| Last Modified: 12-04-2024                                                                      | 6.11:8.1.0         | <b>Doc ID:</b> RM1000000028ZXA |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------|--------------------------------|--|--|--|
| Model Year Start: 2023                                                                         | Model: Prius Prime | Prod Date Range: [12/2022 - ]  |  |  |  |
| Title: HYBRID / BATTERY CONTROL: MOTOR GENERATOR CONTROL SYSTEM (for M20A-FXS): P0A7873; Drive |                    |                                |  |  |  |
| Motor "A" Inverter Actuator Stuck Closed; 2023 - 2024 MY Prius Prius Prime [12/2022 - ]        |                    |                                |  |  |  |

| DTC | P0A7873 | Drive Motor "A" Inverter Actuator Stuck Closed |  |
|-----|---------|------------------------------------------------|--|
|-----|---------|------------------------------------------------|--|

## **DTC SUMMARY**

### **MALFUNCTION DESCRIPTION**

This DTC is stored when a short is detected in the inverter with converter assembly (motor inverter) or the hybrid vehicle transaxle assembly (motor (MG2)). The cause of this malfunction may be one of the following:

#### Internal inverter malfunction

Motor inverter internal circuit malfunction

## Hybrid vehicle transaxle assembly (motor (MG2)) malfunction

- Open or short circuit
- Iron particles or damage from foreign objects

## **DESCRIPTION**

For a description of the inverter.

Click here

| DTC<br>NO. | DETECTION<br>ITEM                                       | DTC DETECTION<br>CONDITION                                                                                                                                                                                                                              | TROUBLE AREA                                                                   | MIL         | WARNING<br>INDICATE            | DTC<br>OUTPUT<br>FROM | PRIORITY | NOTE                  |
|------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------|--------------------------------|-----------------------|----------|-----------------------|
| P0A7873    | Drive Motor<br>"A" Inverter<br>Actuator<br>Stuck Closed | Current flow to any phase of the motor (MG2) exceeds the threshold after the motor inverter is shut down due to a DTC indicating a motor inverter malfunction (overheating, overcurrent or circuit malfunction) being stored.  (1 trip detection logic) | Inverter with converter assembly Motor cable Hybrid vehicle transaxle assembly | Comes<br>on | Master<br>Warning:<br>Comes on | Motor<br>Generator    | A        | SAE<br>Code:<br>P0A78 |

# **MONITOR DESCRIPTION**

The motor generator control ECU monitors the motor inverter electric current. If the current exceeds the threshold for a specified period of time, the motor generator control ECU will illuminate the MIL and store a DTC.

## **MONITOR STRATEGY**

| Related DTCs                | P0A78 (INF P0A7873): MFIV detection (Short circuit malfunction) |  |
|-----------------------------|-----------------------------------------------------------------|--|
| Required sensors/components | Motor inverter                                                  |  |
| Frequency of operation      | Continuous                                                      |  |
| Duration                    | TMC's intellectual property                                     |  |
| MIL operation               | 1 driving cycle                                                 |  |
| Sequence of operation       | None                                                            |  |

## TYPICAL ENABLING CONDITIONS

| The monitor will run whenever the following DTCs are not stored | TMC's intellectual property |
|-----------------------------------------------------------------|-----------------------------|
| Other conditions belong to TMC's intellectual property          | -                           |

## **TYPICAL MALFUNCTION THRESHOLDS**

| TMC's intellectual property | _ |
|-----------------------------|---|
|-----------------------------|---|

## **COMPONENT OPERATING RANGE**

| Motor generator control ECU | DTC P0A78 (INF P0A7873) is not detected |
|-----------------------------|-----------------------------------------|
|-----------------------------|-----------------------------------------|

# **CONFIRMATION DRIVING PATTERN**

#### **HINT:**

• After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

Click here NFO

• When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

Click here NFO

- 1. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
- 2. Turn the ignition switch off and wait for 2 minutes or more.
- 3. Turn the ignition switch to ON and wait for 5 seconds or more. [\*1]
- 4. Turn the ignition switch to ON (READY) and wait for 5 seconds or more. [\*2]
- 5. Drive the vehicle for approximately 10 minutes mainly using the engine. [\*3]

#### **NOTICE:**

As the state of charge of the HV battery may be low after driving in fail-safe mode, it will automatically be charged for 5 to 10 minutes with ignition switch ON (READY) after repairs have been performed.

