
M A N N I N G

Mohamed Labouardy

Continuous Delivery with Jenkins, Kubernetes, and Terraform

302

Jenkins cluster

GitHub

Slack

Docker images

Deployment package
AWS Lambda

K8s Cluster

S3 bucket

Build asse
ts (

HTML, C
SS, JS

)

Build notific
ation

Push event

Build

Archive (ZIP file)

Publish version

Deploy

Push files

Expose m
etrics

Prometheus

Stacked column

Grafana

Query

Visualize metrics in near real-time

Amazon
Web Services

Z I P

An example of a CI/CD pipeline for cloud-native applications

Pipeline as Code

ii

Pipeline as Code
CONTINUOUS DELIVERY WITH JENKINS,

KUBERNETES, AND TERRAFORM

MOHAMED LABOUARDY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical development editor: Christopher Haupt
PO Box 761 Review editor: Mihaela Batinić
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Sharon WIlkey
Proofreader: Keri Hales

Technical proofreader: Werner Dijkerman
Typesetter and cover designer: Marija Tudor

ISBN 9781617297540
Printed in the United States of America

http://www.manning.com
http://www.manning.com

brief contents
PART 1 GETTING STARTED WITH JENKINS 1

1 ■ What’s CI/CD? 3
2 ■ Pipeline as code with Jenkins 21

PART 2 OPERATING A SELF-HEALING JENKINS CLUSTER 47
3 ■ Defining Jenkins architecture 49
4 ■ Baking machine images with Packer 70
5 ■ Discovering Jenkins as code with Terraform 100
6 ■ Deploying HA Jenkins on multiple cloud providers 140

PART 3 HANDS-ON CI/CD PIPELINES 195
7 ■ Defining a pipeline as code for microservices 197
8 ■ Running automated tests with Jenkins 231
9 ■ Building Docker images within a CI pipeline 271

10 ■ Cloud-native applications on Docker Swarm 309
11 ■ Dockerized microservices on K8s 355
12 ■ Lambda-based serverless functions 401

PART 4 MANAGING, SCALING, AND MONITORING JENKINS 439
13 ■ Collecting continuous delivery metrics 441
14 ■ Jenkins administration and best practices 467
v

BRIEF CONTENTSvi

contents
preface xiii
acknowledgments xv
about this book xvi
about the author xix
about the cover illustration xx

PART 1 GETTING STARTED WITH JENKINS 1

1 What’s CI/CD? 3
1.1 Going cloud native 4

Monolithic 4 ■ Microservices 5 ■ Cloud native 8
Serverless 10

1.2 Defining continuous integration 12
1.3 Defining continuous deployment 13
1.4 Defining continuous delivery 14
1.5 Embracing CI/CD practices 15
1.6 Using essential CI/CD tools 16

Choosing a CI/CD tool 17 ■ Introducing Jenkins 18

2 Pipeline as code with Jenkins 21
2.1 Introducing the Jenkinsfile 22

Blue Ocean plugin 26 ■ Scripted pipeline 29 ■ Declarative
pipeline 31
vii

CONTENTSviii
2.2 Understanding multibranch pipelines 36
2.3 Exploring the GitFlow branch model 38
2.4 Test-driven development with Jenkins 39

The Jenkins Replay button 40 ■ Command-line pipeline
linter 41 ■ IDE integrations 43

PART 2 OPERATING A SELF-HEALING JENKINS
CLUSTER .. 47

3 Defining Jenkins architecture 49
3.1 Understanding master-worker architecture 50
3.2 Managing Jenkins workers 52

SSH 52 ■ Command line 53 ■ JNLP 53 ■ Windows
service 54

3.3 Architecting Jenkins for scale in AWS 55
Preparing the AWS environment 64 ■ Configuring the
AWS CLI 65 ■ Creating and managing the IAM
user 66

4 Baking machine images with Packer 70
4.1 Immutable infrastructure 71
4.2 Introducing Packer 72

How does it work? 73 ■ Installation and configuration 74
Baking a machine image 75

4.3 Baking the Jenkins master AMI 85
Configuring Jenkins upon startup 85 ■ Discovering Jenkins
plugins 88

4.4 Baking the Jenkins worker AMI 96

5 Discovering Jenkins as code with Terraform 100
5.1 Introducing infrastructure as code 101

Terraform usage 102

5.2 Provisioning an AWS VPC 103
AWS VPC 104 ■ VPC subnets 108 ■ VPC route tables 111
VPC bastion host 114

5.3 Setting up a self-healing Jenkins master 117
5.4 Running Jenkins with native SSL/HTTPS 124

CONTENTS ix
5.5 Dynamically autoscaling the Jenkins worker pool 128
Launch configuration 128 ■ Auto Scaling group 131
Autoscaling scaling policies 133 ■ Workers CPU
utilization load 136

6 Deploying HA Jenkins on multiple cloud providers 140
6.1 Google Cloud Platform 141

Building Jenkins VM images 141 ■ Configuring a GCP network
with Terraform 147 ■ Deploying Jenkins on Google Compute
Engine 153 ■ Launching automanaged workers on GCP 157

6.2 Microsoft Azure 162
Building golden Jenkins VM images in Azure 162 ■ Deploying
a private virtual network 166 ■ Deploying a Jenkins master
virtual machine 171 ■ Applying autoscaling to Jenkins
workers 178

6.3 DigitalOcean 183
Creating Jenkins DigitalOcean Snapshots 183 ■ Deploying a
Jenkins master Droplet 186 ■ Building Jenkins worker
Droplets 190

PART 3 HANDS-ON CI/CD PIPELINES 195

7 Defining a pipeline as code for microservices 197
7.1 Introducing microservices-based applications 199
7.2 Defining multibranch pipeline jobs 203
7.3 Git and GitHub integration 205
7.4 Discovering Jenkins jobs’ XML configuration 215
7.5 Configuring SSH authentication with Jenkins 219
7.6 Triggering Jenkins builds with GitHub webhooks 222

8 Running automated tests with Jenkins 231
8.1 Running unit tests inside Docker containers 233
8.2 Automating code linter integration with Jenkins 238
8.3 Generating code coverage reports 240
8.4 Injecting security in the CI pipeline 242
8.5 Running parallel tests with Jenkins 244
8.6 Improving quality with code analysis 246
8.7 Running mocked database tests 248

CONTENTSx
8.8 Generating HTML coverage reports 250
8.9 Automating UI testing with Headless Chrome 254

8.10 Integrating SonarQube Scanner with Jenkins 260

9 Building Docker images within a CI pipeline 271
9.1 Building Docker images 273

Using the Docker DSL 273 ■ Docker build arguments 277

9.2 Deploying a Docker private registry 279
Nexus Repository OSS 279 ■ Amazon Elastic Container
Registry 286 ■ Azure Container Registry 288 ■ Google
Container Registry 290

9.3 Tagging Docker images the right way 291
9.4 Scanning Docker images for vulnerabilities 296
9.5 Writing a Jenkins declarative pipeline 301
9.6 Managing pull requests with Jenkins 305

10 Cloud-native applications on Docker Swarm 309
10.1 Running a distributed Docker Swarm cluster 310
10.2 Defining a continuous deployment process 321
10.3 Integrating Jenkins with Slack notifications 335
10.4 Handling code promotion with Jenkins 341
10.5 Implementing the Jenkins delivery pipeline 346

11 Dockerized microservices on K8s 355
11.1 Setting up a Kubernetes cluster 356
11.2 Automating continuous deployment flow with Jenkins 360

Migrating Docker Compose to K8s manifests with Kompose 371

11.3 Walking through continuous delivery steps 372
11.4 Packaging Kubernetes applications with Helm 381
11.5 Running post-deployment smoke tests 387
11.6 Discovering Jenkins X 390

12 Lambda-based serverless functions 401
12.1 Deploying a Lambda-based application 402
12.2 Creating deployment packages 407

Mono-repo strategy 407 ■ Multi-repo strategy 413

CONTENTS xi
12.3 Updating Lambda function code 417
12.4 Hosting a static website on S3 420
12.5 Maintaining multiple Lambda environments 423
12.6 Configuring email notification in Jenkins 434

PART 4 MANAGING, SCALING,
AND MONITORING JENKINS 439

13 Collecting continuous delivery metrics 441
13.1 Monitoring Jenkins cluster health 442
13.2 Centralized logging for Jenkins logs with ELK 452

Streaming logs with Filebeat 454 ■ Streaming logs with the
Logstash plugin 461

13.3 Creating alerts based on metrics 462

14 Jenkins administration and best practices 467
14.1 Exploring Jenkins security and RBAC authorization 468

Matrix authorization strategy 469 ■ Role-based authorization
strategy 471

14.2 Configuring GitHub OAuth for Jenkins 472
14.3 Keeping track of Jenkins users’ actions 475
14.4 Extending Jenkins with shared libraries 476
14.5 Backing up and restoring Jenkins 480
14.6 Setting up cron jobs with Jenkins 484
14.7 Running Jenkins locally as a Docker container 487

index 493

xii

preface
Ten years ago, I wrote my first makefile to automate the testing, building, and deploy-
ment of a C++ application. Three years later, while working as a consultant, I came
across Jenkins and Docker and discovered how to take my automation skills to the
next level with CI/CD principles.

 The beauty of CI/CD is that it’s simply a rigorous way of recording what you’re
already doing. It doesn’t fundamentally change how you do something, but it encour-
ages you to record each step in the development process, enabling you and your team
to reproduce the entire workflow later at scale. Over the next few months, I started
writing blog posts, doing talks, and contributing to CI/CD-related tools.

 However, setting up a CI/CD workflow has always been a very manual process for
me. It was done via defining a series of individual jobs for the various pipeline tasks
through a graphical interface. Each job was configured via web forms—filling in text
boxes, selecting entries from drop-down lists, and so forth. And then the series of jobs
were strung together, each triggering the next, into a pipeline. This made the trouble-
shooting experience a nightmare and reverting to the last known configuration in
case of failure a tedious operation.

 A few years later, the pipeline-as-code practice emerged as part of a larger “as code”
movement that includes infrastructure as code. I could finally configure builds, tests,
and deployment in code that is trackable and stored in a centralized Git repository. All
the previous pains were alleviated.

 I became a fan and believer of pipeline as code, as I transitioned from being a soft-
ware engineer, tech leader, and senior DevOps manager to now co-leading my first
startup as CTO. Pipeline as code became an important part of each project I was
part of.
xiii

PREFACExiv
 I had the chance to work on different types of architecture—from monolithic, to
microservices, to serverless applications—having built and maintained CI/CD pipe-
lines for large-scale applications. Along the way, I accumulated tips and best practices
to follow while going through the journey of continuous everything.

 The idea of sharing that experience is what triggered this book. Implementing
pipeline as code is challenging for many teams, as they require the use of many tools
and processes that all work together. The learning curve takes a lot of time and effort,
leading people to wonder whether it’s worth it. This book is a handbook experience
on how to build a CI/CD pipeline from scratch, using the most widely adopted CI
solution: Jenkins. I hope the result will help you embrace the new paradigm of build-
ing CI/CD pipelines.

acknowledgments
First and foremost, I want to thank my wife, Mounia. You’ve always supported me,
always patiently listened while I struggled to get this done, and always made me
believe I could finish this. I love you.

 Next, I’d like to acknowledge my editor at Manning, Karen Miller. Thank you for
working with me, and thank you more for being patient when things got rough during
the pandemic. Your commitment to the quality of this book has made it better for
everyone who reads it. Thanks as well to all the other folks at Manning who worked
with me on the production and promotion of the book: Deirdre Hiam, my project edi-
tor, Sharon WIlkey, my copyeditor, Keri Hales, my proofreader, and Mihaela Batinić,
my reviewing editor. It was truly a team effort.

 Finally, I’d like to thank my family, including my parents and brothers, for finding
the inner strength to listen to me talk about the book at every gathering.

 To all the reviewers: Alain Lompo, Alex Koutmos, Andrea Carlo Granata, Andres
Damian Sacco, Björn Neuhaus, Clifford Thurber, Conor Redmond, Giridharan Kesa-
van, Gustavo Filipe Ramos Gomes, Iain Campbell, Jerome Meyer, John Guthrie, Kos-
mas Chatzimichalis, Maciej Drożdżowski, Matthias Busch, Michal Rutka, Michele
Adduci, Miguel Montalvo, Naga Pavan Kumar Tikkisetty, Ryan Huber, Satej Kumar
Sahu, Simeon Leyzerzon, Simon Seyag, Steve Atchue, Tahir Awan, Theo Despoudis,
Ubaldo Pescatore, Vishal Singh, and Werner Dijkerman, your suggestions helped
make this a better book.
xv

about this book
Pipeline as Code was designed to be a hands-on experience through practical examples.
It will teach you the ins and outs of Jenkins and be your best companion to build a
solid CI/CD pipeline for cloud-native applications.

Who should read this book

Pipeline as Code is designed for all levels of DevOps and cloud practitioners who want
to improve their CI/CD skills.

How this book is organized

The book has four parts that cover 14 chapters.

Part 1 takes you through basic CI/CD principles and discusses how Jenkins can help
implement them:

 Chapter 1 gives an overview of continuous integration, deployment, and deliv-
ery practices. It also discusses how Jenkins can help you in embracing those
DevOps practices.

 Chapter 2 introduces the pipeline-as-code approach and how it can be achieved
with Jenkins. It also covers the differences between declarative and scripted Jen-
kins pipelines.

Part 2 covers how to deploy a self-healing Jenkins cluster on the cloud by using an
infrastructure-as-code approach:

 Chapter 3 goes deep into Jenkins distributed builds architecture, with a full
example on AWS.

 Chapter 4 introduces the immutable infrastructure approach with HashiCorp
Packer, including how to bake a Jenkins machine image with all the needed
dependencies to run a Jenkins cluster out of the box.
xvi

ABOUT THIS BOOK xvii
 Chapter 5 demonstrates how to deploy a secure and scalable Jenkins cluster on
AWS with HashiCorp Terraform.

 Chapter 6 describes in deep detail the process of deploying a Jenkins cluster on
different cloud providers, including GCP, Azure, and DigitalOcean.

Part 3 focuses on building CI/CD pipelines from scratch for cloud-native applications,
including Dockerized microservices running in Swarm or Kubernetes and Serverless
applications:

 Chapter 7 defines the foundation for building a CI workflow for a container-
ized microservices. It covers how to define a multibranch pipeline on Jenkins
and how to trigger the pipeline upon a push event.

 Chapter 8 demonstrates how to run automated tests inside Docker containers.
Various tests are described, including UI testing with headless Chrome, code
coverage, static code analysis with SonarQube, and security analysis.

 Chapter 9 covers building Docker images within CI pipelines, managing their
versions, and scanning for security vulnerabilities. It also discusses how to auto-
mate reviews of GitHub pull requests with Jenkins.

 Chapter 10 walks through the deployment process of Dockerized applications
to Docker Swarm with Jenkins. It demonstrates how to maintain multiple run-
time environments and how to achieve continuous deployment and delivery.

 Chapter 11 goes deep into automating the deployment of applications on
Kubernetes with Jenkins pipelines, including how to package and version Helm
charts and run post-deployment tests. It also demonstrates the usage of Jenkins
X and how it compares to Jenkins.

 Chapter 12 covers how to build CI/CD pipelines for a serverless-based applica-
tion and how to manage multiple Lambda deployment environments.

Part 4 covers maintaining, scaling, and monitoring a Jenkins cluster running in pro-
duction with ease:

 Chapter 13 explores how to build interactive dashboards to continuously moni-
tor Jenkins for anomalies and performance issues using Prometheus, Grafana,
and Slack. It also covers how to stream Jenkins logs to a centralized logged plat-
form based on the ELK stack.

 Chapter 14 covers how to secure Jenkins jobs with a granular RBAC mechanism.
It also explores how to back up, restore, and migrate Jenkins jobs and plugins.

About the code

This book is a hands-on experience that provides many examples of code. These
appear throughout the text and as separate code listings. Code appears in a fixed-
width font just like this, so you’ll know when you see it.

 All of the source code used in the book is available on the Manning website
(https://www.manning.com/books/pipeline-as-code), or in my GitHub repository

https://www.manning.com/books/pipeline-as-code

ABOUT THIS BOOKxviii
(https://github.com/mlabouardy/pipeline-as-code-with-jenkins). This repository is
a labor of love, and I appreciate the work done by all who catch bugs, make
performance improvements, and help with documentation. Everything is ideal for
contributions!

liveBook discussion forum

Purchase of Pipeline as Code includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/pipeline-as-code/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

Need additional help?
 Check out my blog (https://labouardy.com/), where I regularly share the latest

news about Jenkins and the best practices to follow while building CI/CD work-
flows.

 A weekly DevOps newsletter (https://devopsbulletin.com) can help you stay up-
to-date with the latest wonders in the pipeline-as-code space.

 The Jenkins tag at StackOverflow (https://stackoverflow.com/questions/
tagged/jenkins) is a great place to both ask questions and help others.

https://github.com/mlabouardy/pipeline-as-code-with-jenkins
https://labouardy.com/
https://devopsbulletin.com
https://livebook.manning.com/#!/book/pipeline-as-code/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://stackoverflow.com/questions/tagged/jenkins
https://stackoverflow.com/questions/tagged/jenkins
https://stackoverflow.com/questions/tagged/jenkins

about the author
MOHAMED LABOUARDY is CTO and cofounder of Crew.work, and a
DevSecOps evangelist. He is the founder of Komiser.io, and an author
of multiple books about serverless and distributed applications. He
enjoys contributing to open source projects and is a regular confer-
ence speaker. You can also find him on Twitter (@mlabouardy).
xix

http://crew.work
http://komiser.io

about the cover illustration
The figure on the cover of Pipeline as Code is captioned “Bohémien de prague,” or a
Bohemian from Prague. The illustration is taken from a collection of dress costumes
from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Cos-
tumes de Différents Pays, published in France in 1797. Each illustration is finely drawn
and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xx

Part 1

Getting started with Jenkins

This first part of this book takes you through the DevOps essential concepts.
You’ll learn about CI/CD practices and how they allow you to integrate small
pieces of code at one time and ease technical debt. After that, I’ll introduce the
new approach of building CI/CD pipelines, pipeline as code, and how it can be
implemented with Jenkins. Finally, I’ll lay the groundwork for a well-designed
CI/CD workflow by introducing the GitFlow branching model.

2 CHAPTER

What’s CI/CD?
Software development and operations have experienced several paradigm shifts
recently. These shifts have presented the industry with innovative approaches for
building and deploying applications. More importantly, two significant paradigm
shifts have consolidated capabilities for developing, deploying, and managing scal-
able applications: cloud-native architecture and DevOps.

This chapter covers
 The path organizations have taken to evolve from

monolith to cloud-native applications

 The challenges of implementing CI/CD practices
for cloud-native architectures

 An overview of continuous integration, deployment,
and delivery

 How CI/CD tools like Jenkins can bring business
value to organizations that undertake the journey
of continuous everything
3

4 CHAPTER 1 What’s CI/CD?
 Cloud-native architecture emerged with cloud adoption, with cloud providers like
Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure
taking ownership of the infrastructure. Open source tools like Kubernetes, Docker,
and Istio offer horizontal scaling ability, letting developers build and run modern
scalable applications without worrying about the underlying infrastructure. As a
result, operational overhead is reduced, and the development velocity of applications
is increased.

 DevOps bridged the divide between developers and ops teams, and brought back
harmony through collaboration, automated tools, and iterative and Agile develop-
ment and deployment.

 With these two significant, powerful approaches combined, organizations now
have the capability to create scalable, robust, and reliable applications with a high
level of collaboration and information sharing among small teams. However, to build,
test, and safely deploy cloud-native applications, two essential DevOps practices must
be implemented in a cloud-native manner: continuous integration (CI) and continu-
ous deployment/delivery (CD).

 The first part of this book takes you through the evolution of cloud-native applica-
tions. You’ll learn about the main principles of CI/CD and how automation invented
the way those principles are implemented through the pipeline-as-code approach. This
first chapter lays the foundation. It introduces basic principles of DevOps and cloud-
native approaches, in addition to selecting the tools for implementing CI/CD pipelines.

1.1 Going cloud native
Before exploring the essential characteristics of cloud-native applications and how
CI/CD practices contribute to standardizing feedback loops for developers and
enabling fast product iterations, we will cover the changes the software development
model went through and the challenges associated with each model, starting with the
monolithic approach.

1.1.1 Monolithic

In the past, organizations used to build their software in a monolithic way: all function-
alities were packaged in a single artifact and deployed in a single server running one
process. This architecture comes with many drawbacks and limitations:

 Development velocity—Adding new features on top of an existing application is
next to impossible. Application modules are tightly coupled and, most of the
time, not documented. As a result, adding new features is often slow, expensive,
and requires extra synchronization when working with multiple developers
within distributed teams on a large codebase. Moreover, the release cycle can
take months, if not several years, because of the application’s large codebase.
This delay puts companies at risk of being surpassed by new competitors and
ultimately undercuts the company’s profits.

