minutes or more.
- 3. Turn the ignition switch to ON (READY). [*1]
- 4. Drive the vehicle for approximately 10 minutes with the value of Data List item "Inverter Coolant Temperature" 25°C (77°F) or more. [*2]

HINT:

[*1] to [*2]: Normal judgment procedure.

The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

- 5. Enter the following menus: Powertrain / Motor Generator / Utility / All Readiness.
- 6. Check the DTC judgment result.

HINT:

- If the judgment result shows NORMAL, the system is normal.
- If the judgment result shows ABNORMAL, the system has a malfunction.
- If the judgment result shows INCOMPLETE, perform the normal judgment procedure again.

WIRING DIAGRAM

Refer to the wiring diagram for the Cooling System.

Click here

CAUTION / NOTICE / HINT

CAUTION:

Refer to the precautions before inspecting high voltage circuit.

Click here NFO

NOTICE:

After the ignition switch is turned off, there may be a waiting time before disconnecting the auxiliary negative
 (-) battery terminal.

Click here NFO

When disconnecting and reconnecting the auxiliary battery.

HINT:

When disconnecting and reconnecting the auxiliary battery, there is an automatic learning function that completes learning when the respective system is used.

Click here NFO

HINT:

- P2C8C1C may be output as a result of the malfunction indicated by the DTCs above.
 - a. The chart above is listed in inspection order of priority.
 - b. Check DTCs that are output at the same time by following the listed order. (The main cause of the malfunction can be determined without performing unnecessary inspections.)

Table 1

MALFUNCTION CONTENT		RELEVANT DTC				
Insulation malfunction	P1C7C49	Hybrid/EV Battery Voltage System Isolation (A/C Area) Internal Electronic Failure				
	P1C7D49	Hybrid/EV Battery Voltage System Isolation (Hybrid/EV Battery Area) Internal Electronic Failure				
	P1C7E49	Hybrid/EV Battery Voltage System Isolation (Transaxle Area) Internal Electronic Failure				
	P1C7F49	Hybrid/EV Battery Voltage System Isolation (Direct Current Area) Internal Electronic Failure				
	P1C8049	Hybrid/EV Battery Voltage System Isolation (Rear Motor Area) Internal Electronic Failure				

Table 2

MALFUNCTION CONTENT	RELEVANT DTC		
Sensor and actuator circuit malfunction		Motor Electronics Coolant Pump "A" Component Internal Failure	
		Motor Electronics Coolant Pump "A" No Signal	
System malfunction	P0A9300	Inverter "A" Cooling System Performance	

PROCEDURE

1. CHECK CONNECTOR CONNECTION CONDITION (INVERTER WITH CONVERTER ASSEMBLY CONNECTOR)

Click here NFO

RESULT		
ОК	А	
NG (The connector is not connected securely.)	В	
NG (The terminals are not making secure contact or are deformed, or water or foreign matter exists in the connector.)	С	

C REPAIR OR REPLACE HARNESS OR CONNECTOR

2. CHECK COOLING SYSTEM

Click here NFO

HINT:

If the "Cooling System" inspection results are normal, perform the next step.

NEXT REPLACE INVERTER WITH CONVERTER ASSEMBLY