## HINT:

[\*1] to [\*3]: Normal judgment procedure.

The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

- 6. Enter the following menus: Powertrain / Motor Generator / Utility / All Readiness.
- 7. Check the DTC judgment result.

### HINT:

- If the judgment result shows NORMAL, the system is normal.
- If the judgment result shows ABNORMAL, the system has a malfunction.
- If the judgment result shows INCOMPLETE, perform the normal judgment procedure again.

## WIRING DIAGRAM

Refer to the wiring diagram for the Motor High-voltage Circuit.

Click here NFO

## **CAUTION / NOTICE / HINT**

#### **CAUTION:**

Refer to the precautions before inspecting high voltage circuit.

Click here NFO

#### **NOTICE:**

• After the ignition switch is turned off, there may be a waiting time before disconnecting the negative (-) auxiliary battery terminal.

Click here NFO

When disconnecting and reconnecting the auxiliary battery.

#### HINT:

When disconnecting and reconnecting the auxiliary battery, there is an automatic learning function that completes learning when the respective system is used.

Click here NFO

- DTC P0A7873 is stored after DTCs P0A789E and/or P1C5D19 are stored. After troubleshooting and repairing the malfunction which caused DTC P0A7873 to be stored, be sure to troubleshoot the other DTCs.
- Depending on the conditions in which the vehicle is being operated when a short circuit occurs in the inverter with converter assembly, the hybrid vehicle transaxle assembly may be affected. As this DTC is stored if a short circuit occurs in the inverter with converter assembly, it is necessary to perform a road test to check the hybrid vehicle transaxle assembly. If problems are found, replace the malfunctioning parts.
- After completing the repair, including the repair of previously output DTCs, drive the vehicle at a speed of approximately 40 km/h (25 mph) for 1 minute and check that DTC P0A9000 is not output. If DTC P0A9000 is output, replace the hybrid vehicle transaxle assembly.

#### HINT:

P0A7873 may be output as a result of the malfunctions indicated by the DTCs in table below.

- a. The chart above is listed in inspection order of priority.
- b. Check DTCs that are output at the same time by following the listed order. (The main cause of the malfunction can be determined without performing unnecessary inspections.)

| MALFUNCTION<br>CONTENT | RELEVANT DTC |                                                                                                 |
|------------------------|--------------|-------------------------------------------------------------------------------------------------|
|                        |              | Hybrid/EV Battery Voltage System Isolation (A/C Area) Internal Electronic Failure               |
|                        | P1C7D49      | Hybrid/EV Battery Voltage System Isolation (Hybrid/EV Battery Area) Internal Electronic Failure |

| MALFUNCTION<br>CONTENT | RELEVANT DTC |                                                                                              |  |
|------------------------|--------------|----------------------------------------------------------------------------------------------|--|
|                        | P1C7E49      | Hybrid/EV Battery Voltage System Isolation (Transaxle Area) Internal Electronic Failure      |  |
|                        | P1C/F49      | Hybrid/EV Battery Voltage System Isolation (Direct Current Area) Internal Electronic Failure |  |
|                        | P1C8049      | Hybrid/EV Battery Voltage System Isolation (Rear Motor Area) Internal Electronic Failure     |  |

## **PROCEDURE**

1. CHECK HYBRID VEHICLE TRANSAXLE ASSEMBLY (MOTOR (MG2))

#### **CAUTION:**

Be sure to wear insulated gloves.

Pre-procedure1

(a) Check that the service plug grip is not installed.

#### **NOTICE:**

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

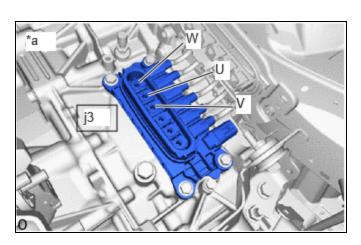
(b) Disconnect the motor cable from the hybrid vehicle transaxle assembly.