5Going cloud native
 Maintainability—Modules in a monolithic architecture are frequently tightly
coupled, which makes them hard to maintain and test. Plus, upgrading to new
technology is limited to the framework used to develop the application (no
polyglot programming).

 Scaling and resiliency—Applications are designed with no scalability in mind, and
the application may face downtime if traffic increases. The monolithic applica-
tion works as a single unit and is developed in a single programming language
using a single tech stack. As a result, to achieve partial horizontal scaling, the
whole application needs to be scaled (inefficient usage of server resources).

 Cost-effectiveness—The application is expensive to maintain in the long run (for
example, finding an experienced COBOL developer is time-consuming and
expensive).

In the late 2000s, many web giants (including Facebook, Netflix, Twitter, and Amazon)
came onto the tech scene with innovative ideas, aggressive strategies, and a “move fast”
approach that led to the exponential growth of their platforms. These companies
introduced a new architecture pattern that is known today as microservices. So, what
exactly is microservices architecture?

1.1.2 Microservices

James Lewis and Martin Fowler defined microservices architecture as follows in 2014:

In short, the microservice architectural style is an approach to developing a single appli-
cation as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully automated deploy-
ment machinery. There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use different data storage
technologies.

This architecture uses the same technique of “divide and conquer” to tackle the com-
plexity of an application. An application is split into smaller, independent, and com-
posable services/fragments, each responsible for a specific functionality or task of the
application (organized around business capabilities).

 Those microservices communicate using an application programming interface
(API), typically over HTTP or HTTP/2 (for example, gRPC, RESTful APIs, Google
Protocol Buffers, or Apache Thrift), or through message brokers (such as Apache
ActiveMQ or Kafka). Each microservice can be implemented in a different program-
ming language running on a different OS platform.

 In contrast to microservices, the monolithic architecture means the code’s compo-
nents are designed to work together as one cohesive unit, sharing the same server
resources (memory, CPU, disk, and so forth). Figure 1.1 illustrates the differences
between monolith and microservices architectures.

6 CHAPTER 1 What’s CI/CD?
Figure 1.1 Comparing monolith and microservices architectures

Microservices architecture is an extension of service-oriented architecture (SOA). Both
architectures rely on services as the main component, but they vary greatly in terms of
service characteristics:

 Granularity—Service components within a microservices architecture are gener-
ally single-purpose services that do one thing. In SOA, service components can
range in size, anywhere from small application services to very large enterprise
services.

 Sharing—SOA enhances component sharing, whereas microservices architec-
ture tries to minimize sharing through bounded context (loosely coupled ser-
vices or modules) with minimal dependencies.

 Communication—Microservices rely on lightweight protocols such as HTTP/
REST and simple messaging, while SOA architectures rely on enterprise service
bus (ESB) for communication; early versions of SOA used object-oriented pro-
tocols to communicate with each other, such as Distributed Component Object
Model (DCOM) and object request brokers (ORBs). Later versions used mes-
saging services such as Java Message Service (JMS) or Advanced Message Queu-
ing Protocol (AMQP).

 Deployment—SOA services are deployed to application servers (IBM WebSphere
Application Server, WildFly, Apache Tomcat) and virtual machines. On the
other hand, microservices are deployed in containers. This makes microservices
more flexible and lighter than SOA.

7Going cloud native
NOTE For more details about microservices architecture, I recommend read-
ing Microservices in Action by Morgan Bruce and Paulo A. Perreira (Manning,
2018). It covers what makes a microservice, how it can be composed by an
individual or a dedicated team, the constant back-and-forth comparison
between a monolithic application, and things to consider when deploying
your microservices.

The advantages of microservices convinced some big enterprise players such as Ama-
zon, Netflix, and Uber to adopt the methodology. Following their footsteps, other
companies are working in the same direction: evolving from monolithic to flexible
microservice-based architecture.

 But what makes it so special? Compared to more monolithic design structures,
microservices architecture comes with the following benefits:

 Scalability—Applications built as microservices can be broken into multiple
components so that each component can be deployed and scaled inde-
pendently without service interruption. Also, for stateless microservices, usage
of Docker or Kubernetes can offer horizontal scaling within seconds.

 Fault tolerance—If one microservice fails, the others will continue to work
because of loosely coupled components. A single microservice can be easily
replaced by a new one without affecting the whole system. As a result, modern-
ization in microservices architecture can be incremental, while modernization
in monolithic architecture can cause service outages.

 Development velocity—Microservices can be written in different languages (poly-
glot programming) and use different databases or OS environments. If one
microservice is, for example, CPU intensive, it could be implemented in highly
productive languages such as Golang or C++, while other components could be
implemented in lightweight programming languages such as JavaScript or
Python. So companies can easily hire more developers and scale development.
Also, because microservices are autonomous, developers have the freedom to
independently develop and deploy services without bumping into each other’s
code (avoiding synchronization hell within the organization) and having to wait
for one team to finish a chunk of work before starting theirs. As a result, team
productivity increases, and vendor or technology stack lock-in reduces.

 Continuous everything—Microservices architecture combined with Agile software
development enable continuous delivery. The software release cycle in micro-
service applications becomes much smaller, and many features can be released
per day through CI/CD pipelines with open source CI tools like Jenkins.

To summarize, microservices make solving big problems easier, increase productivity,
offer flexibility in choosing technologies, and are great for cross-functional teams. At
the same time, running microservices in a distributed cloud environment can be a
tough challenge for organizations. Here are some of the potential pain areas associ-
ated with microservices designs:

8 CHAPTER 1 What’s CI/CD?
 Complexity—Increased complexity over a monolithic application due to the
number of services involved. As a result, enormous effort, synchronization, and
automation are required to handle interservice communication, monitoring,
testing, and deployment.

 Operational overhead—Deploying a microservice-based application can be com-
plex. It needs a lot of coordination among multiple services. Each service must
be isolated with its own runtime environment and resources. Hence, traditional
deployment solutions like virtualization can’t be used and must be replaced
with containerization solutions like Docker.

 Synchronization—Microservices require cultural changes in organizations seek-
ing to adopt them. Having multiple development teams working on different
services requires a huge effort to ensure that communication, coordination,
and automated processes are in place. Cultures like Agile and DevOps practices
are mandatory to take on microservice-based applications.

NOTE While Docker comes with no learning curve, it can quickly become a
nightmare when handling deploying microservices among a cluster of
machines or nodes.

Most of these drawbacks were addressed with the consumption of cloud computing
services offered by AWS and with the rise of open source tools—particularly Kuber-
netes. It brought a completely new approach to managing infrastructure and enabled
applications to be architected in a distributed manner. As a result, a new software
architecture style arose in 2014: cloud-native applications.

1.1.3 Cloud native

The Cloud Native Computing Foundation (CNCF), a Linux Foundation project
founded in 2015 to help advance container technology, defines cloud native as follows:

Cloud-native technologies empower organizations to build and run scalable applications
in modern, dynamic environments such as public, private, and hybrid clouds. Contain-
ers, service meshes, microservices, immutable infrastructure, and declarative APIs exem-
plify this approach. These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation, they allow engineers to
make high-impact changes frequently and predictably with minimal toil.

Cloud native is a paradigm for building applications as microservices and running
them on containerized and dynamically orchestrated platforms that fully exploit the
advantage of the cloud computing model. These applications are developed using
the language and framework best suited for the functionality. They’re designed as
loosely coupled systems, optimized for cloud scale and performance, use managed
services, and take advantage of continuous delivery to achieve reliability and faster
time to market.

 The overall objective is to improve the speed, scalability, and finally, profit margin.
Figure 1.2 illustrates an example of a cloud-native application.

9Going cloud native
Figure 1.2 Overview of a cloud-native application

Cloud-native applications are packaged in lightweight containers and efficiently
deployed as microservices. They use a lightweight API to expose their functionality,
and binary and nonbinary protocols to communicate with each other internally. A
step further, the applications are managed on elastic cloud infrastructure through
Agile DevOps processes having continuous delivery workflows.

NOTE Docker has become the standard for container technology. It has revo-
lutionized the way we think about developing microservices, and enables us to
easily deploy microservices locally, on premises, or in the cloud.

Kubernetes (https://kubernetes.io/) is one of the preferred platforms for running
workloads that function as cloud-native applications. It’s an open source container
orchestration platform originally developed at Google. It ensures high-end automated
deployment, scaling, and management of containerized applications. This new para-
digm of building and deploying applications comes with many benefits:

 No operational overhead—Developers can focus on developing features and add-
ing business value instead of dealing with infrastructure provisioning and
management.

 Security compliance—Simplified security monitoring is required because the vari-
ous parts of an application are isolated. A security problem could happen in
one container without affecting other areas of the application.

 Autoscaling—Containers can be deployed into a fleet of servers in different
availability zones or even multiple isolated data centers (regions). As a result,

https://kubernetes.io/

10 CHAPTER 1 What’s CI/CD?
cloud-native apps can take advantage of the elasticity of the cloud by scaling
resources in or out during a use spike without the need to procure and provi-
sion physical servers. Also, by adopting cloud services, the business can go
global in minutes with lower adaptation costs and increased revenue and with-
out worrying about scalability.

 Development speed—The application architecture is easy to understand since each
container represents a small piece of functionality, and is easy for developers to
modify, so they can help a new team member become productive quickly. Also,
adopting cloud-native technologies and practices enables companies to create
software in-house, allowing business people to closely partner with IT people,
keep up with competitors, and deliver better services to their customers.

 Resiliency—Cloud-native microservices allow for failure at a granular level. They
do this by providing adequate isolation between each service and offer multiple
design patterns that might improve the components’ availability and resilience
such as Circuit Breaker (https://martinfowler.com/bliki/CircuitBreaker.html),
Throttling (www.redhat.com/architect/pros-and-cons-throttling), and Retry
patterns. Companies like Netflix used it to develop a new approach called chaos
engineering to build a resilient streaming platform.

Figure 1.3 shows the differences between monolithic, microservices, and cloud-native
architectures.

Figure 1.3 Monolith, microservices, and cloud-native architectures

To summarize, cloud-native architecture allows you to dynamically scale and support
large numbers of users, events, and requests on distributed applications. A real-world
example of the adoption of cloud-native architecture is the serverless model.

1.1.4 Serverless

The serverless computing model was kicked off with AWS Lambda in 2014. In this
architecture, developers can write cost-efficient applications without provisioning or
maintaining a complex infrastructure.

https://martinfowler.com/bliki/CircuitBreaker.html
http://www.redhat.com/architect/pros-and-cons-throttling

11Going cloud native
 Cloud providers deploy customers’ code to fully managed, ephemeral, time-boxed
containers that live only during the invocation of the functions. Therefore, businesses
can grow without customers having to worry about horizontal scaling or maintaining
complex infrastructure.

NOTE Serverless doesn’t mean “no ops.” You’re just outsourcing sysadmin
with serverless services. You will still deal with monitoring, deployment, and
security.

An application built based on serverless architecture may end up looking like fig-
ure 1.4.

Figure 1.4 An example of a serverless application

Instead of maintaining a dedicated container or instance to host your static web appli-
cation, you can combine an Amazon Simple Storage Service (S3) bucket to benefit
from scalability at a cheaper cost. The HTTP requests coming from the website go
through Amazon API Gateway HTTP endpoints that trigger the right AWS Lambda
function to handle the application logic and persist data to a fully managed database
service such as DynamoDB. For particular use cases, going serverless can make sense
for several reasons:

 Less operational overhead—The infrastructure is managed by the cloud provider,
and this reduces the overhead and increases developer velocity. OS updates are
taken care of, and patching is done by the function-as-a-service (FaaS) provider.
This results in decreased time to market and faster software releases and elimi-
nates the need for a system administrator.

 Horizontal autoscaling—Function becomes the unit of scale that leads to small,
loosely coupled, stateless components that, in the long run, lead to scalable
applications. Plus, the scaling mechanism is shifted to the cloud provider, which
decides how to use its infrastructure effectively to serve the client’s requests.

 Cost optimization—You pay for only the compute time and resources that you
consume. As a result, you don’t pay for idle resources, which significantly
reduces infrastructure costs.

 Polyglot—Another benefit is the ability to choose a different language runtime
depending on the use case. One part of the application can be written in Java,
while another in Python; it doesn’t really matter as long as the job gets done.

12 CHAPTER 1 What’s CI/CD?
NOTE A big concern while going serverless is vendor lock-in. Although you
should favor development speed and efficiency above all, it’s important to
choose a vendor based on your use case.

Cloud-native architectures, in general, are gaining massive adoption, but the learning
curve for many teams is steep. Plus, the shift to cloud-native architecture can be a
double-edged sword for many organizations, and one of the challenges when moving
to a fully cloud-native approach can be CI/CD.

 But what do these practices mean? And how can they be applied when you’re
building cloud-native applications?

1.2 Defining continuous integration
Continuous integration (CI) is the practice of having a shared and centralized code
repository, and directing all changes and features through a complex pipeline before
integrating them into the central repository (such as GitHub, Bitbucket, or GitLab). A
classic CI pipeline is as follows:

1 Triggers a build whenever a code commit occurs
2 Runs the unit tests and all pre-integration tests (quality and security tests)
3 Builds the artifact (for example, Docker image, zip file, machine learning train-

ing model)
4 Runs acceptance tests and pushes the result to an artifact-management reposi-

tory (such as a Docker Registry, Amazon S3 bucket, Sonatype’s Nexus, or JFrog
Artifactory)

Figure 1.5 shows an example of a CI pipeline for a containerized application.

Figure 1.5 Basic CI workflow for cloud-native applications

Basically, CI automatically monitors the commits that each developer makes and
launches automated tests. Automated testing is an integral part of CI/CD pipelines.
Without automated tests, CI/CD pipelines will lack quality checks, which are import-
ant in order for the application to be released.

Slack notification

GitHub Jenkins Docker Registry

Docker image

1 2 3 4

Automated tests

13Defining continuous deployment
 You can implement various types of testing to ensure that your software meets all
the initial requirements. Here are the most famous ones:

 Unit tests—These test each piece of the source code. They consist of testing indi-
vidual functions and methods. You could also output your test coverage and val-
idate that you’re meeting your code coverage requirements.

 Quality tests—Check that the code is well formatted, follows best practices, and
has no serious coding errors. This is also called static code analysis, as it helps to
produce high-quality code by looking for patterns in code that might generate
bugs.

 Security tests—Inspect source code to uncover common security vulnerabilities
and common security flaws (for example, leaked usernames and passwords).

 UI tests—Simulate user behavior through the system to ensure that the applica-
tion works correctly in all supported browsers (including Google Chrome,
Mozilla Firefox, and Microsoft Internet Explorer) and platforms (such as Win-
dows, Linux, and macOS) and that it delivers the functionality promised in
user stories.

 Integration tests—Check that services or components used by the application
work well together and no defects exist. For example, an integration test might
test an application’s interaction with the database.

Manually executing all these tests can be time-consuming and counterproductive.
Therefore, you should always use a testing framework that suits your application
requirements to perform those tests on a scale in a repeatable and reliable way.

NOTE Chapter 8 covers how to run automated tests with Jenkins and Head-
less Chrome, as well as how to integrate SonarQube for code analysis.

Once tests are successful, the application will be compiled and packaged, and a releas-
able artifact will be generated and versioned in a remote repository.

1.3 Defining continuous deployment
Continuous deployment (CD) is an extension of continuous integration. Every change
that passes all stages of your continuous integration pipeline is released automatically
to your staging/preproduction environment.

 In such a process, there’s no need to decide what will be deployed and when. The
pipeline will automatically deploy whatever build components/packages successfully
exit the pipeline. Figure 1.6 illustrates a typical CI/CD pipeline for microservices run-
ning in Kubernetes.

 This CI workflow has four steps, and the CD pipeline is the deployment to Kuber-
netes (step 5). However, a pure continuous deployment approach is not always appro-
priate for everyone.

 For example, many clients would not appreciate new versions falling into their laps
several times a week, and prefer a more predictable and transparent release cycle.

14 CHAPTER 1 What’s CI/CD?
Commercial and marketing considerations might also play a role in when a new
release should actually be deployed.

 While continuous deployment may not be right for every company, continuous
delivery is an absolute requirement of DevOps practices. Only when you continuously
deliver your code can you have true confidence that your changes will be serving value
to your customers within minutes of pushing the “go” button, and that you can actu-
ally push that button any time the business is ready for it.

1.4 Defining continuous delivery
Continuous delivery (CD) is similar to continuous deployment but requires human
intervention or a business decision before deploying the release to production. Figure
1.7 shows how the CI/CD practices relate to each other.

Figure 1.7 The continuous deployment maturity model

NOTE A Monitor and Optimize stage can occur in a sophisticated CI/CD
workflow. This step consists of collecting and analyzing metrics and feedback
to eliminate risks and waste and to optimize the release time.

Slack notification

Kubernetes

GitHub Jenkins Docker Registry

Docker image

1 2 3 4

5

Automated tests

Figure 1.6 Basic CI/CD workflow for cloud-native applications

Continuous integration
Continuous deployment

Continuous delivery

Tests Build Push Staging
deployment

Production
deploymentCheckout Validation

Tests Build Push Staging
deployment

Production
deploymentCheckout Validation

15Embracing CI/CD practices
1.5 Embracing CI/CD practices
CI/CD and continuous delivery can bring more agility to cloud-native applications
through daily builds, which leads to the following:

 Detecting anomalies at an earlier stage (reducing the risk) and minimizing
technical debt through unit and functional tests. According to Atlassian
(www.atlassian.com/software-development/practices), 75% of development
teams face issues with bugs, defects, or delays when it’s time to release.

 Building features your users actually want. This often results in better user inter-
action and quicker feedback regarding released features, which can help the
product team focus on the most demanded features and build a high-quality
product.

 Having a production-ready package available. This is an excellent way to accel-
erate the time to market.

 Increasing product quality and reliability through quality and stress tests, and
tracking with better visibility into project status and health.

 Driving innovation from feedback while building high-quality products through
each iteration.

However, the journey from a manual to a highly automated deployment process can
take several months. Therefore, companies need to be iterative in adopting CI/CD, as
illustrated in figure 1.8.

 You should always prioritize the steps in CI/CD. First and foremost, automate the
process for compiling the source code. Ideally, you will develop new features and fix
multiple bugs per day. Manually, this process takes a few minutes to a couple of hours.
Also, you should prioritize functional testing before UI testing, as it often changes and

Figure 1.8 Introducing CI/CD to an organization

http://www.atlassian.com/software-development/practices

16 CHAPTER 1 What’s CI/CD?
thus requires frequent pipeline changes. So make sure to break your CI/CD steps into
smaller segments and automate in patches to make the best use of your resources.

 Another concern is that the complexity of CI/CD will be increasing, from han-
dling singular applications to dozens of microservices (multiple pipelines). There-
fore, adapting your CI/CD tools and processes is mandatory to keep pace.

 Moreover, you need to have a clear road map of your product with a proven track
record of development success. Your end customers should be able to consume con-
stant product changes. Therefore, using CI/CD requires a high degree of discipline,
dedication to quality, and a learning curve (new skill sets). If you can’t handle that,
stop thinking about CI/CD immediately.

 As a result, moving to CI/CD should not be an isolated decision, made alone by
the DevOps team. A successful rollout of CI/CD must be a decision for your whole
organization and should be made only when your entire organization agrees to it.

 Although you need to keep some concerns in mind, the benefits of CI/CD almost
always outweigh the challenges. To realize the full promise of cloud-native applica-
tions, you must implement CI/CD practices that are best suited to your unique busi-
ness goals.

 In this book, we will go through some real-world use cases for building CI/CD
pipelines for most adopted cloud-native architectures, such as Dockerized microser-
vices with both Docker Swarm and Kubernetes, as well as Lambda-based serverless
applications. We will also cover how to manage and scale a CI tool with less mainte-
nance hassle to help you increase deployment speed. But first, what makes a modern
CI tool, and which one are we going to use?

NOTE While monoliths may not be trendy, many companies still have mono-
lith flagship products and can still benefit tremendously from a well-archi-
tected CI/CD solution. So most of the examples in the book can also be
applied to modernizing monolithic applications.

1.6 Using essential CI/CD tools
A lot of excellent CI tools are out there. Some have been here for a long time, and
others are relatively new. It’s a bit redundant to say that a modern CI tool must be fast,
user-friendly, and flexible, since those are the features we already expect out of the
box. CI tools can be divided into the following three main categories:

 Cloud-managed solutions like AWS CodePipeline (https://aws.amazon.com/
codepipeline/), Google Cloud Build (https://cloud.google.com/build),
and Microsoft Azure Pipelines (https://azure.microsoft.com/services/devops/
pipelines/).

