Last Modified: 12-04-2024	6.11:8.1.0	Doc ID: RM100000029ZXU	
Model Year Start: 2023	Model: Prius	Prod Date Range: [12/2022 -]	
Title: M20A-FXS (FUEL): FUEL SENDER	GAUGE ASSEMBLY:	INSPECTION; 2023 - 2024 MY Prius [12/2022 -]	

INSPECTION

PROCEDURE

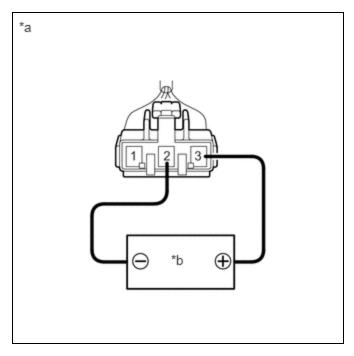
1. INSPECT FUEL SENDER GAUGE ASSEMBLY

CAUTION:

Perform the inspection in a well-ventilated area.

Do not perform the inspection near an open flame.

- (a) Check that the float moves smoothly between F and E.
- (b) Check the fuel sender gauge assembly voltage.


(1) Apply 5 V between terminals 2 and 3.

NOTICE:

- Be careful when connecting the leads, as the fuel sender gauge assembly may be damaged if the leads are connected to the wrong terminals.
- Do not apply more than 6 V to terminals 2 or 3.

HINT:

If a stable power supply is not available, connect 4 nickel-metal hydride batteries (1.2 V each) or equivalent in series.

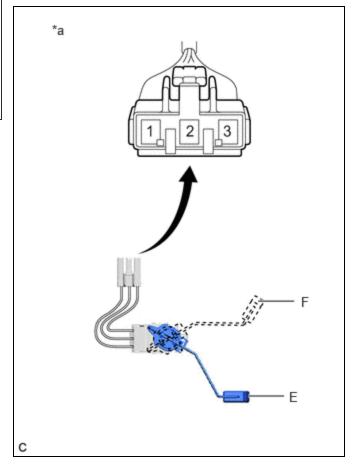
*a	Component without harness connected (Fuel Sender Gauge Assembly)
*b	Voltage Applied between Terminals

(2) Measure the voltage according to the value(s) in the table below.

Standard Voltage:

TESTER CONNECTION	FLOAT LEVEL	SPECIFIED CONDITION	RESULT
1 - 2	F	4.255 to 4.605 V	V

TESTER CONNECTION	FLOAT LEVEL	SPECIFIED CONDITION	RESULT
1 - 2	Between F and E	0.345 to 4.605 V	V
1 - 2	E	0.345 to 0.695 V	V


HINT:

The output voltage changes depending on the voltage applied to the terminals.

Output voltage (F) = $(0.851 \times \text{Voltage applied to terminals})$ to $(0.921 \times \text{Voltage applied to terminals})$

Output voltage (E) = $(0.069 \times \text{Voltage applied to terminals})$ to $(0.139 \times \text{Voltage applied to terminals})$

If the result is not as specified, replace the fuel sender gauge assembly.

*a (Fuel Sender Gauge Assembly)