## HINT:

Click here NFO

Procedure1

- (c) Check the motor (MG2) for an interphase short using a milliohmmeter.
  - (1) Using a milliohmmeter, measure the resistance according to the value(s) in the table below.


## HINT:

If the motor (MG2) temperature is high, the resistance will vary greatly from the specification. Therefore, measure the resistance at least 8 hours after the vehicle has been stopped.

Standard Resistance:



<u>Click Location & Routing(j3)</u> <u>Click Connector(j3)</u>



\*a Motor Cable not connected (Hybrid Vehicle Transaxle Assembly)

| TESTER<br>CONNECTION | CONDITION           | SPECIFIED<br>CONDITION  |
|----------------------|---------------------|-------------------------|
| j3-1 (W) - j3-2 (U)  | Ignition switch off | 54.6 to 61.8 mΩ<br>[*1] |
| j3-2 (U) - j3-3 (V)  | Ignition switch off | 54.6 to 62.1 mΩ<br>[*2] |
| j3-1 (W) - j3-3 (V)  | Ignition switch off | 54.8 to 62.2 mΩ<br>[*3] |

#### HINT:

To correct the variation of the measured resistance due to temperature, use the following formula to calculate the resistance at 20°C (68°F).

 $R20 = Rt / \{1 + 0.00393 X (T - 20)\}$ 

The calculation is based on the following:

R20: Resistance at 20°C (68°F) ( $m\Omega$ )

Rt: Measured resistance ( $m\Omega$ )

T: Temperature when the resistance is measured

(°C)

#### Procedure2

(d) Check the difference in measured resistance values according to the table below.

## Standard:

| INSPECTION ITEM | SPECIFIED CONDITION |  |
|-----------------|---------------------|--|
| [*1] - [*2]     | -1.4 to 1.2 mΩ      |  |
| [*2] - [*3]     | -1.5 to 1.2 mΩ      |  |
| [*3] - [*1]     | -1.1 to 1.6 mΩ      |  |

### Procedure3

(e) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

### **NOTICE:**

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:



## <u>Click Location & Routing(j3)</u> <u>Click Connector(j3)</u>

| TESTER CONNECTION                        | CONDITION           | SPECIFIED CONDITION      |
|------------------------------------------|---------------------|--------------------------|
| j3-1 (W) - Body ground and shield ground | Ignition switch off | 100 M $\Omega$ or higher |
| j3-2 (U) - Body ground and shield ground | Ignition switch off | 100 M $\Omega$ or higher |

| TESTER CONNECTION                        | CONDITION           | SPECIFIED CONDITION      |
|------------------------------------------|---------------------|--------------------------|
| j3-3 (V) - Body ground and shield ground | Ignition switch off | 100 M $\Omega$ or higher |

Post-procedure1

(f) Connect the motor cable.

NG GO TO STEP 4



•

2. REPLACE INVERTER WITH CONVERTER ASSEMBLY

### HINT:

Click here NFO

## **NEXT**



3. REPLACE MOTOR CABLE

### HINT:

Click here NFO

NEXT GO TO STEP 7

4. REPLACE HYBRID VEHICLE TRANSAXLE ASSEMBLY

## HINT:

Click here

## NEXT



5. REPLACE INVERTER WITH CONVERTER ASSEMBLY

## HINT:

Click here NFO



6. REPLACE MOTOR CABLE

### HINT:

Click here NFO



# 7. CHECK DTC OUTPUT (MOTOR GENERATOR)

(a) Check the other DTCs that were output together with DTC P0A7873.

### Powertrain > Motor Generator > Trouble Codes

| RELEVANT DTC |                                                          |
|--------------|----------------------------------------------------------|
| P0A789E      | Drive Motor "A" Inverter Stuck On                        |
| P1C5D19      | Drive Motor "A" Inverter Circuit Current Above Threshold |

#### **NOTICE:**

DTC P0A7873 is stored after DTCs P0A789E and/or P1C5D19 are stored. After troubleshooting and repairing the malfunction which caused P0A7873 to be stored, be sure to troubleshoot the other DTCs.

**NEXT** GO TO DTC CHART (MOTOR GENERATOR CONTROL SYSTEM)