 Open source solutions such as Jenkins (www.jenkins.io), Spinnaker (https://
spinnaker.io/), or GoCD (www.gocd.org).

 Software-as-a-service (SaaS) solutions like Travis CI (https://travis-ci.org/),
CircleCI (https://circleci.com/), and TeamCity (www.jetbrains.com/teamcity/).

https://travis-ci.org/
https://circleci.com/
http://www.jetbrains.com/teamcity/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://cloud.google.com/build
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/pipelines/
http://www.jenkins.io/
https://spinnaker.io/
https://spinnaker.io/
http://www.gocd.org

17Using essential CI/CD tools
1.6.1 Choosing a CI/CD tool

Figure 1.9 shows the most popular CI/CD tools on the market today. These tools are
the mature ones, with the essential capabilities for your project.

Figure 1.9 Top CI/CD tools in 2021

Plenty of excellent CI tools are available, so you need to pick the best one based on
the following factors:

 Team experience and skills—While many tools use configuration YAML files to
declare the CI/CD pipeline, they might require some sysadmin skills to set up
and provision the needed infrastructure to run the CI/CD platform. Also,
maintaining the underlying infrastructure might cause a lot of headaches and
become a bottleneck for your company’s growth once your project codebase
becomes bigger (scaling capabilities), as you need to maintain distributed CI/
CD complex pipelines across multiple nodes or servers.

 Target platform—Consider the operating system your application or project is
running on (some CI tools don’t support macOS and ARM architecture), and
the use of a self-hosted infrastructure or a cloud provider.

 Programming language and architecture—Most CI tools support the top cutting-
edge languages including Java, Ruby, Python, PHP, and JavaScript. However,
some tools like TeamCity offer better integration and support for Java and .NET

18 CHAPTER 1 What’s CI/CD?
projects. Similarly, Bamboo, as a creation of Atlassian, has native support for
Jira and Bitbucket. Additionally, the deployment solution can be a factor in
choosing the right CI tool for your project. Tools like Drone (www.drone.io)
and GitLab CI (https://docs.gitlab.com/ee/ci/) offer native Docker support
with an integrated Docker registry.

1.6.2 Introducing Jenkins

Although no single tool can satisfy the needs of every project, in this book, we will rely
heavily on Jenkins. It’s considered one of the most popular CI tools on the market
today, with over one million users. It was written in Java, making it a cross-platform
(Windows, Linux, and macOS) continuous integration tool.

 Originally a part of the Hudson project, the community and codebase split follow-
ing trademark conflicts with Oracle after it acquired Sun Microsystems. Hudson was
originally released in 2005, while the first release as Jenkins was made in 2011.

NOTE Hosted SaaS platforms can be beneficial if you’re willing to pay a bit of
extra money for someone else to maintain and update the solution. Busi-
nesses tend to choose this option when they need a UI superior to what Jen-
kins offers and when they lack infrastructure skills. But a major benefit of self-
hosting solutions like Jenkins is that you have more control and flexibility
over your own data security and job pipelines.

A rich set of plugins enables Jenkins to support any type of language or technology
such as Docker, Maven, Git, Mercurial, and AWS. Being an open source project makes
it customizable and easy for developers to extend by creating custom plugins. Here
are some of Jenkins key features:

 Extensible with a huge community-contributed plugin resource (more than
1,400 plugins).

 A free and open source tool as well as a paid enterprise edition offered by
CloudBees (www.cloudbees.com/jenkins) with speedy customer support.

 Has an active community that helps developers reduce the time to build a work-
ing CI/CD workflow.

 Can be deployed on premises or in the cloud with an easy configuration
through the user interface or the command line.

 Supports distributed builds with master-worker architecture with a built-in par-
allelism mechanism.

 A powerful and flexible tool with complete control over workflow that can serve
every CI/CD need.

 Works on many platforms and has the support for a wide variety of tools and
frameworks.

 Supports containers as build agents for teams planning to use Docker.
 Seamless integration with GitHub, GitLab, Bitbucket, and most of the source

code management (SCM) systems and Apache Subversion (SVN).

http://www.drone.io
https://docs.gitlab.com/ee/ci/
http://www.cloudbees.com/jenkins

19Using essential CI/CD tools
 Flexible user management, user roles assignment, sorting users into groups, dif-
ferent ways of user authentication (including LDAP, GitHub OAuth, and Active
Directory).

 The CI process can be defined using the Groovy language in files within the
repository itself or through text fields in the Jenkins web UI, thanks to the Jen-
kins pipeline workflow.

NOTE If you like to test a small application for one particular platform, you
won’t need the complexity of running a Jenkins server.

Another key feature of Jenkins is pipeline as code. We’re going to use this approach to
create Jenkins jobs. The cool part of using this approach is that our entire Jenkins jobs
configuration can be created, updated, and version-controlled along with the rest of
the application source code.

 It is helpful to note that Jenkins must be hosted on a server, so it often needs the
attention of someone with infrastructure skills. You can’t just set it up and then expect
it to run itself; the system requires frequent updates and maintenance. The main bar-
rier to entry for most teams is the initial setup, procrastination, or failed previous
attempts to set it up. People tend to know it’s good, but many teams neglect it for
more urgent coding work. Perhaps someone on your team tried to deploy Jenkins at
some point but did not successfully maintain it. Maybe the wasted effort gave your
boss a bad impression about it.

 The reasons people do not implement Jenkins are usually very practical. That’s
why, throughout this book, we will be using the magical power of infrastructure as
code with open source tools like Terraform and Packer to set up our entire CI infra-
structure out of thin air on most popular public cloud providers such as AWS, GCP,
and Microsoft Azure.

 Another problem we will tackle in this book is how to write tests. Writing tests is
something most developers want to do, but often don’t find the time to do. Under-
standably, coding the actual application is usually a higher priority for the business.
Also, tests break, meaning when the functionality under test changes, it needs to be
updated. If functionality is not updated, it stops delivering value. We will cover how to
run various types of tests within CI/CD pipelines and how to integrate external code
analysis tools.

 To sum up, implementing CI/CD for cloud-native architecture requires a cultural
and mindset shift, especially from management. Managers have to allow time for this
“unproductive stuff” to be done.

 Still, the brief sacrifice of time translates into long-term benefits for the whole
company. With Jenkins, your code becomes easier to maintain, and fewer bugs sneak
into production. Your team becomes more integrated, and builds take less time. Your
business can ship faster and keep up with the changing needs of your customers (by
shipping code faster, organizations can quickly respond to changes and keep products
on the market).

20 CHAPTER 1 What’s CI/CD?
 CI/CD is not an expense but an investment. And the return on investment (ROI)
for implementation can be counted in time saved, errors avoided, and higher-quality
products delivered more easily to your clients.

Summary
 Cloud-native architectures are changing the landscape, forcing organizations to

think about new models and new delivery methods.
 Continuous integration, delivery, and deployment are practices designed to

help increase the velocity of development and the release of well-tested, usable
products.

 Choosing the right CI/CD tool is critical to the long-term success of cloud-
native applications and should be based on platform complexity, integration,
learning curve, pricing, and work-time efficiency.

 Jenkins can leverage the team’s current workflow to best exploit the automation
features and create a solid CI/CD pipeline.

Pipeline as code
with Jenkins
There’s no doubt that cloud computing has had a major impact on the way compa-
nies build, scale, and maintain technology products. The ability to click a few but-
tons to provision machines, databases, and other infrastructure has led to an
increase in developer productivity we’ve never seen before.

 While it was easy to spin up simple cloud architectures, mistakes can easily be
made while provisioning complex ones. Human error will always be present,
especially when you can launch cloud infrastructure by clicking buttons on the
cloud provider’s web console.

This chapter covers
 How pipeline as code works with Jenkins

 An overview of Jenkinsfile structure and syntax

 Introduction to Blue Ocean, the new Jenkins user
experience

 Declarative versus scripted Jenkins pipelines

 Integration of a GitFlow model within Jenkins projects

 Tips for productivity and efficiency while writing
Jenkinsfiles for complex CI/CD pipelines
21

22 CHAPTER 2 Pipeline as code with Jenkins
 The only way to avoid these kinds of errors is through automation, and infrastruc-
ture as code (IaC) is helping engineers automatically launch cloud environments
quickly and without mistakes. The growth of DevOps and the adoption of its practices
have led to more tooling that can implement the IaC paradigm to a larger degree.

 In the past, setting up CI/CD workflow has been a manual process. It was com-
monly done via defining a series of individual jobs for the various pipeline tasks. Each
job was configured via web forms—filling in text boxes, selecting entries from drop-
down lists, and so forth. And then the series of jobs were strung together, each trigger-
ing the next, into a pipeline.

 Jenkins somewhat lagged in this area until the release of Jenkins 2. Although
widely used and a primary workflow tool for creating CI/CD pipelines, this way of cre-
ating and connecting Jenkins jobs to form a pipeline was challenging. It did not meet
the definition of IaC. Job configurations were stored only as Extensible Markup Lan-
guage (XML) files within the Jenkins configuration area. This meant that the files
were not easily readable or directly modifiable. And the Jenkins application itself pro-
vided the user’s primary view and access to them.

NOTE Jenkins 2 is the name we are generally applying to newer versions that
support the pipeline-as-code functionality, as well as other features.

Because it’s an important part of each project, the pipeline configuration should be
managed as code and rolled out automatically. This also allows us to manage the pipe-
line itself, applying the same standards that apply to application code. That’s where
pipeline as code comes into play.

2.1 Introducing the Jenkinsfile
Pipeline as code (PaC) describes a set of features that allow Jenkins users to define pipe-
lined job processes with code, stored and versioned in a source repository. These fea-
tures allow Jenkins to discover, manage, and run jobs for multiple source repositories
and branches—eliminating the need for manual job creation and management.

 PaC helps you automate the CI/CD workflows in a repeatable, consistent manner,
which has many benefits:

 Speed—You can quickly and easily write a CI/CD workflow for sandbox, staging,
and production environments, which can help you deliver your product on
time.

 Consistency—PaC completely standardizes the setup of CI/CD, so there’s a
reduced possibility of any human errors or deviations.

 Risk management—Because the pipeline can be version-controlled, PaC allows
every change to your CI/CD workflow to be documented, logged, tracked, and
tested just like application code. Hence, you can revert to a working version in
case of failure.

 Efficiency—It minimizes the introduction of human errors and helps your appli-
cation’s deployment run more smoothly.

23Introducing the Jenkinsfile
The bottom line is simple: adopting the PaC paradigm will create a culture that gener-
ates better software, and will save you a lot of money, time, and headaches trying to
implement complex CI/CD workflows through UIs and web forms. So how does PaC
work with Jenkins?

 To use PaC with Jenkins, projects must contain a file named Jenkinsfile in the code
repository top-level folder. This template file contains a set of instructions, or steps,
called stages that will be executed on Jenkins every time the development team pushes
a new feature to the code repository. Because Jenkinsfile is living along with the source
code, we can always pull, edit, and push the Jenkinsfile within source control, just as we
would for any other file. We can also do things like code reviews on the pipeline script.

 Jenkinsfile uses a domain-specific language (DSL) based on the Groovy program-
ming language to define the entire CI/CD workflow. Figure 2.1 is an example of a
classic CI/CD workflow.

Figure 2.1 CI/CD workflow

Those phases can be described in a Jenkinsfile by using the stage keyword. A stage is
a block that contains a series of steps. It can be used to visualize the pipeline process.
The following listing is an example of a simple Jenkinsfile for figure 2.1.

node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 }

 stage('Quality Test'){
 echo "Running quality tests"
 }

 stage('Unit Test'){
 echo "Running unit tests"
 }

 stage('Security Test'){
 echo "Running security checks"
 }

 stage('Build'){
 echo "Building artifact"
 }

 stage('Push'){
 echo "Storing artifact"
 }

Listing 2.1 Jenkinsfile stages

24 CHAPTER 2 Pipeline as code with Jenkins
 stage('Deploy'){
 echo "Deploying artifact"
 }

 stage('Acceptance Tests'){
 echo "Running post-integrations tests"
 }
 } catch(err){
 echo "Handling errors"
 } finally{
 echo "Cleaning up"
 }
}

We’ll dive deep into the syntax in the next chapter, but for now, let’s focus on what the
stages are doing:

 Checkout—Pulls the latest changes from the source code repository, which can
be GitHub, Bitbucket, Mercurial, or any SCM.

 Quality tests—Contains instructions on how to execute static code analysis to
measure code quality, and identify bugs, vulnerabilities, and code smell. It can
be automated by integrating external tools like SonarQube to fix code-quality
violations and reduce technical debt.

 Unit tests—In this stage, unit tests are executed. If tests are successful, a code
coverage report will be generated that can be consumed by Jenkins plugins to
show a visual overview of the project’s health and keep track of the code cover-
age metrics as your project grows. Code coverage can be an indication of how
much your application code is executed during your tests, and can give some
indication as to how well your team is applying good testing practices such test-
driven development (TDD) or behavior-driven development (BDD).

 Security tests—Responsible for identifying project dependencies and checks if
any known, publicly disclosed vulnerabilities exist. A security report will be pub-
lished with the total number of findings grouped by severity (critical, high,
medium, or low). A well-known open source Jenkins plugin is OWASP Depen-
dency-Check (http://mng.bz/MvR7).

 Build—In this phase, the needed dependencies will be installed, the source
code will be compiled, and an artifact will be built (Docker image, zip file,
Maven JAR, and so forth).

 Push—The artifact built in the previous stage will be versioned and stored in a
remote repository.

 Deploy—In this stage, the artifact will be deployed to a sandbox/testing environ-
ment for quality assurance or to production after the user has approved the
deployment.

 Acceptance tests—After the changes are deployed, a series of smoke and valida-
tion tests will be executed against the deployed application to verify that the
application is running as expected. The tests can be simple health checks with
cURL commands or sophisticated API calls.

https://shortener.manning.com/MvR7

25Introducing the Jenkinsfile
If any of these stages throws an exception or error, the pipeline build’s status will be
set to fail. This default behavior can be overridden by using try-catch blocks. The
finally block can be used to clean up the Jenkins workspace (temporary files or
build packages) or to execute post-script commands such as sending Slack notifica-
tions to alert the development team about the build status.

NOTE Don’t worry if you don’t completely understand the steps of the
Jenkinsfile in listing 2.1. You will get an in-depth explanation of how to imple-
ment each stage in chapters 7, 8, and 9.

One of the things that makes Jenkins a leader when it comes to CI tools is the ecosys-
tem behind it. You can customize your Jenkins instance with free open source plugins.
A must-have plugin is Pipeline Stage View (https://plugins.jenkins.io/pipeline-rest-
api), shown in figure 2.2. It allows you to have a visualization of your pipeline stages.
This plugin is handy when you have complex build pipelines and want to track the
progress of each stage.

 The pipeline output is organized as a matrix, with each row representing a run of
the job, and each column mapped to a defined stage in the pipeline. When you run
some builds, the stage view will appear with Checkout, Quality Test, Unit Test, Security
Test, Build, Push, and Deploy columns, and one row per build showing the status of
those stages. When hovering over a stage cell, you can click the Logs button to see log
messages printed in that stage.

NOTE Part 3 of this book covers how to create a Jenkins job and define a
pipeline like the one in figure 2.2.

Figure 2.2 Jenkins Pipeline Stage View

https://plugins.jenkins.io/pipeline-rest-api
https://plugins.jenkins.io/pipeline-rest-api

26 CHAPTER 2 Pipeline as code with Jenkins
You can take this UI further and install the Blue Ocean plugin (https://plugins
.jenkins.io/blueocean/) to have a fast and intuitive comprehension of the CI/CD
stages, as shown in figure 2.3. This plugin requires Jenkins version 2.7 or later.

Figure 2.3 Blue Ocean plugin’s detailed view of the pipeline

NOTE Chapter 5 covers how to install and configure the Jenkins Blue Ocean
plugin.

2.1.1 Blue Ocean plugin

You can also troubleshoot pipeline failure by clicking the stage in red to easily identify
the problem without going through thousands of output logs.

 One of the big concerns while choosing Jenkins is the user interface, which many
users consider outdated, unintuitive, and hard to navigate when you have many proj-
ects. That’s why the Jenkins core team launched Blue Ocean in April 2017 for a new,
modern Jenkins user experience.

 Blue Ocean is a new user experience for Jenkins, based on a modern design that
allows users to graphically create, personalize, visualize, and diagnose CD pipelines. It
comes bundled with the Jenkins Pipeline plugin or as a separate plugin (www.jenkins
.io/doc/book/blueocean/getting-started/).

NOTE The Jenkins Classic UI exists side-by-side at its usual place at JENKINS_
URL/jenkins. The Blue Ocean plugin is available by appending /blue to the
end of the Jenkins server URL.

Anyone in your team can create a CI/CD pipeline with just several clicks. Blue Ocean
has seamless integration with Git and GitHub. It prompts you for credentials to access

https://plugins.jenkins.io/blueocean/
https://plugins.jenkins.io/blueocean/
https://plugins.jenkins.io/blueocean/
http://www.jenkins.io/doc/book/blueocean/getting-started/
http://www.jenkins.io/doc/book/blueocean/getting-started/
http://www.jenkins.io/doc/book/blueocean/getting-started/

27Introducing the Jenkinsfile
your repositories on the Git server in order to create pipelines based on those reposi-
tories (figure 2.4).

 You can also create a complete CI/CD pipeline from start to finish by using the
intuitive and visual pipeline editor (figure 2.5). It’s a great way to write pipeline proto-
types and debug pipeline stages before generating a working Jenkinsfile.

Figure 2.5 Defining stages with pipeline editor

Figure 2.4 New pipeline in Blue Ocean mode

28 CHAPTER 2 Pipeline as code with Jenkins
Any pipeline created with the visual editor can also be edited in your favorite text editor,
bringing all the benefits of PaC. Figure 2.6 shows an example of the pipeline script gen-
erated by pressing Ctrl-S for Windows users and Command-S for macOS users.

 You can now copy the content and paste it in a new file called Jenkinsfile in your
code repository, alongside the source code. Alternatively, you can upload the file
directly from the Blue Ocean editor by supplying an appropriate description and the
target Git branch (figure 2.7).

Figure 2.6 Jenkinsfile generated from the pipeline editor

Figure 2.7 Committing the Jenkinsfile to the Git repository

29Introducing the Jenkinsfile
Once the file is committed, the pipeline will be triggered, and the stages defined in
the pipeline will be executed.

 Keep in mind that Blue Ocean doesn’t support all features of Jenkins such as
administration, nodes management, or credential settings. However, you can always
switch back to the classic Jenkins UI by clicking the exit icon at the top right of the
Blue Ocean navigation bar.

NOTE This is just a sneak peek of Blue Ocean’s main features. In chapter 7,
we will dig deeper into each feature.

Now that you’re familiar with how a Jenkinsfile works, let’s see how to write your own
pipeline as code with Jenkins. Jenkins 2 allows two styles of structure and syntax for
building out workflows. These are referred to as scripted and declarative pipelines.

2.1.2 Scripted pipeline

A scripted pipeline is a traditional way of writing pipeline code. In this pipeline, the Jen-
kinsfile is written on the Jenkins UI instance. The pipeline steps are wrapped in a
node block (denoted by the opening and closing braces). Here, a node refers to a Jen-
kins agent (formerly referred to as a slave instance).

 The node gets mapped to the Jenkins cluster by using a label. A label is simply an
identifier that has been added when configuring the node in Jenkins via the Manage
Nodes section, as shown in figure 2.8.

Figure 2.8 Assigning labels to Jenkins workers

NOTE The next chapter covers how the Jenkins distributed mode works and
how node agents can be used to offload work from Jenkins.

The steps inside the node block can include and make use of any valid Groovy code.
The pipeline can be defined by creating a new pipeline project and typing the code in
the Pipeline Editor section, as shown in figure 2.9.

30 CHAPTER 2 Pipeline as code with Jenkins

Figure 2.9 Using an inline Jenkinsfile with Pipeline scripts

Although this simple node block is technically valid syntax, Jenkins pipelines generally
have a further level of granularity—stages. A stage is a way to divide the pipeline into
logical functional units. It also serves to group steps and Groovy code together to cre-
ate targeted functionality. Figure 2.10 shows an example of the preceding pipeline
using stages.

Figure 2.10 Using the stage keyword to define logical units

31Introducing the Jenkinsfile
The pipeline has two stages:

 Checkout—For cloning the project GitHub repository
 Build—For building the project Docker image

How much of the pipeline’s logic goes into a particular stage is up to the developer.
However, the general practice is to create stages that mimic the separate pieces of a
traditional pipeline.

 The scripted pipeline uses stricter Groovy-based syntaxes because it was the first
pipeline to be built on the Groovy foundation. Since this Groovy script was not typi-
cally desirable to all users, the declarative pipeline was introduced to offer a simpler
and more optioned Groovy syntax.

NOTE Chapter 14 covers how to write a shared Jenkins library with custom
Groovy scripts for code modularity.

2.1.3 Declarative pipeline

A declarative pipeline is a relatively new feature (introduced in Pipeline 2.5, https://
plugins.jenkins.io/workflow-aggregator) that supports the PaC approach. It makes
the pipeline code easier to read and write for new Jenkins users.

 This code is written in a Jenkinsfile that can be checked into a version-control sys-
tem (VCS) such as SVN or an SCM system such as GitHub, GitLab, Bitbucket, or oth-
ers. Figure 2.11 is an example of a Jenkinsfile located at the root folder of a GitHub
repository.

Figure 2.11 A Jenkinsfile stored in a source-control repository

https://plugins.jenkins.io/workflow-aggregator
https://plugins.jenkins.io/workflow-aggregator

32 CHAPTER 2 Pipeline as code with Jenkins
In declarative syntax, you cannot use Groovy code such as variables, loops, or condi-
tions. You are restricted to the structured sections/blocks and the DSL (Jenkins
domain-specific language) steps.

 Figure 2.12 shows the differences between scripted and declarative pipelines.
Declarative pipelines are restricted and have well-defined structures (for example, all
DSL statements must be enclosed in a steps directive).

Figure 2.12 Differences between scripted and declarative pipelines

node('node label'){

stage('id #1'){

//DSL statements

}

stage('id #2'){

//DSL statements

}

// OR

//DSL statements without stage block

// OR

//Loops, conditions, variables, etc

def variable = value

if(variable){

//DSL statements

}else{

//DSL statements

}

def list = []

for(int i=0;i<list.size();i++){

//DSL statements

}

}

pipeline{
agent{
label 'node label'
}

environment{
ENV_VARIABLE_A = 'va
}

stages{
stage('id #1'){
agent{
label 'node label 1
}
environment{}
steps{
//DSL statements
}
}
stage('id #2'){
agent{
label 'node label 2
}
environment{}
steps{
//DSL statements
}
}
}

post {
always {
//DSL statements
}
success {
//DSL statements
}
failure {
//DSL statements
}
}
}

Scripted Declarative

33Introducing the Jenkinsfile
Declarative pipelines provide a more restrictive syntax, as each pipeline must use
these predefined block attributes or sections:

 agent

 environment

 post

 stages

 steps

The agent section defines the worker or machine where the pipeline will be exe-
cuted. This section must be defined at the top level inside the pipeline block or over-
ridden at the stage level. The agent can be any of the following:

 Jenkins worker or node (refer to chapter 3 for distributed builds on Jenkins)
 Docker container based on a Docker image or a custom Dockerfile (covered in

chapter 9)
 Pod deployed on a Kubernetes cluster (covered in chapter 14)

For example, you can define the pipeline to run on a custom Docker container, as
shown in the following listing.

pipeline{
 agent {
 node {
 label 'workers'
 }

 dockerfile {
 filename 'Dockerfile'
 label 'workers'
 }

 kubernetes {
 label 'workers'
 yaml """
 kind: Pod
 metadata:
 name: jenkins-worker
 spec:
 containers:
 - name: nodejs
 image: node:lts
 tty: true
 """
 }
 }
}

NOTE Refer to the official documentation for more information about the
agent syntax: www.jenkins.io/doc/book/pipeline/syntax/.

Listing 2.2 Declarative pipeline agents definition

http://www.jenkins.io/doc/book/pipeline/syntax/

34 CHAPTER 2 Pipeline as code with Jenkins
The environment section contains a set of environment variables needed to run the
pipeline steps. The variables can be defined as sequences of key-value pairs. These will
be available for all steps if the environment block is defined at the pipeline top level;
otherwise, the variables can be stage-specific. You can also reference credential vari-
ables by using a helper method credentials(), which takes as a parameter the ID of
the target credential, as shown in the following listing.

pipeline{
 environment {
 REGISTRY_CREDENTIALS= credentials('DOCKER_REGISTRY')
 REGISTRY_URL = 'https://registry.domain.com'
 }

 stages {
 stage('Push'){
 steps{
 sh 'docker login $REGISTRY_URL --username

$REGISTRY_CREDENTIALS_USR --password $REGISTRY_CREDENTIALS_PSW'
 }
 }
 }
}

The Docker registry username and password are accessible automatically by referenc-
ing the REGISTRY_CREDENTIALS_USR and REGISTRY_CREDENTIALS_PSW environ-
ment variables. Those credentials are then passed to the docker login command to
authenticate with the Docker Registry before pushing a Docker image.

 The post section contains commands or scripts that will be run upon the comple-
tion of a pipeline or stage run, depending on the location of this section within the
pipeline. However, conventionally the post section should be placed at the end of the
pipeline. Examples of commands that can be used within the post section are those
that provide Slack notifications, clean up the job workspace, and execute post-scripts
based on the build status. The pipeline build status can be fetched by using either the
currentBuild.result variable or the post-condition blocks always, success,
unstable, failure, and so forth.

 The following listing is an example Slack notification. The instructions wrapped by
the always directive will run no matter the status of the build and will not interfere
with the final status.

pipeline{
 post {
 always {
 echo 'Cleaning up workspace'
 }

Listing 2.3 Environment variables definition

Listing 2.4 Post build actions in a declarative pipeline

35Introducing the Jenkinsfile
 success {
 slackSend (color: 'GREEN', message: \
 "${env.JOB_NAME} Successful build")
 }
 failure {
 slackSend (color: 'RED', message: "${env.JOB_NAME} Failed build")
 }
 }
}

This code references the env.JOB_NAME variable, which contains the Jenkins job name.

NOTE Chapter 10 has a dedicated section on how to implement Slack notifi-
cations with Jenkins.

The stages section is the core of the pipeline. This section defines what is to be done
at a high level. It contains a sequence of more stage directives for each discrete part of
the CI/CD workflow.

 Finally, the steps section contains a series of more steps to be executed in a given
stage directive. The following listing defines a Test stage with instructions to run unit
tests and generate code coverage reports.

pipeline{
 agent any
 stages {
 stage('Test'){
 steps {
 sh 'npm run test'
 sh 'npm run coverage'
 }
 }
 }
}

These are the most used directives and sections while writing a declarative pipeline.
Additional directives will be covered throughout this book. For an overview of all avail-
able blocks, refer to Pipeline Syntax documentation (www.jenkins.io/doc/book/pipe
line/syntax/#stages).

 Both declarative and scripted styles can be used to build CI/CD pipelines in either
the web UI or with a Jenkinsfile. However, it’s generally considered a best practice to
create a Jenkinsfile and check it into the source-control repository to have a single
source of truth and be able to track all changes (auditing) that your pipeline went
through.

NOTE In chapters 7 through 11, you will learn how to write a scripted pipe-
line from scratch for various application architectures and how to convert a
Jenkinsfile from a scripted to a declarative format.

Listing 2.5 Running automated tests within a pipeline

www.jenkins.io/doc/book/pipeline/syntax/#stages
www.jenkins.io/doc/book/pipeline/syntax/#stages
www.jenkins.io/doc/book/pipeline/syntax/#stages

36 CHAPTER 2 Pipeline as code with Jenkins
2.2 Understanding multibranch pipelines
When you’re building your application, you must separate your deployment environ-
ments to test new changes without impacting your production. Therefore, having
multiple environments for your application makes sense. To be able to achieve that,
you need to structure your code repository to use multiple branches, with each
branch representing an environment. For instance, the master branch corresponds to
the current production code.

 While it’s easier nowadays to replicate multiple infrastructure environments with
the adoption of cloud computing and IaC tools, you still need to configure your CI
tools for each target branch.

 Fortunately, when using a Jenkinsfile, your pipeline definition lives with the code
source of the application going through the pipeline. Jenkins will automatically scan
through each branch in the application code repository and check whether the
branch has a Jenkinsfile. If it does, Jenkins will automatically create and configure a
subproject within the multibranch pipeline project to run the pipeline for that
branch. This eliminates the need for manual pipeline creation and management.

 Figure 2.13 shows the jobs in a multibranch pipeline project after executing
against the Jenkinsfiles and source repositories. Jenkins automatically scans the desig-
nated repository and creates appropriate projects for each branch in the repository
that contains a Jenkinsfile.

Figure 2.13 Jenkins automatically creates a job for each branch with a Jenkinsfile.

In figure 2.13, Jenkins will trigger a build whenever a new code change occurs on any
of the develop, preprod, or master branches. In addition, each branch might have dif-
ferent pipeline stages. For example, you might perform a complete CI/CD pipeline
for the master branch and only a CI pipeline for the develop branch (see figure 2.14).
You can do this with the help of a multibranch pipeline project.

37Understanding multibranch pipelines

Figure 2.14 Each Git branch can have its own Jenkinsfile stages.

A multibranch pipeline can also be used to validate pull requests before merging
them to target branches. You can configure Jenkins to launch pre-integration tests
against the application’s code and block the pull request merge if the tests failed, as in
figure 2.15.

Figure 2.15 Jenkins build status in GitHub pull request

NOTE Chapter 9 covers using multibranch pipelines to validate pull/change
requests.

Now that you’re familiar with the basics of the Jenkins multibranch pipeline, you must
follow Git branching guidelines to have a common vision and methodology within the
development team. So which Git branching strategies should you use for your devel-
opment cycle?

38 CHAPTER 2 Pipeline as code with Jenkins
2.3 Exploring the GitFlow branch model
A couple of Git branching strategies exist. The most interesting and used one is Git-
Flow. It consists of the following essential branches:

 Master—A branch that corresponds to the current production code. You can’t
commit directly except for hotfixes. Git tags can be used to tag all commits in
the master branch with a version number (for instance, you can use the seman-
tic versioning convention detailed at https://semver.org/).

 Preprod—A release branch, a mirror of production. It can be used to test all new
features developed on the develop branch before merging them to the master
branch.

 Develop—A development integration branch containing the latest integrated
development code.

 Feature/X—An individual feature branch being developed. Each new feature
resides in its own branch, and it’s generally created from the latest develop
branch.

 Hotfix/X—When you need to solve something in production code, you can use
the hotfix branch and open a pull request for the master branch. This branch is
based on the master branch.

NOTE A complete example demonstrating the use of GitFlow with the Jen-
kins multibranch pipeline project is given in chapters 7 through 11.

The overall flow of GitFlow within Jenkins can be summarized as follows:

 A develop branch is created from the master branch.
 A preprod branch is created from the develop branch.
 A developer creates a new feature branch based on the development branch.

When a feature is completed, a pull request is created.
 Jenkins automatically runs pre-integration tests in this individual feature. If the

tests are successful, Jenkins marks the commits as successful. The development
team will then review the changes and merge the pull request of the new fea-
ture branch to the develop branch and delete the feature branch.

 A build will be triggered on the develop branch, and the changes will be
deployed to the sandbox/development environment.

 A pull request is created to merge the develop branch into the preprod branch.
 When the develop branch is merged to the preprod branch, the pipeline will be

triggered to deploy the new features to the staging environment upon the com-
pletion of the pipeline.

 Once the release is being validated, the preprod branch will be merged to master,
and changes will be deployed to the production environment after user approval.

 If an issue in production is detected, a hot branch is created from the master
branch. Once the hotfix is complete, it will be merged to both the develop and
master branches.

https://semver.org/

39Test-driven development with Jenkins
NOTE You can use the GitFlow wrapper around the Git command line (avail-
able on multiple operating systems) to create a project blueprint with all
needed branches.

Figure 2.16 summarizes how GitFlow works.

Figure 2.16 Overview of GitFlow branches

GitFlow does not solve all problems with branching. But it offers you a more logical
branch structure and a great workflow organization model when working within a big
team. In addition, many feature branches are developed concurrently, which makes
parallel development easy. For smaller projects (and smaller teams), GitFlow can be
overkill. Hence, in upcoming chapters, we will usually use three main branches:

 Master branch, to store the official release history and the source code of an
application running in a production environment

 Preprod branch, to store new integrated features running in the staging environ-
ment and ready to be merged to the master branch

 Develop branch, for the latest delivered development changes and mirror of the
application running in a sandbox environment

2.4 Test-driven development with Jenkins
Using Jenkinsfiles has one potential downside: it can be more challenging to discover
problems up-front when you are working in the external file and not in the environ-
ment of the Jenkins server. One approach to dealing with this is developing the code

40 CHAPTER 2 Pipeline as code with Jenkins
within the Jenkins server as a pipeline project first. Then, you can convert it to a Jen-
kinsfile afterward.

 You can also use Blue Ocean mode as a playground, as seen earlier in this chapter,
to set up a Jenkinsfile from scratch with a modern and intuitive pipeline editor.
Another approach to test a new pipeline is a declarative pipeline linter application
that you can run against Jenkinsfiles, outside Jenkins, to detect problems early.

2.4.1 The Jenkins Replay button

Sometimes, when working on Jenkins jobs, you might find yourself stuck in this cycle
of committing the Jenkinsfile, pushing it, and running the job over and over again. It
can be a time-consuming and tedious workflow, especially if your build time is inher-
ently long. Plus, your Git history will get filled with junk commits (unnecessary debug-
ging commits).

 What if you could work on your Jenkinsfile in a “sandbox” and test the Jenkinsfile
live on the system? A neat little feature allows you to modify the Jenkins file and rerun
the job. You can do it over and over until you are happy with the results and then com-
mit the working Jenkinsfile without breaking anything.

 Now, this is a little easier. If you have a Pipeline build that did not proceed exactly
as you expected, you can use the Replay button in the build’s sidebar, shown in fig-
ure 2.17.

Figure 2.17 Rerunning the build with a Replay button

41Test-driven development with Jenkins
It is somewhat similar to the Rebuild button but allows you to edit the Jenkinsfile con-
tent just before running the job. Therefore, you can use the built-in Jenkinsfile block
in the UI (figure 2.18), to test your pipelines out there before committing them to
source control like GitHub.

Figure 2.18 Updating the Jenkinsfile before replaying the pipeline

You can change your pipeline’s code and click the Run button and rerun the job.
Once you are satisfied with the changes, you update the Jenkinsfile with the applied
changes and commit them to your SCM.

 The Replay button feature allows for quick modifications and execution of an
existing pipeline without changing the pipeline configuration or creating a new com-
mit. It’s ideal for rapid iteration and prototyping of a pipeline.

2.4.2 Command-line pipeline linter

For advanced users, you can use the Jenkins RESTful API to validate the Jenkinsfile
syntax by issuing an HTTP/HTTPS POST request with the parameters shown in fig-
ure 2.19.

NOTE To get the API endpoint working on a Jenkins server with cross-site
request forgery (CSRF) protection enabled, you need to request a crumb
issuer and include it in the Authorization header in the issued HTTP request.
To generate this crumb, you need to request the following URL: JENKINS_
URL/jenkins/crumbIssuer/api/json.

Figure 2.19 is an example of how to use the Jenkins Linter API to validate Jenkinsfile
syntax. We’re using Postman in this example, and the Jenkinsfile form data has been
loaded from the developer machine.

42 CHAPTER 2 Pipeline as code with Jenkins

Figure 2.19 Example of using Jenkins Linter API

The API response will return both errors and warnings, which can save time during
the development and allows you to follow best practices while writing a Jenkinsfile.

 Specifying the real password is still supported, but it is not recommended because
of the risk of revealing the password, and the human tendency to reuse the same pass-
word in different places. Another way of validating the Jenkinsfile is to run the follow-
ing command from the terminal session (cURL is available for most operating
systems):

curl -X POST -L --user USERNAME:TOKEN JENKINS_URL/pipeline-model-converter/
validate

-F "jenkinsfile=<Jenkinsfile"

NOTE Chapter 7 covers another way of creating a Jenkins API token from the
Jenkins web dashboard.

43Test-driven development with Jenkins
The Jenkins command-line interface (CLI), www.jenkins.io/doc/book/managing/
cli/, can also be used with the declarative-lint option to lint a declarative pipeline
from the command line before actually running it. You can issue this command to lint
a Jenkinsfile via the CLI with SSH:

ssh -p $JENKINS_SSHD_PORT $JENKINS_HOSTNAME declarative-linter < Jenkinsfile

Replace the JENKINS_HOSTNAME and JENKINS_SSHD_PORT variables based on the
URL and port where you are running Jenkins. You can also use localhost as a URL if
you are running Jenkins on your machine.

2.4.3 IDE integrations

The Jenkins CLI or API does a great job of reducing the turnaround times when writ-
ing a Jenkinsfile, but its usage has its own inconveniences. You need tools like SSH to
make a connection to your Jenkins server, and you need to remember the correct
command to validate your Jenkinsfile.

 Fortunately, you can install extensions on your favorite integrated development
environment (IDE) to automate the validation process. For instance, on Visual Studio
Code (VSCode), you can install Jenkins Validation Linter from the marketplace. This
extension, shown in figure 2.20, validates Jenkinsfiles by sending them to the Pipeline
Linter endpoint of a Jenkins server.

NOTE Similar extensions and packages are available to validate a Jenkinsfile
for Eclipse, Atom, and Sublime Text.

Figure 2.20 Jenkins Pipeline Linter extension for VSCode

Once the extension is installed, you must provide Jenkins server settings, including
the server URL (with the following format: JENKINS_URL/pipeline_model_con-
verter/validate) and credentials (Jenkins username and password, or token if CSRF
protection is enabled) by clicking Preferences from the top navigation bar, and select-
ing Settings, as shown in figure 2.21.

http://www.jenkins.io/doc/book/managing/cli/
http://www.jenkins.io/doc/book/managing/cli/

44 CHAPTER 2 Pipeline as code with Jenkins

Figure 2.21 Jenkins Pipeline Linter configuration

Once settings are configured, you can type the Validate Jenkinsfile command
on the command palette search bar (keyword shortcut ⇧⌘P), as shown in figure 2.22.

Figure 2.22 VSCode command palette

45Summary
The linter will report the pipeline validation results in the terminal, as shown in fig-
ure 2.23.

Figure 2.23 Example of Jenkins Linter’s output

NOTE In chapter 8, you will learn how to write unit tests for CI pipelines and
use the Jenkins Pipeline Unit (https://github.com/jenkinsci/JenkinsPipeline
Unit) testing framework to mock the pipeline executor locally.

Summary
 Infrastructure as code influenced CI/CD tools to embrace the pipeline-as-code

concepts.
 A Jenkinsfile uses Groovy syntax and utilizes shared Jenkins libraries to custom-

ize a CI/CD workflow.
 Declarative pipelines encourage a declarative programming model. Scripted

pipelines follow a more imperative programming model.

https://github.com/jenkinsci/JenkinsPipelineUnit
https://github.com/jenkinsci/JenkinsPipelineUnit
https://github.com/jenkinsci/JenkinsPipelineUnit

46 CHAPTER 2 Pipeline as code with Jenkins
 The Blue Ocean editor can facilitate a quick and easy setup of a new Jenkins
pipeline with minimal hassle.

 A feature branch workflow facilitates pull requests and more efficient collabora-
tion.

 GitFlow offers a dedicated channel for hotfixes to production without inter-
rupting the rest of the workflow or waiting for the next release cycle.

 The Jenkins UI, Replay button, and code linters can be used to test new pipe-
lines before committing them to source control, enabling you to avoid a bunch
of unnecessary debugging commits.

Part 2

Operating a self-healing
Jenkins cluster

You’ve read through part 1 and now feel comfortable with some of the core
concepts and principles of pipeline as code. It’s time to get your hands dirty and
deploy a Jenkins cluster from scratch with infrastructure-as-code tools on the
cloud, including Amazon Web Services, Google Cloud Platform, Microsoft
Azure, and DigitalOcean.

 Along the way, you’ll discover how to scale Jenkins workers dynamically and
how to architect Jenkins for scale with distributed build mode. We’ll then look at
Jenkins essential plugins and how to provision a preconfigured Jenkins cluster
with all needed dependencies and configurations using Packer and Groovy
scripts.

48 CHAPTER

Defining Jenkins
architecture
In a distributed microservices architecture, you may have multiple services to build,
test, and deploy regularly. Hence, having multiple build machines makes sense.
While you can always run Jenkins in a standalone mode, running all builds on a
central machine may not be the best option and will result in having a single point
of failure (a single Jenkins server cannot handle the entire load for larger and
heavier projects). Fortunately, Jenkins can also be configured to run distributed
builds across a fleet of machines/nodes by setting up a master/worker cluster, as
shown in figure 3.1.

This chapter covers
 Understanding how Jenkins distributed builds work

 Understanding the roles of Jenkins master and
worker nodes

 Architecting Jenkins in the cloud for scale

 Configuring multiple Jenkins masters

 Preparing an AWS environment and CLI
configuration
49

50 CHAPTER 3 Defining Jenkins architecture

Figure 3.1 Distributed master-worker architecture

Jenkins uses a master-worker architecture to manage distributed builds. Each compo-
nent has a specific role:

 Jenkins master—Responsible for scheduling build jobs and distributing builds to
the workers for the actual execution. It also monitors the workers’ states, and
collects and aggregates the build results in the web dashboard.

 Jenkins worker—Also known as a slave or build agent, this is a Java executable that
runs on a remote machine, listens for requests coming from the Jenkins master,
and executes build jobs. You can have as many workers as you want (up to 100+
nodes). Workers can be added and removed on the fly. Therefore, the workload
will be distributed to them automatically, and the workers will take the load off
the master Jenkins server.

NOTE In 2016, the Jenkins community decided to start removing offensive
terminology within the project. The slave term was deprecated in Jenkins 2.0
and replaced by agent.

To sum up, Jenkins can be deployed in a standalone mode. However, when you want
to run multiple build jobs regularly in different environments to meet the require-
ments of the build environment for different projects, then a single Jenkins server
cannot simply handle the workload. That’s why in this book, we will be focusing on
master-worker architecture.

3.1 Understanding master-worker architecture
In a master-worker architecture, the web dashboard is running on the Jenkins master
instance. The master’s role is to handle scheduling build jobs, dispatching and dele-
gating builds to the workers for the actual execution, monitoring the workers’ state
(online or offline), and recording and presenting the build results. Even in a distrib-
uted architecture, a master instance of Jenkins can also execute build jobs directly.

 Jenkins workers can be added and configured on the Jenkins dashboard or
through a Jenkins RESTful API. The worker’s role is to execute build jobs assigned by

Jenkins master

Jenkins workerJenkins workerJenkins worker

https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/

51Understanding master-worker architecture
the master. You can configure a project to always run on a particular node by assigning
labels to nodes. Labels are a powerful feature; they are virtual group names. You can
assign multiple labels to a worker node while configuring it. Labels can also be used to
restrict the build job to run on a worker node associated with a specific label name—
for instance, to restrict a job to be built on a CPU-optimized instance.

 To add a worker, you can click Manage Jenkins in the admin page menu, and then
click Manage Nodes and Add New Node. Fill in the configuration information, includ-
ing a name for the node, the workspace name, and the IP address of the node. Then,
enter a label like workers (you can assign multiple labels in the Labels entry box by
separating them with spaces). Figure 3.2 shows how to add a new worker to Jenkins.

Figure 3.2 Using labels for Jenkins jobs assignments

By assigning the workers label to the node, you can reference it easily in your Jen-
kinsfile. In a declarative pipeline, you can restrict the pipeline to run on nodes with
the workers label by setting up the agent directive as follows:

pipeline{
 agent{
 label 'workers'
 }
 stages{
 stage('Checkout'){}
 }
}

The scripted pipeline, however, uses the node block wrapper with the label name as a
parameter to define the execution environment for the pipeline:

node('workers'){
 stage('Checkout'){}
}

52 CHAPTER 3 Defining Jenkins architecture
If more build jobs are requested for the same node, Jenkins will automatically create a
job queue. By default, each node can execute one job; however, you can increase the
node’s capacity for running jobs by setting the field labeled # of Executors. In the pre-
vious example, the node is configured with three executors, which means up to three
jobs can be executed at once. If four jobs are started, the first three will execute, and
the fourth will be added to the build queue. Once nodes become available, Jenkins
will execute the remaining jobs in the order they were requested.

 To be able to add a worker to the Jenkins cluster, the workers and master need to
establish bidirectional communication through TCP/IP. Another requirement is that
Java should be installed on the worker machine. Because Java is a platform-agnostic
programming language, a Jenkins cluster might consist of workers that run on a vari-
ety of OS platforms such as Windows, Linux, or macOS. This architecture comes with
multiple benefits, such as having a heterogeneous build farm that supports all of the
environments that you might need to run builds/tests with a different OS or CPU
architecture.

 In the example in figure 3.3, using a worker to represent each of your required envi-
ronments results in having several environments and configurations to test, build, and
deploy your projects. The delegation behavior of build jobs depends on the configura-
tion of each project; some projects may choose to “stick” to a particular machine for a
build using labels, while others may choose to roam freely among available workers.

3.2 Managing Jenkins workers
Several strategies are available when it comes to managing Jenkins workers, depending
on your target operating systems and other architectural considerations. These strate-
gies affect the way you configure your workers, so we need to consider each separately.

3.2.1 SSH

If you are working in a UNIX environment, the most convenient way to start a Jenkins
worker is undoubtedly to use Secure Shell (SSH). Jenkins has its own built-in SSH cli-
ent, and almost all UNIX environments support SSH (usually sshd) out of the box.

SSH/JNLP

Jenkins master

Jenkins worker
macOS

Jenkins worker
Windows

Jenkins worker
Linux

Figure 3.3 You can set up multiple
workers running different operating
systems by using SSH or Java
Network Launch Protocol (JNLP)

53Managing Jenkins workers
 The worker needs to be reachable from the master server, and you will have to sup-
ply the hostname, login, and password. You can also provide a path to the SSH private
key file on the master instance to use public/private key authentication, as shown in
figure 3.4.

Figure 3.4 Launching a Jenkins worker via SSH

NOTE In chapter 5, we will use the SSH launch method to set up a Jenkins
cluster.

3.2.2 Command line

You can add a worker by having Jenkins execute a command from the master, as
shown in figure 3.5. Use this approach when the master is capable of remotely execut-
ing a process on another machine. However, the remoting mode has been deprecated
since Jenkins 2.54 (so it might not a valid option in the newest version of Jenkins).

Figure 3.5 Launching a Jenkins worker via the command line

3.2.3 JNLP

Another option is to start an agent from the worker machine itself by using Java Web
Start (JWS). This approach is useful if the master cannot reach the worker—for exam-
ple, if the worker machine is running on the other side of a firewall. It works no mat-
ter what operating system your worker is running on. However, it is more suitable for
managing Windows workers.

 This approach does suffer from a few major drawbacks: the worker machine can-
not be started or restarted automatically by Jenkins. If the worker goes down, the mas-
ter instance cannot restart it. When you do this on a Windows machine, you need to
start the Jenkins worker manually at least once. This requires opening a browser on
the machine, opening the worker node page on the Jenkins master, and launching

54 CHAPTER 3 Defining Jenkins architecture
the worker using a very visible JNLP icon. However, once you have launched the
worker, you can install it as a Windows service.

3.2.4 Windows service

Jenkins can also manage a remote Windows worker as a Windows service, using the
Windows DCOM Server Process Launcher service, which is installed out of the box on
Windows. When you choose this option, you need to provide a Windows hostname,
username, and password, as you can see in figure 3.6.

Figure 3.6 Starting a Windows worker

This launching mode is convenient, as it does not require you to physically connect to
the Windows machine to set it up. However, it does have limitations—in particular,
you cannot run any applications requiring a graphical interface.

 Once the workers are added to the Jenkins cluster, the master will proactively mon-
itor their statuses and take a worker offline if it considers the worker incapable of
safely executing a build job. You can fine-tune exactly what Jenkins monitors on the
Manage Nodes page, shown in figure 3.7.

Figure 3.7 Defining node-monitoring thresholds

55Architecting Jenkins for scale in AWS
 Jenkins monitors the available disk space of $JENKINS_HOME on each worker, as
well as the disk space of the temporary directory and swap space. It also keeps tabs on
the system clock difference between the master and workers. Finally, it monitors the
round-trip network response time from the master to the worker. If any of these crite-
ria is below a certain threshold, the worker will be marked offline.

 Finally, it’s worth mentioning that by default Jenkins uses the workers as much as
possible. Whenever a build can be executed by a specific worker, Jenkins will use it.

 To control how Jenkins is scheduling builds on available workers, you can config-
ure the Usage field, shown in figure 3.8, to use the Only Build Jobs with Label Expres-
sions Matching This Node option to restrict jobs to a worker that matches its name
and/or label. This can become handy if you want to reserve a worker for a certain
kind of Jenkins job. Furthermore, if you set the # of Executors field’s value to 1, you
can ensure that only one job will be executed at any given time. As a result, no other
builds will interfere.

Figure 3.8 Configuring Jenkins worker usage

3.3 Architecting Jenkins for scale in AWS
So far, we have covered how Jenkins distributed builds work. This section covers how
to architect Jenkins for scale on AWS. Therefore, you will need an AWS account to fol-
low the examples. With a new AWS account, the Free Tiers should cover all the exam-
ples at no cost to you. For more information on the AWS Free Tier, and a step-by-step
guide on how to create a new AWS account, visit https://aws.amazon.com/free/.

NOTE Although this section focuses on AWS, this content can also be used to
help set up a Jenkins cluster in other cloud providers. Chapter 6 provides a
step-by-step guide.

The simple architecture you can deploy is a standalone or single-node setup. You sim-
ply need to deploy a Jenkins server on an Amazon Elastic Compute Cloud (EC2)
instance from the AWS Marketplace (https://aws.amazon.com/marketplace), shown
in figure 3.9.

 The AWS Marketplace contains preconfigured Amazon Machine Images (AMIs)
from popular categories such as security, networking, storage, machine learning, busi-
ness intelligence, database, and DevOps. You can quickly launch a Jenkins server with

https://aws.amazon.com/free/
https://aws.amazon.com/marketplace

56 CHAPTER 3 Defining Jenkins architecture
just a few clicks, by selecting the Jenkins Long-Term Support (LTS) release and the
machine instance type (based on resource requirements).

 You can also install Jenkins on a base machine image by using a package manager
(for example, APT or Yum). Jenkins installers are available for several Linux distribu-
tions as well as Windows and macOS. Otherwise, you can set up a Jenkins playground
with a Jenkins official Docker image.

NOTE Chapter 4 covers how to create your own Jenkins machine image from
scratch with HashiCorp Packer.

Once you have installed Jenkins on an EC2
instance, you will need to configure the secu-
rity group attached to the instance to allow
traffic on port 8080. This is the port where the
Jenkins dashboard is exposed to.

 A security group acts as a firewall that con-
trols the traffic allowed to reach the EC2
instances (figure 3.10). To control traffic, we
create rules in the security group. For this case,
the following security rules need to be added:

 Allow inbound (ingress) traffic on port
8080 (Jenkins dashboard port number).

Figure 3.9 Jenkins Amazon Machine Image available on AWS Marketplace

Figure 3.10 The Jenkins standalone
architecture on AWS consists of an EC2
instance behind a security group.

57Architecting Jenkins for scale in AWS
 (Optional) Allow inbound SSH traffic from your computer’s public address so
that you can connect to your Jenkins instance for debugging or maintenance.

 By default, a security group includes an outbound rule that allows all outbound
(egress) traffic.

You might set up a network access-control list (ACL) with rules similar to your security
group to add an additional layer of security to your instance. The security group acts
as a firewall for your Amazon EC2 instance, controlling both inbound and outbound
traffic at the instance level. ACL acts as a firewall for associated subnets, controlling
both inbound and outbound traffic at the subnet level.

NOTE While you can scale the Jenkins master vertically to absorb the loading
pike of build jobs, there is a limit to how much an instance can be scaled.

While this architecture works for smaller projects, it can’t scale for larger and complex
projects. Therefore, we will deploy a Jenkins cluster to share the load across multiple
workers. Instead of scheduling builds jobs on a Jenkins master instance, they will be
assigned to Jenkins workers. As a result, additional EC2 instances (figure 3.11) will be
deployed as build servers or Jenkins agents.

Figure 3.11 Jenkins distributed architecture on AWS

This architecture is much better. However, distributed builds are generally used to
absorb extra load (for example, in build activity) by dynamically adding extra
machines as required. Hence, the number of workers shouldn’t be fixed in advance.
We want to add or remove workers based on the number of jobs waiting in the queue
or the CPU utilization of the worker’s cluster. That’s why, instead of deploying workers
independently, we will deploy them inside an AWS Auto Scaling group (ASG); see
https://aws.amazon.com/autoscaling/.

 The ASG feature comes with EC2 and allows you to deploy a group of EC2
instances that are treated as a logical grouping for the purpose of automatic scaling.
In addition, Amazon EC2 Auto Scaling helps to ensure that you have the correct num-
ber of instances by specifying the minimum and maximum number of instances at any
given time.

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/.

58 CHAPTER 3 Defining Jenkins architecture
 To create and terminate Jenkins workers on demand based on build jobs, we
can create scaling policies. A scaling policy is a set of instructions for adjusting the size
of instances in the ASG in response to an Amazon CloudWatch alarm (http://
mng.bz/g1rl).

 An Amazon CloudWatch alarm will monitor the CPU usage of the EC2 instances,
for example. Then it will trigger a scale-out or scale-in event to add or remove a
worker to the Jenkins cluster automatically. For instance, if the average CPU utiliza-
tion of the Jenkins workers is over 80%, a scale-out event will be triggered, and a new
worker will be deployed and added to the Jenkins cluster. Similarly, if the average CPU
utilization of the Jenkins workers is less than 20%, a scale-in event will be triggered,
and unused workers will be removed (providing infrastructure cost optimization).

NOTE When creating an alarm on the Auto Scaling group, the alarm uses
aggregated metrics across all Jenkins worker instances (average CPU utiliza-
tion). This way, it won’t add instances just because one worker is too busy.

When the CPU utilization is less than 20%, the scale-in policy takes effect, and the
ASG terminates on the available instances. If you did not assign a specific termination
policy to the ASG, it uses the default termination policy. This means the ASG selects
the instance to terminate based on the following factors:

 The instance that is closed to the next billing hour.
 Longest/oldest running EC2 instance.
 Oldest launch configuration. The launch configuration is the blueprint or tem-

plate that describes what a Jenkins worker instance should look like.

However, you can use Amazon EC2 termination protection to protect a Jenkins
worker from being accidentally terminated. Refer to the official guide for instructions:
http://mng.bz/ePwz.

 We can also configure the scaling policies based on memory utilization. However,
memory utilization is one of the metrics not available by default in CloudWatch. Since
AWS does not have access to the instance at the OS level, only metrics that can be
monitored through the hypervisor layer (such as CPU and network utilization) are
recorded.

 We have various ways to solve this problem. The most used one is to install a met-
rics collector agent on the EC2 instances. For more details on how to fetch the mem-
ory utilization, check out chapter 13.

NOTE To be able to add workers automatically, the worker machine will run
a shell script at boot time and use the Jenkins RESTful API to autoregister to
the cluster with the machine’s private IP address (known as cluster discovery).
Chapters 4 and 5 explain this part in depth.

Figure 3.12 illustrates how to dynamically scale Jenkins workers by using CloudWatch
scaling policies.

http://mng.bz/g1rl
http://mng.bz/g1rl
https://shortener.manning.com/ePwz

59Architecting Jenkins for scale in AWS

Figure 3.12 Jenkins workers belong to an AWS autoscaling group and will be scaled dynamically based
on the average CPU utilization of the group.

We can also use custom metrics such as the number of jobs waiting in the build queue
to trigger scaling policies. To get this information, you can use an open source solu-
tion such as Prometheus (https://prometheus.io/docs/introduction/overview/) to
export Jenkins cluster metrics and make a Lambda function to consume/scrape those
metrics. From the Lambda function, you can trigger scale-out or scale-in events on the
Jenkins worker autoscaling group by using the AWS API/SDK.

NOTE Chapter 13 covers how to monitor a Jenkins cluster’s health and how to
use the Prometheus exporter plugin on Jenkins to expose server-side metrics.

Figure 3.13 demonstrates how to scale Jenkins workers dynamically based on a custom
metric.

Figure 3.13 You can scale Jenkins workers dynamically based on the number of jobs waiting in the build
queue by integrating Prometheus and AWS Lambda.

https://prometheus.io/docs/introduction/overview/

60 CHAPTER 3 Defining Jenkins architecture
So far, the architecture is promising. However, it’s not secure and resilient. To secure
our Jenkins cluster, we will deploy the architecture inside a virtual private cloud (VPC)
and within a private subnet precisely. In reality, by default, any EC2 instance is
deployed in the AWS default VPC. But we will create a nondefault VPC that suits our
specific requirements, using specific Classless Inter-Domain Routing (CIDR) block
range and subnet sizes.

 Amazon VPC (https://aws.amazon.com/vpc) lets you provision a logically isolated
section of the AWS cloud where you can launch AWS resources in a virtual network
that you can define. You have complete control over your virtual networking environ-
ment, including a selection of your own IP address range, creation of subnets, and
configuration of route tables and network gateways.

 An important point to note here is that a VPC is still a part of the AWS cloud. It is
not physically separate hosting provided by AWS; it is a logically isolated part of the
EC2 infrastructure. This isolation is done at the network layer and is similar to a tradi-
tional datacenter’s network isolation; it’s just that we, as end users, are shielded from
the complexities of it. Figure 3.14 shows the network topology of AWS VPC.

Figure 3.14 The virtual private cloud consists of private and public subnets.

We will create an AWS VPC with multiple subnets. A subnet is nothing more than a
range of valid IP addresses. For resiliency, these subnets will be deployed in different
availability zones in the selected AWS region.

 Next, we deploy an internet gateway (IGW) and attach it to the VPC. The IGW will
be used primarily to provide internet connectivity to Jenkins instances (this might be
needed if your build jobs running in Jenkins workers require downloading external

https://aws.amazon.com/vpc

61Architecting Jenkins for scale in AWS
packages from the internet). Plus, the IGW maps the instance’s private IP address with
an associated public or Elastic IP address (http://mng.bz/p9QG) and then routes
traffic outside the subnet to the internet. Finally, we create a public route table with
rules to direct network traffic from public subnets to the IGW, as shown in table 3.1.

But what about instances in the private subnets? That’s where a Network Address
Translation (NAT) instance or gateway comes into play. The NAT gateway/instance
will be created inside a public subnet and will forward the outbound traffic and not
allow any traffic from the internet to reach the private subnets. This means instances
will have access to the internet without being exposed to the public (no public IP
address is given). Once the NAT gateway is deployed, we need to add an entry to the
private subnets route table to point to the NAT gateway; see table 3.2.

Because Jenkins instances will be deployed into private subnets that are isolated from
the internet, we cannot SSH directly to them from local desktops. A basic solution is
to deploy a special instance that acts as a proxy you can use to SSH into your Jenkins
instances. This special instance is called a bastion host, or jump box. This instance will be
deployed in your public subnet and will basically route only SSH traffic from your
local network over the Jenkins instances by setting up a secure SSH tunnel/bridge.

NOTE An advanced solution is to deploy OpenVPN to establish a secure TLS
VPN session to securely access your private Jenkins instances. Refer to “Set-
ting Up OpenVPN Access Server in Amazon VPC” at http://mng.bz/OQVn
for instructions.

Once the VPC is configured, we can go ahead and deploy a dedicated EC2 instance
running the Jenkins server on a private subnet. Alongside, an ASG of Jenkins workers
will be deployed across multiple private subnets. We configure scaling policies with
CloudWatch alarms to dynamically scale Jenkins workers based on the build activity.
Figure 3.15 summarizes the current deployment architecture.

Table 3.1 Public route table

Destination Target Remark

10.0.0.0/16 local Allow traffic to flow with this particular subnet (10.0.0.0/16)

0.0.0.0/0 IGW ID Allow subnet traffic to flow through the internet.

Table 3.2 Private route table

Destination Target Remark

10.0.0.0/16 local Allow traffic to flow with this particular subnet (10.0.0.0/16)

0.0.0.0/0 NAT ID Allow subnet traffic to flow through the NAT gateway/instance

http://mng.bz/OQVn
http://mng.bz/OQVn
https://shortener.manning.com/p9QG

62 CHAPTER 3 Defining Jenkins architecture

Figure 3.15 This Jenkins cluster deployed in private subnets consists of an ASG of workers and an EC2 instance
holding the Jenkins dashboard.

We can take this architecture further, and configure a public-facing Elastic load bal-
ancer in front of the Jenkins instance to access the Jenkins web dashboard. This way,
your Jenkins instance does not have to be directly exposed to the internet.

NOTE It’s possible to have multiple Jenkins instances even though Jenkins
core doesn’t support multiple masters by default. Then, use the load balancer
to fetch requests and distribute them among multiple Jenkins masters.

The load balancer will listen on both the HTTP (80) and HTTPS (443) ports and
send incoming requests to the instance on port 8080. That way, it uses an encrypted
connection to communicate with the Jenkins instance. Table 3.3 summarizes the port
configurations.

If you specify the HTTPS listener, you will need to select a private Secure Sockets
Layer (SSL) certificate. The load balancer uses the certificate to terminate the con-
nection and then decrypt requests from clients before sending them to the Jenkins

Table 3.3 Load balancer listener configuration

Load balancer protocol Load balancer port Instance protocol Instance port

HTTP 80 HTTP 8080

HTTPS 443 HTTP 8080

63Architecting Jenkins for scale in AWS
instance. You can get a free SSL certificate with AWS Certificate Manager (ACM); you
can also import your own certificate.

 The load balancer has a publicly resolvable DNS name, so it can route requests
from clients over the internet to a Jenkins instance that is registered with the load bal-
ancer. Also, it will be useful while setting up a GitHub webhook for continuously trig-
gering Jenkins builds upon push events.

NOTE If you plan to stick with a private Jenkins instance, chapter 7 explains
how to set up a GitHub webhook for a Jenkins instance running behind a
firewall.

Finally, if you would like to use a friendly DNS name to access your load balancer,
instead of the default DNS name automatically assigned to your load balancer, you can
create a custom domain name and associate it with the DNS name for your load bal-
ancer. The DNS configuration can be done on Amazon Route 53 (https://aws.amazon
.com/route53/). Figure 3.16 shows the final architecture diagram.

Figure 3.16 Jenkins cluster deployment on a custom VPC

Adding workers to a Jenkins cluster is the typical way to scale Jenkins. However, you
can set up multiple Jenkins masters with a proxy (typically, HAProxy or NGINX) to
actively monitor the primary master and reroute requests to backup masters if the

https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/

64 CHAPTER 3 Defining Jenkins architecture
active master goes down. The Jenkins architecture for master instances will look like
figure 3.17.

 As you can see, the first tier is the reverse proxy. Whenever an incoming request
for the build occurs, it will first reach the proxy. Then, the proxy will decide the
instance to which the request can be routed. Here, one of the masters will be in the
active state to serve requests, and the other one will be passive. Whenever a problem
exists with the active master and it goes down, the other master will become active,
and requests will resume. (We also can deploy Jenkins masters inside an ASG to
ensure that a minimum number of masters is always available for backup). These
requests will then be served by the master that has become active.

 The second tier is Amazon Elastic File System, or EFS (https://aws.amazon.com/
efs/), which is used as a storage solution to persist the Jenkins home directory
$JENKINS_HOME so both Jenkins masters can access and store Jenkins jobs. This
storage solution can be mounted on multiple Jenkins instances concurrently. Amazon
EFS, like any Network File System (NFS) server, supports full filesystem access seman-
tics such as strong consistency and file locking.

 EFS can also be used if you plan to deploy Jenkins on a Kubernetes cluster or
Docker-based orchestration platforms like AWS ECS or Fargate. As the Jenkins master
container can be launched on any node in the cluster, EFS can be used to persist the
Jenkins data directory to preserve its state.

NOTE Chapter 14 covers how to mount EFS in the $JENKINS_HOME direc-
tory to ensure that 100% of data is shared and can’t be lost in case of failure.

Now that the Jenkins architecture is clear, next we will prepare our AWS environment,
and then install and configure the tools needed for upcoming chapters.

3.3.1 Preparing the AWS environment

This section will walk you through installing and configuring the AWS command line.
The command-line interface (CLI) is a solid and mandatory tool that we’ll use in

Figure 3.17 The Jenkins
master HA setup uses
Amazon Elastic File
System to persist the
Jenkins home directory.

https://aws.amazon.com/efs/
https://aws.amazon.com/efs/

65Architecting Jenkins for scale in AWS
upcoming chapters. It will save us substantial time by automating the deployment and
configuration of a Jenkins cluster on AWS with HashiCorp Terraform and Packer as
well as defining CI/CD steps for cloud-native applications.

3.3.2 Configuring the AWS CLI

The AWS CLI (https://aws.amazon.com/cli/) is a powerful tool for managing your
AWS services and resources from a terminal session. It was built on top of the AWS
API, and hence everything that can be done through the AWS Management Console
(https://console.aws.amazon.com/console/home) can be done with the CLI; this
makes it a handy tool that can be used to automate and control your AWS infrastruc-
ture through scripts. Later chapters provide information on the use of the CLI with
Jenkins to manage cloud-native applications in AWS.

 Let’s go through the installation process for the AWS CLI; you can find informa-
tion on its configuration and testing in the AWS Management Console section. To get
started, refer to the official documentation and follow the instructions to install the
AWS CLI based on your operating system (http://mng.bz/Yw8N).

 Once the AWS CLI is installed, you need to add the AWS CLI binary path to the
PATH environment variable as follows:

 For Windows, press the Windows key and type Environment Variables. In
the Environment Variables window, highlight the PATH variable in the System
Variables section. Edit it and add a path by placing a semicolon right after the
last path, and then enter the complete path to the folder where the CLI binary
is installed.

 For Linux, Mac, or any UNIX system, open your shell’s profile script (.bash_pro-
file, .profile, or .bash_login) and add the following line to the end of the file:

export PATH=~/.local/bin:$PATH

Finally, load the profile into your current session:

source ~/.bash_profile

Verify that the CLI is correctly installed by opening a new terminal session and typing
the following command:

aws --version

You should be able to see the AWS CLI version; in my case, 2.0.0 is installed. Let’s test
it out and list Amazon S3 buckets in the Frankfurt region as an example:

aws s3 ls --region eu-central-1

The previous command displays the following output:

https://console.aws.amazon.com/console/home
https://aws.amazon.com/cli/
http://mng.bz/Yw8N

66 CHAPTER 3 Defining Jenkins architecture
When using the CLI, you’ll generally need your AWS credentials to authenticate with
AWS services. You can configure AWS credentials in multiple ways:

 Environment credentials—Use the AWS_ACCESS_KEY_ID and AWS_SECRET_KEY
variables. They can be useful for scripting or temporarily setting a named pro-
file as the default.

NOTE If you set the environment variables at the terminal prompt, the values
are saved for only the duration of the current session. To make the environ-
ment variable settings persistent across all terminal sessions, store them under
/etc/profile or in ~/.bash_profile for the current user.

 Shared Credentials file—The AWS CLI stores the credentials in a local file named
credentials under the .aws folder in your home directory. You can specify a non-
default location for the credentials file by setting the AWS_SHARED_CREDEN-
TIALS_FILE environment variable to another local path.

 IAM roles—If you’re using the CLI in an EC2 instance, this removes the need to
manage credential files in production. Each Amazon EC2 instance contains
metadata that the AWS CLI can directly query for temporary credentials.

In the next section, I will show you how to create a new user for the AWS CLI with the
AWS Identity and Access Management (IAM) service.

3.3.3 Creating and managing the IAM user

IAM (https://aws.amazon.com/iam/) is a service that allows you to manage users,
groups, and their level of access to AWS services. It’s strongly recommended that you
do not use the AWS root account for any task except billing tasks, as it has the ultimate
authority to create and delete IAM users, change billing, close the account, and per-
form all other actions on your AWS account. Therefore, we will create a new IAM user
and grant it the permissions it needs to access the right AWS resources following the
principle of least privilege.

NOTE The principle of least privilege (PoLP) works by giving a given user only
the minimum levels of access—or permissions—needed to perform the
required task.

Sign in to AWS Management Console by using your AWS email address and password.
Then, open the IAM console from the Security, Identity & Compliance section or type
IAM in the search bar; figure 3.18 shows the console.

https://aws.amazon.com/iam/

67Architecting Jenkins for scale in AWS

Figure 3.18 AWS Management Console

From the navigation pane, choose Users. Click the Add User button. Then set a name
for the user and select Programmatic Access (also select AWS Management Console
access if you want the same user to have access to the console), as shown in figure
3.19.

Figure 3.19 Creating a new IAM user

68 CHAPTER 3 Defining Jenkins architecture
In the Set Permissions section, assign the AmazonS3FullAccess policy to the user, as
shown in figure 3.20.

Figure 3.20 Attaching IAM policies to the user

NOTE It’s better to be granular and specify only permissions that are needed
to get the job done (leave privilege access). Start with a minimum set of per-
missions and add more permissions only if necessary.

On the final page, you should see the user’s AWS credentials (figure 3.21). Make sure
you save the access keys in a safe location, as you won’t be able to see them again.

Figure 3.21 AWS credentials generation

69Summary
NOTE You can create IAM users to represent users, applications, or services.
In the next chapter, we will create dedicated IAM users for HashiCorp Terra-
form and Packer tools.

Next, configure the AWS CLI by using the aws configure command. The CLI will
store credentials specified in the preceding command in a local file under ~/.aws/
credentials (or in %UserProfile%\.aws\credentials on Windows) with the following
content (substitute eu-central-1 with your AWS region):

[default]
region=eu-central-1
aws_access_key_id=ACCESS KEY ID
aws_secret_access_key=SECRET ACCESS KEY

NOTE You can override the region in which your AWS resources are located
by using the AWS_DEFAULT_REGION environment variable of the --region
command-line option.

That should be it; try out the following command and, if you have an S3 bucket, you
should be able to see the credentials listed. Otherwise, the command will return no
results:

aws s3 ls

Now that the AWS environment is set up, let’s get down to business and deploy a Jen-
kins cluster on AWS.

Summary
 Deploying Jenkins in distributed builds mode allows for decoupling orchestra-

tion, build executions, and better performance.
 Jenkins is a crucial component of the DevOps chain, and its downtime may

have adverse effects on the DevOps environment. To overcome these, you need
a high-availability setup for Jenkins.

 AWS CloudWatch provides a rich set of metrics to monitor the health of EC2
instances. The metrics collected can be used to set up alarms and trigger scaling
policies upon alarm firing such as scaling Jenkins workers.

 Delegating the workload of building projects to worker nodes is referred to as
distributed builds.

 You can configure a build to run on a particular worker machine by using Jen-
kins labels.

 It’s highly recommended to launch your Jenkins deployment within a private
subnet in a VPC for security purposes.

 By assigning labels to nodes, you can specify the resources you want to use for
specific jobs, and set up graceful queuing for your tests.

Baking machine
images with Packer
In the previous chapter, you learned how Jenkins distributed mode architecture
works. In this one, we will get our hands dirty and deploy a Jenkins cluster on AWS.
As a quick reminder, you learned that the Jenkins cluster is divided into two main
components: master and worker. Before diving into the implementation of the dis-
tributed builds architecture, we will deploy the standalone mode, shown in figure
4.1, to cover some basics.

 To deploy this architecture, we need to provision a server (for example, an EC2
instance in AWS). Then we’ll install and configure Jenkins on the machine. While
this manual process works, it’s not efficient when we want to deploy Jenkins to

This chapter covers
 Overview of immutable infrastructure

 Baking Jenkins machine images with Packer

 Discovering Jenkins essentials plugins

 Executing Jenkins Groovy scripts

 Using Packer provisioners to automate Jenkins
settings
70

71Immutable infrastructure
scale. Plus, updating or upgrading Jenkins can be lengthy and painful, and things can
easily go wrong—breaking your CI/CD pipelines and impacting your product release
as a result.

 So instead of installing Jenkins after infrastructure creation (EC2 instance deploy-
ment) and applying updates on an existing Jenkins instance (in case of upgrades or
maintenance), all changes must be packaged in a new machine image. A new Jenkins
instance should be deployed based on the new image, and then the old server will be
destroyed. This process creates what is known as an immutable infrastructure.

4.1 Immutable infrastructure
Immutable infrastructure is all about immutable components that are re-created and
replaced instead of updated after infrastructure creation. This immutable infrastruc-
ture reduces the number of places where things can go wrong. This helps reduce
inconsistency and improves reliability in the deployment process.

 When an update is necessary for immutable infrastructure, new servers are provi-
sioned with a preconfigured image, and old servers are destroyed. We create a new
machine image that is built for deployment and use it for creating new servers. In
immutable infrastructure, we are moving the configuration setup after the server cre-
ation process to the build process. As all deployments are done by new images, we can
keep the history of previous releases in case of reverting to an old build. This allows us
to reduce deployment time and the chance of configuration failure, and to scale
deployments. Figure 4.2 illustrates the differences between immutable and mutable
infrastructures.

 Notice that the new Instance B, generated from a “golden” machine image, is pro-
visioned upon the destruction of Instance A in the immutable pattern. Note, too, that
there is no Jenkins downtime during instance replacement with well-architected
immutable patterns that have multiple instances in service at a given time. By contrast,
in the mutable pattern, Instance A isn’t replaced. The same instance is modified man-
ually or by using a script or tool, with the Jenkins updated from v1.0 to v2.0.

Figure 4.1 Jenkins standalone
architecture on AWS

72 CHAPTER 4 Baking machine images with Packer

In this era of cloud computing, many companies are adopting immutable infrastruc-
ture to simplify configuration management and improve reliability by using infrastruc-
ture as code. With immutable infrastructure, instead of making changes on a running
server, we create a new server. Creating immutable infrastructure is hard and needs a
sophisticated process for building and testing. The best way to implement immutable
infrastructure is to use a well-tested and tried tool.

 Multiple tools and frameworks allow you to build immutable infrastructure. The
most famous ones are HashiCorp Packer, HashiCorp Vagrant, and Docker. In this
book, we will keep our focus on machine images by using Packer. The goal is to illus-
trate the workflow for building immutable infrastructure and show how it can be fully
automated using Packer. However, the same workflow can be applied while using
other alternatives.

4.2 Introducing Packer
HashiCorp Packer (www.packer.io) is a lightweight and easy-to-use open source tool
that automates the creation of any type of machine image for multiple platforms.
Packer is not a replacement for configuration management tools like Ansible, Puppet,
or Chef. Packer works with these tools to install and configure software and depen-
dencies while creating images.

 Packer uses a configuration file to create a machine image. Then it uses builders to
spin up an instance on the target platform, and runs provisioners to configure appli-
cations or services. Once setup is done, it shuts down the instance and saves the new
baked machine instance with any needed post-processing.

Figure 4.2 Updating via mutable and immutable infrastructures

www.packer.io
http://www.packer.io/docs/provisioners/file/

73Introducing Packer
 Using Packer has many advantages. Here are a few:

 Fast infrastructure deployment—Machine images allow us to more quickly launch
provisioned and configured machines.

 Scalable —Packer installs and configures all needed software and dependencies
for a machine during the image-creation process. The same image can be used
to spawn any number of instances without doing extra configuration. (The
same image can be used to deploy multiple Jenkins workers, for instance.)

 Multiprovider support—Packer can be used to create images for multiple cloud
providers like AWS, GCP, and Microsoft Azure.

Figure 4.3 illustrates a typical machine image build process with Packer.

Figure 4.3 Building Jenkins machine images with Packer

The drawback of using Packer is managing existing images: you need to manage them
yourself by using tags or versions and keep deleting old, unused images (in AWS,
you’re charged for the storage of the bits that make up your machine image, or AMI).

4.2.1 How does it work?

Figure 4.4 illustrates the process Packer uses to bake machine images.

Figure 4.4 Packer baking workflow

74 CHAPTER 4 Baking machine images with Packer
 Here are the steps in the process:

1 Boot a temporary instance using the base image defined in the template file.
2 Provision the instance by using configuration management tools like Ansible,

Chef, or Puppet, or with a simple automated script to configure the instance
into the desired state.

3 Create a new machine image from the temporary running instance and shut
down the temporary instance after the image is baked.

Once a new machine image is created, booting a new server from this new image will
give the same configuration that was already done on the temporary instance. This
helps provide a smooth deployment process. This also helps scale our services fast.

 The Packer configuration, also known as a template file, can be written in JSON or
YAML format. It consists of the following three main components:

 User variables—This section is used to parameterize the Packer template file so
we can keep secret, environment variables and other parameters out of the tem-
plate. The section helps with the portability of the template file and helps in
separating out the part that can be modified in our template. Variables can be
passed through command lines, environment variables, HashiCorp Vault
(www.vaultproject.io), or files. The section is a key-value mapping with the vari-
able name assigned to a default value.

 Builders—This section contains a list of builders that Packer uses to generate a
machine image. Builders are responsible for creating an instance and generat-
ing machine images from them. A builder maps to a single machine image.
This section contains information including the type (which is the name of the
builder), access keys, and credentials required to connect to the platform
(AWS, for instance).

 Provisioners—This section, which is optional, contains a list of provisioners that
Packer uses to install and configure software within a running instance before
creating a machine image. The type specifies the name of a provisioner such as
Shell, Chef, or Ansible.

NOTE For a full list of supported builders, refer to the official documentation
at www.packer.io/docs/builders/. For a full list of supported provisioners, see
www.packer.io/docs/provisioners/.

Packer helps bake configuration into the machine image during image creation time.
This helps in creating identical servers in case things go wrong.

4.2.2 Installation and configuration

Packer is written in Go, which is a compiled language. Hence, installing Packer is
straightforward; you just need to download the appropriate binary for your system
and architecture from www.packer.io/downloads/. Figure 4.5 shows the download
page.

http://www.vaultproject.io/
http://www.packer.io/docs/builders
http://www.packer.io/docs/provisioners/
http://www.packer.io/downloads/

75Introducing Packer

Figure 4.5 Packer download page

NOTE Make sure the directory where you installed the Packer binary is on
the PATH variable.

After installing Packer, verify that the installation is working by opening a new termi-
nal session and checking that Packer is available by issuing the following command:

NOTE At the time of writing this book, the latest stable version of Packer is
1.7.2.

If you get an error that Packer could not be found, your PATH environment variable
was not set up properly. Otherwise, Packer is installed, and you’re ready to go!

4.2.3 Baking a machine image

With Packer installed, let’s dive right into it and build our first image. Our first
machine image will be an Amazon EC2 AMI with Jenkins pre-installed. To create this
AMI, we need to write a Packer configuration file.

76 CHAPTER 4 Baking machine images with Packer
NOTE The following Packer template file has been cropped for brevity. The
full template is available in the GitHub repository under the chapter4 folder:
http://mng.bz/GO8q.

Create a template.json file and fill it with the following content.

{
 "variables" : {
 "region" : "AWS REGION",
 "aws_profile": "AWS PROFILE",
 "source_ami" : "AMAZON LINUX AMI ID",
 "instance_type": "EC2 INSTANCE TYPE"
 },
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "jenkins-master-2.204.1",
 "ami_description" : "Amazon Linux Image with Jenkins Server",
],
 "provisioners" : [{
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

This template file consists of three main sections:

 variables

 builders

 provisioners

Instead of hardcoding values in the template file, we are using variables that can be
overridden at the Packer runtime. In our example, we have defined the variables in
table 4.1.

 Substitute the value of source_ami with the appropriate Amazon Linux AMI ID.
The Amazon Linux AMI ID can be found by heading to AWS Management Console
and navigating to the EC2 dashboard. Click Launch EC2 Instance. On the Choose
AMI tab, type Amazon Linux AMI in the search bar, shown in figure 4.6.

Listing 4.1 Packer template for standalone Jenkins server

https://shortener.manning.com/GO8q

77Introducing Packer

Figure 4.6 Amazon Linux image identifier

You can also find the ID programmatically with Packer by using the source_ami_
filter attribute in the Packer template file. This attribute will automatically popu-
late the source_ami attribute based on the defined filters. For instance, the follow-
ing snippet selects the most recent Amazon Linux AMI (the full template file can be
copied from chapter4/standalone/template-with-filter.json):

"builders" : [
 {
 "ami_name" : "jenkins-master-2.204.1",
 "ami_description" : "Amazon Linux Image with Jenkins Server",

Table 4.1 Packer variables

Variable Description

region The name of the AWS region, such as eu-central-1, in which to launch the
EC2 instance to create the AMI. While you can always copy an AMI from one
region to another, for simplicity the AMI location will be the same as the region
where the Jenkins EC2 instance will be deployed to.

aws_profile The AWS profile used. Check chapter 3 for details about AWS CLI configuration.
You can also provide AWS credentials through environment variables or with EC2
metadata if you plan to run Packer inside an EC2 instance. If you plan to use AWS
access and secrets keys, keep them out of the template and provide them only
during runtime by using the -var flag.

instance_type The EC2 instance type to use while building the AMI, such as a t2.micro. A list
of supported instance types can be found at https://aws.amazon.com/ec2/
instance-types/.

source_ami The base AMI to use to boot the temporary EC2 instance. In the previous exam-
ple, we’re using the official Amazon Linux image. You may need to change the
source AMI ID based on what images exist when this template is run and the AWS
region you’re using.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

78 CHAPTER 4 Baking machine images with Packer
 "source_ami_filter": {
 "filters": {
 "virtualization-type": "hvm",
 "name": "Amazon Linux AMI-*",
 "root-device-type": "ebs"
 },
 "owners": ["amazon"],
 "most_recent": true
 }
 }
]

If multiple AMIs meet all of the filtering criteria provided in source_ami_filter,
the most_recent attribute will select the newest Amazon Linux image.

 Because the target machine image is an Amazon Machine Image, we are using the
amazon-ebs builder. This is the Amazon EC2 AMI builder that ships with Packer.
This builder builds an EBS-backed AMI by launching a source AMI, provisioning on
top of that, and repackaging it into a new AMI. Multiple builders are available based
on the target platform. Separate builders are available for EC2, VMware, VirtualBox,
and others. Packer comes with many builders by default and can also be extended to
add new builders.

 The ami_name attribute in the builder section is the name of the resulting AMI
that will appear when managing AMIs in the AWS console. The name must be unique.
To help make this unique, I have added it as a prefix to the version of the installed
Jenkins server, but you can also use the current timestamp with the following format:

"ami_name" : "jenkins-master-2.204.1-{{timestamp}}"

{{timestamp}} will be replaced by the Packer template engine to generate the cur-
rent UNIX timestamp in Coordinated Universal Time (UTC).

 The provisioners stage is responsible for installing and configuring all needed
dependencies. Packer fully supports multiple modern configuration management
tools such as Ansible, Chef, and Puppet. Bash scripts are also supported. To simplify
the baking process for the Jenkins AMI, we have defined a bash script called setup.sh
with the following content.

#!/bin/bash
yum remove -y java
yum install -y java-1.8.0-openjdk
wget -O /etc/yum.repos.d/jenkins.repo
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo
rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key
yum install -y jenkins
chkconfig jenkins on
service jenkins start

Listing 4.2 Bash script to install Jenkins LTS

79Introducing Packer
The script is self-explanatory: it installs the Java Development Kit (JDK), which is man-
datory to run Jenkins, and then it installs the latest stable version of Jenkins. Here we
install the Jenkins LTS release. Although it might lag behind in terms of new features,
it provides more stability than weekly releases. The weekly Jenkins releases deliver bug
fixes and new features rapidly to users and plugin developers who need them. But for
more conservative users, it’s preferable to stick to a release line that changes less often
and receives only important bug fixes.

 Once the Jenkins package is installed with the Yum package manager, the script
configures Jenkins to start automatically if the machine has been restarted with the
chkconfig command.

 Now that our template file is defined, we can execute the following command to
verify the syntax of the template file:

packer validate template.json

The command will return a zero exit status to indicate that the template.json syntax is
valid.

 Before we take this template and build an image from it, we need to assign the
AmazonEC2FullAccess policy to the IAM user created in chapter 3 for Packer to be
able to deploy an EC2 instance and create a machine image out of it.

 Head back to AWS Console, navigate to the IAM dashboard, and jump to the Users
section. Then, select the Packer user and attach the policy in listing 4.3, as shown in
figure 4.7.

Figure 4.7 Attaching the EC2 policy to an IAM user

NOTE A preferred approach is to provide the minimal set of permissions nec-
essary for Packer to work. The following listing is an IAM policy with the min-
imal set permissions necessary for the Amazon plugin to work.

https://shortener.manning.com/zEJa

80 CHAPTER 4 Baking machine images with Packer
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action" : [
 "ec2:AttachVolume",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CopyImage",
 "ec2:CreateImage",
 "ec2:CreateKeypair",
 "ec2:CreateSecurityGroup",
 "ec2:CreateSnapshot",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteKeyPair",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteSnapshot",
 "ec2:DeleteVolume",
 "ec2:DeregisterImage",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeRegions",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVolumes",
 "ec2:DetachVolume",
 "ec2:GetPasswordData",
 "ec2:ModifyImageAttribute",
 "ec2:ModifyInstanceAttribute",
 "ec2:ModifySnapshotAttribute",
 "ec2:RegisterImage",
 "ec2:RunInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource" : "*"
 }]
 }

With a properly configured IAM user, it is time to build your first image. This is done
by calling the packer build command with the template file as an argument:

packer build template.json

Packer will deploy an EC2 instance based on the configuration specified in the
template file, and then execute the bash script on the deployed instance. The

Listing 4.3 AWS IAM policy for Packer

81Introducing Packer
output should look similar to the following. Note that this process typically takes a
few minutes.

At the end of running the packer build command, Packer outputs the artifacts that
were created as part of the build. Artifacts are the results of a build and typically repre-
sent the AMI ID. (Your ID will surely be different from the preceding one.) In this
example, we have only a single artifact: the AMI was created in the Frankfurt region
(eu-central-1).

 You can use the same template file to create Jenkins machine images for different
platforms, all from the same specification. This is a nice feature that allows you to cre-
ate machine images of different types of providers without repetitive coding. For
example, we can modify the template to add Google Compute Cloud and Microsoft
Azure builders to it, as shown in the following listing. The full template is available on
the GitHub repository (chapter4/standalone/template-multiple-builders.json).

82 CHAPTER 4 Baking machine images with Packer

{
 "builders": [
 {
 "type": "amazon-ebs",
 "profile": "{{user `aws_profile`}}",
 "region": "{{user `region`}}",
 "instance_type": "{{user `instance_type`}}",
 "source_ami": "{{user `source_ami`}}",
 "ssh_username": "ec2-user",
 "ami_name": "jenkins-master-2.204.1",
 "ami_description": "Amazon Linux Image with Jenkins Server",
 },
 {
 "type": "azure-arm",
 "subscription_id": "{{user `subscription_id`}}",
 "client_id": "{{user `client_id`}}",
 "client_secret": "{{user `client_secret`}}",
 "tenant_id": "{{user `tenant_id`}}",
 "managed_image_resource_group_name": "{{user `resource_group`}}",
 "managed_image_name": "jenkins-master-v22041",
 "os_type": "Linux",
 "image_publisher": "OpenLogic",
 "image_offer": "CentOS",
 "image_sku": "8.0",
 "location": "{{user `location`}}",
 "vm_size": "Standard_B1ms"
 },
 {
 "type": "googlecompute",
 "image_name": "jenkins-master-v22041",
 "account_file": "{{user `service_account`}}",
 "project_id": "{{user `project`}}",
 "source_image_family": "centos-8",
 "ssh_username": "packer",
 "zone": "{{user `zone`}}"
 }
]
}

Packer will create multiple Jenkins images for multiple platforms in parallel, all con-
figured from a single template. In this example, Packer can make an Amazon
Machine Image, Azure image, and Google Compute Engine image in parallel, provi-
sioned with the same script, resulting in a near-identical Jenkins image.

NOTE For a step-by-step guide on how to bake machine images for Azure vir-
tual machines and Google Compute Engine instances, refer to chapter 6.

Once the AMI is created, the temporary EC2 instance will be terminated by Packer,
and the baked AMI will be available in the AMIs section under Images on the EC2
dashboard, as shown in figure 4.8.

Listing 4.4 Jenkins multiplatform machine image builds

83Introducing Packer

Figure 4.8 A new baked image is available on the Images section.

Now that our Jenkins AMI has been created, let’s test it out and see if Jenkins has been
properly installed. Jump to Instances and click the Launch Instance button. Then,
select the AMI built by Packer from the My AMIs section, as shown in figure 4.9.

Figure 4.9 The new AMI can be selected from the My AMIs section.

For the instance type, select a general-purpose instance such as t2.micro, which is
Free Tier eligible. We will cover Jenkins resource requirements in the next chapter.

 For now, leave all the other values at their default settings. Navigate to the Add
Tags section and type a name for your EC2 instance in the value box. This name, more
correctly known as a tag, will appear in the console when the instance launches. This
makes it easy to keep track of the running Jenkins instance.

 Configure the security group (firewall that controls traffic to the instance) to allow
traffic on port 8080 from anywhere. Port 8080 is the default port to which the Jenkins
web dashboard is exposed.

NOTE The instance will be deployed inside the default VPC. In chapter 5, we
will deploy the Jenkins cluster on a custom VPC from scratch and go through
advanced network configurations.

84 CHAPTER 4 Baking machine images with Packer
Figure 4.10 Allowing traffic on port 8080

The EC2 instance security group rules should look similar to figure 4.10.
 Make sure to allow inbound traffic on port 22 in order to authorize SSH traffic

from your computer’s public IPv4 address. It’s mandatory; otherwise, you won’t be
able to unlock the Jenkins dashboard later.

 Finally, verify the configuration details in the Review section and select an SSH key
pair, or create a new one if it’s the first time you’re launching an EC2 instance. This
configuration will allow you to connect to your instance via SSH.

 Once the instance is running, point your browser to the instance’s public IP
address and specify port 8080. The Jenkins setup wizard should pop up on the screen,
as shown in figure 4.11. Congrats—you have successfully deployed a Jenkins instance
from a custom AMI built with Packer.

Figure 4.11 Jenkins setup wizard

85Baking the Jenkins master AMI
You will be asked to unlock Jenkins by
using an initial password. You can find this
password inside the file /var/lib/jenkins/
secrets/initialAdminPassword. (The fol-
lowing sections cover how to create a cus-
tom admin account for Jenkins.)

 So far, we have deployed Jenkins in
standalone mode. Figure 4.12 summarizes
the currently deployed architecture.

NOTE Make sure to terminate the
instance when you no longer need it, to
stop incurring charges for that instance.

Next, you will learn how to use Groovy scripts to customize and configure Jenkins set-
tings while baking the Jenkins master AMI. Furthermore, we will create another image
for Jenkins workers to deploy Jenkins at scale.

4.3 Baking the Jenkins master AMI
We can use the AMI built in the previous section, but the ending Jenkins instance will
still have many settings requiring manual configuration, including Jenkins admin cre-
dentials, needed plugins to set up CI/CD pipelines, and security checks. While you
can configure those manually, the purpose of this book is to avoid operational over-
head as much as possible. We want to automate the tedious tasks while deploying a
highly available and fault-tolerant Jenkins cluster on your favorite cloud provider with
few commands by using automation tools like HashiCorp Packer and Terraform.

NOTE When I say high availability, I am referring to a Jenkins cluster that can
operate continuously without failure.

To fully automate a Jenkins master instance, we will use Jenkins post-initialization
scripts. We will leverage the power of Groovy scripts and place them in the
$JENKINS_HOME/init.groovy.d directory. This directory will be consumed by Jen-
kins upon startup. Therefore, it can be used to preconfigure Jenkins to the target
desired state.

4.3.1 Configuring Jenkins upon startup

These scripts are written in Groovy and are executed inside the same Java Virtual
Machine (JVM) as Jenkins, allowing full access to the domain model of Jenkins (we
can access classes in Jenkins and all its plugins).

NOTE Another alternative to Groovy scripts is the Jenkins Configuration as
Code (JCasC) plugin. For more details, refer to the official guide on GitHub:
http://mng.bz/zEJa.

Figure 4.12 Jenkins standalone mode
in AWS

http://mng.bz/zEJa

86 CHAPTER 4 Baking machine images with Packer
The basic-security.groovy script in listing 4.5 creates a Jenkins user with full admin
access. (You need to replace the USERNAME and PASSWORD attributes with your own
values.) Furthermore, by default, the anonymous read access is disabled by default,
which means Jenkins requires authentication to access the web dashboard. However,
you can enable anonymous read access by adding the strategy.setAllowAnony-
mousRead(true) instruction before the instance.save() statement.

#!groovy

import jenkins.model.*
import hudson.security.*

def instance = Jenkins.getInstance()
def hudsonRealm = new HudsonPrivateSecurityRealm(false)
hudsonRealm.createAccount('USERNAME','PASSWORD')
instance.setSecurityRealm(hudsonRealm)

def strategy = new FullControlOnceLoggedInAuthorizationStrategy()
instance.setAuthorizationStrategy(strategy)
instance.save()

In addition to user management, we will also set some basic configurations for hard-
ening Jenkins to protect against CSRF attacks. With CSRF protection enabled, all
issued tokens should include a web session to prevent external attackers from obtain-
ing web sessions. However, if your automation script uses a CSRF token for authentica-
tion, you can install the Strict Crumb Issuer plugin (available in the list of plugins
installed while baking the Jenkins image) to exclude the web session ID from the vali-
dation criteria. We will enable CSRF protection with the csrf-protection.groovy script
in the following listing.

#!groovy

import hudson.security.csrf.DefaultCrumbIssuer
import jenkins.model.Jenkins

def instance = Jenkins.getInstance()
instance.setCrumbIssuer(new DefaultCrumbIssuer(true))
instance.save()

This option is enabled by default in new installations, starting with Jenkins 2.x. You
can also enable CSRF by updating JENKINS_JAVA_OPTIONS. Add the following
argument:

JENKINS_JAVA_OPTIONS="-Dhudson.security.csrf.DefaultCrumbIssuer=true"

Listing 4.5 basic-security.groovy script

Listing 4.6 csrf-protection.groovy script

Gets an instance of
the Jenkins model Creates a new user

account by registering
a password to the user

Gives full access
to logged-in users

Enables CSRF
protection by setting
up a crumb issuer

87Baking the Jenkins master AMI
NOTE If you’re using the Jenkins linter feature to validate Jenkinsfiles against
a Jenkins server protected from CSRF, you need to use an API token that
doesn’t require a CSRF token (crumb) since Jenkins 2.96.

Jenkins has a built-in CLI that allows users and administrators to access Jenkins from a
script or a shell environment. The use of the CLI is not recommended for security rea-
sons (to prevent remote access). Hence, we will disable it through the disable-
cli.groovy script in the following listing.

#!groovy

import jenkins.model.Jenkins

Jenkins jenkins = Jenkins.getInstance()
jenkins.CLI.get().setEnabled(false)
jenkins.save()

We will also disable the JNLP and old unencrypted protocols (JNLP-connect, JNLP2-
connect, JNLP3-connect, and CLI-connect) to get rid of the warning messages in the
web dashboard. The script disable-jnlp.groovy is in the following listing.

#!groovy

import jenkins.model.Jenkins
import jenkins.security.s2m.*

Jenkins jenkins = Jenkins.getInstance()
jenkins.setSlaveAgentPort(-1)
HashSet<String> newProtocols = new HashSet<>(jenkins.getAgentProtocols());
newProtocols.removeAll(Arrays.asList(
 "JNLP3-connect", "JNLP2-connect", "JNLP-connect", "CLI-connect"
));
jenkins.setAgentProtocols(newProtocols);
jenkins.save()

Adding credentials to a new, local Jenkins server for development or troubleshooting
can be a daunting task. However, with Groovy scripts and the right setup, developers
can automate adding the required credentials into the new Jenkins server.

 The Groovy script in listing 4.9 creates SSH credentials based on the AWS key pair
we will use to deploy Jenkins worker instances. The SSH credentials object is created
by using the BasicSSHUserPrivateKey constructor, which takes as parameters the
credentials scope, username, SSH private key, and passphrase. The use of these SSH
credentials will be illustrated in chapter 5.

Listing 4.7 disable-cli.groovy script

Listing 4.8 disable-jnlp.groovy script

Gets an instance of Jenkins
and disabled CLI access

Sets 0 to indicate random
available TCP port, -1 to
disable this service

Initializes HashSet structure with available agent
protocols, removes old unencrypted protocols

from the structure, and saves the new list

88 CHAPTER 4 Baking machine images with Packer

import jenkins.model.*
import com.cloudbees.plugins.credentials.*
import com.cloudbees.plugins.credentials.common.*
import com.cloudbees.plugins.credentials.domains.*
import com.cloudbees.plugins.credentials.impl.*
import com.cloudbees.jenkins.plugins.sshcredentials.impl.*
import hudson.plugins.sshslaves.*;

domain = Domain.global()
store = Jenkins.instance
.getExtensionList('com.cloudbees.plugins.credentials \
 .SystemCredentialsProvider')[0].getStore()

slavesPrivateKey = new BasicSSHUserPrivateKey(CredentialsScope.GLOBAL,
 "Jenkins-workers",
 "Ec2-user",
 new BasicSSHUserPrivateKey.UsersPrivateKeySource(),
 "", "")
store.addCredentials(domain, slavesPrivateKey)

NOTE Now every time the Jenkins server is restarted, the scripts will run and
apply configuration for you. You don’t need to worry about executing these
settings manually every time the server restarts.

You can use Groovy init scripts to customize Jenkins and enforce the desired state.
Although writing Groovy scripts requires knowing Jenkins internals and API, you’ve
seen how to configure the common tasks and settings with Groovy scripts upon Jen-
kins initialization. We still need to install plugins to extend Jenkins functionalities in
order to be able to build CI/CD pipelines.

4.3.2 Discovering Jenkins plugins

Plugins can be easily installed from the Jenkins dashboard. However, the purpose of
this section is to build a fully automated Jenkins AMI, because if you want to install
many plugins, this manual process can be fairly long and boring. Therefore, we will
use a script provided by the Jenkins community to install plugins, including their
dependencies. The scripts take, as a parameter, a file containing the list of Jenkins
plugins to be installed.

 Table 4.2 lists some of the most useful plugins that help developers save time, as
well as making their lives easier. The full list is in the GitHub repository at chapter4/
distributed/master/config/plugins.txt.

Listing 4.9 node-agent.groovy script

Creates a Jenkins credential of type
“SSH Username with private key.” The

constructor takes the username, private key,
passphrase, and description as arguments.

89Baking the Jenkins master AMI

Table 4.2 Essential Jenkins plugins

Plugin Description

blueocean Provides the new Jenkins user experience with sophisticated visualizations of
CI/CD pipelines and a bundled pipeline editor that makes automating CI/CD
workflows approachable by guiding the user through an intuitive and visual
process to create a pipeline. Refer to chapter 2 to explore the key features of
Blue Ocean mode.

git Provides access to any Git server with support for fundamental Git operations
within Jenkins pipelines. It can pull, fetch, check out, branch, list, merge, tag,
and push Git repositories.

ssh-agent Allows you to provide SSH credentials to builds via ssh-agent in Jenkins. The ssh-
agent is a helper program to hold private keys used for public-key authentication.

ssh-credentials Allows you to store SSH credentials in Jenkins. It is used to launch Jenkins work-
ers via SSH and execute Docker commands on a Kubernetes cluster remotely
over SSH.

slack Provides Jenkins notification integration with Slack. It can be used to send Slack
notifications with Jenkins job build status upon the completion of a CI/CD pipe-
line. This plugin does require some straightforward setup on the Slack side in
order to connect and post messages.

credentials-binding Allows credentials to be bound to environment variables for use from miscella-
neous build steps. It gives you an easy way to package up all of a job’s secret
files and passwords, and access them using environment variables during the
build.

github-pullrequest Fundamental for integrating Jenkins with GitHub repositories, it supports GitHub
pull requests, branches, and custom webhooks. GitHub will trigger a new hook
each time a pull request is opened, and once Jenkins receives the hook, it will
run the associated job.

job-dsl Allows jobs to be defined in a programmatic form in a human-readable file. It can
be used to create complex pipelines for Jenkins freestyle jobs.

jira Does pretty much what it says on the tin. It allows developers to integrate Jira
(www.atlassian.com/software/jira) into Jenkins to update Jira open issues within
CI/CD pipelines. It also associates build and deployment information with rele-
vant Jira tickets and exposes key information about the pipeline across Jira
boards.

htmlpublisher Useful for publishing HTML reports that your builds generate at build time. It can
be used to generate code coverage HTML reports and track the percentage of
tests covering your application source code in a user-friendly way.

email-ext Can be used to send email notifications. It’s highly customizable: you can config-
ure notifications triggers, content, and recipients. Plus, it supports both plaintext
and HTML for the email body.

sonar Allows easy integration of SonarQube (www.sonarqube.org), the open source plat-
form for continuous inspection of code quality and code security.

embeddable-build-
status

Generates badges for all your Jenkins jobs that display, in real time, their build
status. You can add these badges to your Git repository README.md file.

http://www.atlassian.com/software/jira
http://www.sonarqube.org/

90 CHAPTER 4 Baking machine images with Packer
NOTE These are just some of the plugins we will use, and upcoming chapters
offer dozens more to explore.

More than a thousand plugins are available to support almost every solution, tool, and
process for building, deploying, and automating your projects within Jenkins pipe-
lines. The Jenkins Plugins Index, shown in figure 4.13, has over more than 1,800
plugins at https://plugins.jenkins.io/, free for download and use.

Figure 4.13 Jenkins plugins

NOTE Before installing a Jenkins plugin, make sure to review the changelog
in the plugin’s description page, as not all plugins may be safe to use. Also,
always pick the latest stable version available.

Now you are more familiar with the essential Jenkins plugins. Let’s go ahead and
install them.

 The script in listing 4.10 will go through the file containing a list of Jenkins plugins
line by line, and then issue a cURL command to download the plugin from the Jen-
kins Plugins Index. Finally, the script will copy the downloaded plugin file to the /var/
lib/jenkins/plugins folder. The listing illustrates the main function, and the full script
can be downloaded from the GitHub repository at chapter4/distributed/master/
config/install-plugins.sh.

#!/bin/bash
installPlugin() {
 if [-f ${plugin_dir}/${1}.hpi -o -f ${plugin_dir}/${1}.jpi]; then
 if ["$2" == "1"]; then
 return 1
 fi
 echo "Skipped: $1 (already installed)"
 return 0
 else
 echo "Installing: $1"

Listing 4.10 install-plugins.sh script

https://plugins.jenkins.io/

91Baking the Jenkins master AMI

 curl -L --silent --output ${plugin_dir}/${1}.hpi https://
updates.jenkins-ci.org/latest/${1}.hpi

 return 0
 fi
}

The .hpi extension stood for Hudson plugin (remember, Jenkins was a fork of the Hud-
son project). With the move away from Hudson to Jenkins, this became Jenkins plugin
and hence the .jpi format. Since the Jenkins v1.5 release, all .hpi plugin files are
renamed automatically to .jpi at boot time.

 By now, we have configured and automated all tasks needed to set up a running
Jenkins server out of the box. Therefore, there’s no need for the setup wizard at Jen-
kins startup (see figure 4.11). As a result, we will disable it by writing a Groovy init
script. Create a skip-jenkins-setup.groovy script with the following content.

#!groovy

import jenkins.model.*
import hudson.util.*;
import jenkins.install.*;

def instance = Jenkins.getInstance()
instance.setInstallState(InstallState.INITIAL_SETUP_COMPLETED)

Finally, we will update the Packer template file used in the first section to copy the
Groovy scripts described previously to the temporary instance by using the file provi-
sioner (www.packer.io/docs/provisioners/file/). Next, we use a shell provisioner to
move these files to the init.groovy.d folder. The template.json file should look similar
to the following listing.

{
 "variables" : {...},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "jenkins-master-2.204.1",
 "ami_description" : "Amazon Linux Image with Jenkins Server"
 }
],
 "provisioners" : [
 {

Listing 4.11 skip-jenkins-setup.groovy script

Listing 4.12 Jenkins master template file

List of variables should be declared
here such as: aws_profile, region,
instance_type, and source_ami

Name of the baked machine
image. The version number
(2.204.1) should be replaced
based on the current version
you have installed.

www.packer.io/docs/provisioners/file/

92 CHAPTER 4 Baking machine images with Packer

h
 "type" : "file",
 "source" : "./scripts",
 "destination" : "/tmp/"
 },
 {
 "type" : "file",
 "source" : "./config",
 "destination" : "/tmp/"
 },
 {
 "type" : "file",
 "source" : "{{user `ssh_key`}}",
 "destination" : "/tmp/id_rsa"
 },
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

NOTE The variables section has been omitted for brevity. The full template
file can be found on GitHub at chapter4/distributed/master/template.json.

The SSH key can be generated with ssh-keygen. The command will provide a series
of prompts. Feel free to use the defaults. However, from a security perspective, it’s a
good idea to enter a passphrase. Table 4.3 provides a complete list of Packer variables.

Table 4.3 Jenkins master Packer variables

Variable Description

region AWS region where the Jenkins master machine image will be created, such as
eu-central-1 (aka Frankfurt).

aws_profile The profile to use in the shared credentials file for AWS. See Amazon’s docu-
mentation on specifying profiles for more details: https://docs.aws.amazon
.com/sdk-for-go/v1/developer-guide/configuring-sdk.html.

instance_type The EC2 instance type to use while baking the target AMI, such as t2.micro,
which is Free Tier eligible.

source_ami The source AMI that the temporary instance will be based on. We’re using the
official Amazon Linux image. The ID should be updated according to the AWS
region you’re using. Refer to figure 4.6 for an example.

ssh_key Private SSH key location (~/.ssh/id_rsa), the same key you will use to SSH to
Jenkins worker instances. A Groovy script will be executed at boot time to add
the private key as a credential on the Jenkins master to set up the initial con-
nection with Jenkins workers over SSH.

Copies the Groovy scripts folder from the
local machine to /tmp in the host machine

Copies the configuration files from the
local machine to /tmp in the host machine

Copies the user private
SSH key to the /tmp folder

Executes the setup.s
shell script to copy
the files from the
/tmp folder to the
right folder and
installs Jenkins and
its dependencies

https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html

93Baking the Jenkins master AMI
Once files are uploaded to the temporary instance built by Packer, a setup.sh script
will be executed to install the Jenkins LTS version. Next, the script installs the Git cli-
ent (to clone GitHub repositories in advanced chapters). Then, it copies the workers’
private SSH key to the /var/lib/jenkins/.ssh folder and set permissions. Finally, it
moves Groovy scripts to the initialization folder, installs essentials plugins by executing
the install-plugins.sh script, and starts the Jenkins server.

 It’s worth mentioning that scripts files were uploaded to the /tmp folder; Packer
can upload files only to locations that the provisioning user (ec2-user) has permis-
sion to access. The following listing contains the content of setup.sh.

#!/bin/bash
yum remove -y java
yum install -y java-1.8.0-openjdk
wget -O /etc/yum.repos.d/jenkins.repo
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo
rpm --import https://jenkins-ci.org/redhat-stable/jenkins-ci.org.key
yum install -y jenkins
chkconfig jenkins on

yum install -y git
mkdir /var/lib/jenkins/.ssh
touch /var/lib/jenkins/.ssh/known_hosts
chown -R jenkins:jenkins /var/lib/jenkins/.ssh
chmod 700 /var/lib/jenkins/.ssh
mv /tmp/id_rsa /var/lib/jenkins/.ssh/id_rsa
chmod 600 /var/lib/jenkins/.ssh/id_rsa
chown -R jenkins:jenkins /var/lib/jenkins/.ssh/id_rsa

mkdir -p /var/lib/jenkins/init.groovy.d
mv /tmp/*.groovy /var/lib/jenkins/init.groovy.d/
mv /tmp/jenkins /etc/sysconfig/jenkins
chmod +x /tmp/install-plugins.sh
bash /tmp/install-plugins.sh
service jenkins start

The template directory structure should look like the following. The scripts directory
holds initial configuration and seeding scripts. The config folder contains the list of
essential plugins to install, as well as the shell script to install plugins from the Jenkins
Plugin Index:

 config
 install-plugins.sh
 jenkins
 plugins.txt
 scripts
 basic-security.groovy
 csrf-protection.groovy
 disable-cli.groovy

Listing 4.13 setup.sh script (install Jenkins)

Installs JDK (minimum v1.8.0), which is
required for Jenkins to be up and running

Installs Git client, which will be needed to clone
project GitHub repositories in upcoming chapters

Copies the private SSH
key used to deploy
Jenkins workers/agents
to JENKINS_HOME

Moves the Groovy
scripts to init.groovy.d

Installs needed dependencies
by running install-plugins.sh Starts the

Jenkins service

94 CHAPTER 4 Baking machine images with Packer
 disable-jnlp.groovy
 node-agent.groovy
 skip-jenkins-setup.groovy
 setup.sh
 template.json

NOTE Jenkins captures launch configuration parameters in the /etc/syscon-
fig/jenkins file. If you want to add Java arguments, it’s the file you’re looking
for.

Prior to building the AMI, it’s a good idea to validate the syntactical correctness of the
template file by issuing the packer validate command. Template validated
successfully is the expected output if the template is valid.

 Now that the template is validated, we will bake the AMI with the packer build
command:

packer build template.json

The process can take several minutes. Output similar to this is expected:

If the script succeeds, Packer should show a message containing the AMI ID, and the
Jenkins master AMI will be available in the EC2 dashboard, as shown in figure 4.14.

95Baking the Jenkins master AMI
Figure 4.14 Jenkins master AMI

NOTE The AMI name should be unique. Therefore, you might need to
delete the existing image from your AWS account if it exists already.

Finally, we can spin up an EC2 instance based on the baked AMI. Once the instance is
running, point your browser to the instance’s public IP address on port 8080. After a
while, you’ll see the screen in figure 4.15.

Figure 4.15 Jenkins web dashboard

This time, the setup wizard should disappear and many functionalities should be
added. Sign in using the admin credentials defined in the basic-security.groovy script
from listing 4.5. After login, you can verify that Jenkins credentials are created by
going to the Credentials item on the left; see figure 4.16. So far, only the Jenkins

Figure 4.16 Jenkins credentials

96 CHAPTER 4 Baking machine images with Packer
worker SSH credential has been created (see listing 4.9), but you can customize the
Groovy script to create additional credentials for external services like GitHub, Nexus,
or SonarQube.

 Moreover, the essential plugins were also installed. Jump to Manage Jenkins from
the home page and then navigate to Plugins. You should see a list of plugins installed
by default on the Installed tab, as shown in figure 4.17.

Figure 4.17 Jenkins installed plugins

Now that we have defined a Jenkins configuration as code, we can spawn it as many
times as possible, on different machines, with the same result. And we’ve had no tire-
some manual walks through the GUI.

4.4 Baking the Jenkins worker AMI
The Jenkins worker AMI baking process should be straightforward; see the following
listing. The only requirement for an instance to be a Jenkins worker or build agent is
to have a JDK. Modern Jenkins versions require a Java 8 runtime environment.

{
 "variables" : {...},
 "builders" : [
 {

Listing 4.14 Jenkins worker template file

97Baking the Jenkins worker AMI
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "jenkins-worker",
 "ami_description" : "Jenkins worker's AMI",

],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

The variables in table 4.4 should be provided during build time within the template
file or with the -var flag.

Packer will use the shell provisioner to install the JDK, as well as any tool that you may
require to run your builds (Git or Docker, for example). You can take this script fur-
ther and create a user called jenkins with a home directory to store Jenkins job
workspaces, as shown in the following listing.

#!/bin/bash
yum remove -y java
yum update -y
yum install -y git docker java-1.8.0-openjdk
usermod -aG docker ec2-user
systemctl enable docker

Table 4.4 Jenkins worker Packer variables

Variable Description

region AWS region where the Jenkins worker machine image will be created. Similar to
the Jenkins master AWS region value.

aws_profile The profile to use in the shared credentials file for AWS. See Amazon's docu-
mentation on specifying profiles for more details: http://mng.bz/01Yx.

instance_type The EC2 instance type to use while baking the target AMI, such as t2.micro,
which is Free Tier eligible.

source_ami The source AMI that the temporary instance will be based on. We’re using the
official Amazon Linux image. The ID should be updated according to the AWS
region you’re using.

Listing 4.15 setup.sh script

http://mng.bz/01Yx

98 CHAPTER 4 Baking machine images with Packer
NOTE Docker is necessary, as we are going to define CI/CD pipelines for
Dockerized microservices in upcoming chapters.

Issue the packer build command to bake the Jenkins worker AMI. Once the image-
baking process is finished, the worker’s AMI will be available on the EC2 dashboard,
as shown in figure 4.18.

Figure 4.18 Jenkins worker AMI

NOTE After running the preceding examples, your AWS account now has an
AMI associated with it. AMIs are stored in S3 by Amazon, so unless you want
to be charged about $0.01 per month, you’ll probably want to remove these
images if they’re not needed.

Now that our Jenkins cluster AMIs are ready to use, we will use them in the next chap-
ter to deploy our cluster on AWS with the IaC tool HashiCorp Terraform. Figure 4.19
illustrates how Terraform will be integrated.

 If you plan to embrace the immutable infrastructure approach for upgrading Jen-
kins or installing additional plugins, triggering the provisioning process with Packer
can get challenging. That’s why you should opt for automation and set up a pipeline
with Jenkins to automate the baking workflow for AMI. A basic workflow will use

Figure 4.19 Packer will provision a temporary instance from a template file, and provision the instance with all
needed configs and dependencies. From there, Terraform will deploy EC2 instances based on the baked image.

99Summary
GitHub to store Packer template files and trigger a build on Jenkins upon the push
event. The job will validate the template changes, start the baking process (1), and
create an EC2 instance (2) based on the new baked AMI. Figure 4.20 summarizes the
entire workflow.

Figure 4.20 Automating the AMIs with Jenkins

NOTE Chapter 7 covers how to set up GitHub webhooks to continuously trig-
ger Jenkins build jobs when a push or merge event occurs.

Summary
 HashiCorp Packer leverages the power of immutable infrastructure to bake cus-

tom machine images with all needed dependencies.
 Setting up Jenkins is a complex process, as both Jenkins and its plugins require

tuning and configuration, with dozens of parameters to set within the web UI
Manage Jenkins section.

 Configuration scripts in the init.groovy directory are executed in alphabetical
order during Jenkins boot time. This is ideal for setting up seeding and config-
uration job interfaces.

 Jenkins provides thousands of plugins to support building, deploying, and auto-
mating any project.

 The weekly Jenkins releases deliver bug fixes and new features rapidly to users
and plugin developers who need them. However, the Long-Term Support
release is preferred for its stability.

Discovering Jenkins
as code with Terraform
In the previous chapter, we used HashiCorp Packer to create custom Jenkins
machine images; in this chapter, we will use those images (figure 5.1) to deploy the
machines. To do that, we will write declarative definitions of the Jenkins infrastruc-
ture we want to exist and use an automation tool to deploy the resources on the
given infrastructure-as-a service (IaaS) provider.

 In the past, managing IT infrastructure was a hard job. System administrators
had to manually manage and configure all of the hardware and software that was
needed for the applications to run. However, in recent years, things have changed
dramatically. Trends like cloud computing revolutionized—and improved—the
way organizations design, develop, and maintain their IT infrastructure. One of the
critical components of this trend is called infrastructure as code.

This chapter covers
 Introducing infrastructure as code (IaC)

 Using HashiCorp Terraform, which enables IaC

 Deploying Jenkins in a secure private network

 Scaling Jenkins workers dynamically with AWS
Auto Scaling
100

http://aws.amazon.com/ec2/spot
https://aws.amazon.com/savingsplans/
https://aws.amazon.com/savingsplans/

101Introducing infrastructure as code
5.1 Introducing infrastructure as code
Infrastructure as code (IaC) allows you to manage your infrastructure by using configu-
ration files. This decreases costs, reduces risks, and deploys faster resources on the
cloud. Another benefit is that your infrastructure becomes testable, repeatable, self-
healing, idempotent, and, most importantly, easy to understand, because your infra-
structure code will essentially be your documentation.

 Several IaC tools are available, each with its own implementation (figure 5.2).
Some tools are focused on specific clouds, including AWS CloudFormation (https://
aws.amazon.com/cloudformation/), Azure Resource Manager (https://azure.micro-
soft.com/features/resource-manager/), OpenStack Heat (https://wiki.openstack
.org/wiki/Heat), and Google Cloud Deployment Manager (https://cloud.google
.com/deployment-manager). Others are attempting to bridge all cloud providers and
mask their semantic differences to provide a cloud-agnostic implementation. This cat-
egory includes HashiCorp Terraform, HashiCorp Vagrant, Chef Provisioning, and
Pulumi.

Figure 5.2 Infrastructure-as-code tools

In this book, we will focus exclusively on using HashiCorp Terraform to deploy Jenkins
components. Terraform provides a flexible abstraction of resources and providers, is
platform-agnostic, and supports multiple IaaS providers such as AWS, Microsoft Azure,
Google Cloud Platform, and DigitalOcean. Moreover, Terraform is open source and
comes with a simple and unified syntax with no steep learning curve for new users and
easy-to-access online resources for any infrastructure deployment use case.

Figure 5.1 Jenkins custom machine images

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://azure.microsoft.com/features/resource-manager/
https://azure.microsoft.com/features/resource-manager/
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager

102 CHAPTER 5 Discovering Jenkins as code with Terraform
NOTE Configuration management tools like Ansible and Puppet were built
to install and manage configuration on existing servers. Terraform focuses on
bootstrapping and initialization of servers and other infrastructure resources.

Over the next few sections, you will learn how to use Terraform to deploy a Jenkins
cluster on AWS.

5.1.1 Terraform usage

Terraform uses a push approach: the developer or ops engineer describes the desired
infrastructure in a template file, and Terraform directly interacts with the cloud pro-
vider through its API. For example, if the target cloud provider is AWS, Terraform
uses the Terraform AWS provider plugin (https://registry.terraform.io/providers/
hashicorp/aws/latest), which, under the hood, uses the AWS official SDK to create/
update or destroy resources.

 To maintain the desired state of the infrastructure and detect changes, Terraform
generates a JSON file named terraform.tfstate that stores the state of your managed
infrastructure and configuration. Terraform uses a diffing technique to detect the
changes before any operation. Therefore, individuals and teams can safely and pre-
dictably change the infrastructure.

 Terraform itself is a CLI tool, which can be downloaded from its official release
page (www.terraform.io/downloads.html), as shown in figure 5.3, by installing the

Figure 5.3 Terraform download page

https://registry.terraform.io/providers/hashicorp/aws/latest
https://registry.terraform.io/providers/hashicorp/aws/latest
http://www.terraform.io/downloads.html

103Provisioning an AWS VPC
binary for your operating system and architecture. It supports all major operating sys-
tems. Windows, macOS, and any Linux distribution are supported in both 32-bit and
64-bit versions.

 Once you download the zip archive, unzip it to any convenient folder. Make sure
that this folder is available in your PATH environment variable. To check whether
Terraform is properly installed, issue this command:

terraform --version

NOTE At the time of writing this book, the latest stable version of HashiCorp
Terraform is 1.0.0.

If you get output similar to Terraform vX.Y.Z, congrats! You have a working Terra-
form installation. We’re ready to write our Terraform template files.

5.2 Provisioning an AWS VPC
As discussed in chapter 3, our Jenkins cluster will be deployed inside a VPC within pri-
vate subnets; see figure 5.4. We can deploy the cluster in the default VPC created by
AWS. However, to have full control of the network topology, we will create a VPC from
scratch to isolate the Jenkins cluster from the application workloads we’re going to
deploy in advanced chapters. The following schema summarizes the target VPC
architecture:

NOTE To understand Amazon VPC terminology (subnets, security groups,
route tables, and so forth), refer to chapter 3.

Figure 5.4 AWS virtual private cloud architecture

104 CHAPTER 5 Discovering Jenkins as code with Terraform
In essence, this VPC will be divided into subnets. Some subnets will be public, with
access to the internet; and some will be private. Then, we define routing rules
between subnets to allow traffic to go through either an internet gateway or NAT gate-
way. We will also deploy a bastion host to be able to SSH to Jenkins private instances
without exposing them to the public.

5.2.1 AWS VPC

Terraform uses a DSL called HashiCorp Configuration Language (HCL), a declarative
language to describe infrastructure resources. These resources are described in a sim-
ple text file with a .tf extension.

 Instead of writing one big template file, we will use a modular development
approach and split our Jenkins cluster deployment into multiple template files. Each
file is responsible for deploying a component or an AWS resource of the target infra-
structure. First, create a terraform.tf file with the following content:

provider "aws" {
 region = var.region
 shared_credentials_file = var.shared_credentials_file
 profile = var.aws_profile
}

NOTE Through the rest of the chapters, Terraform will store the state locally,
which isn’t ideal for team collaboration, as the state might contain sensitive
information (if you plan to use SCM for versioning). I recommend using a
remote backend such as Amazon S3 to store the state.

For Terraform to interact with an IaaS, it needs to have a provider configured. In the
preceding code block, we defined AWS as a provider and configured the needed cre-
dentials to interact with the AWS API to create AWS resources afterward. The AWS
provider supports multiple methods of authentication:

 Static credentials by providing access_key and secret_key attributes inline
in the aws provider block.

 Environment variables via AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS
_KEY variables.

 A shared credentials file located by default at ~/.aws/credentials on Linux and
macOS, and %USERPROFILE%\.aws\credentials for Windows users. By default,
Terraform will check these locations, but you can optionally specify a different
location in the configuration by providing the shared_credentials_file
attribute. Also, if you have multiple profiles defined in the credentials file, you
can specify the profile to use through the AWS_PROFILE environment variable by
setting the profile attribute.

 An EC2 IAM instance profile if you’re using Terraform from an EC2 instance.
Terraform will fetch the temporary access tokens from the instance’s metadata.
This is a preferred approach over the preceding strategies when running in an
EC2 instance, as you can avoid hardcoding credentials.

http://icanhazip.com
http://icanhazip.com
http://icanhazip.com
http://icanhazip.com

105Provisioning an AWS VPC
Next, we will declare an AWS VPC resource in a vpc.tf file. The following code snippet
uses the CIDR block 10.0.0.0/16 for the VPC, but you can choose a different CIDR
block:

resource "aws_vpc" "default" {
 cidr_block = var.cidr_block
 enable_dns_hostnames = true

 tags {
 Name = var.vpc_name
 Author = var.author
 }
}

NOTE All available AWS resources can be found in the Terraform AWS docu-
mentation at www.terraform.io/docs/providers/aws/index.html.

Note the use of variables instead of hardcoded values to create reusable resources
(portability) and give users the flexibility to override them during runtime. We’ll
define the list of variables in the variables.tf file, shown in the following listing.

variable "region" {
 description = "AWS region"
 type = string
}

variable "cidr_block" {
 description = "VPC CIDR block"
 default = "10.0.0.0/16"
}

Terraform variables are created with a variable block. They have a name and an
optional type, default value, and description arguments. Table 5.1 provides the full list
of variables.

Listing 5.1 Terraform variables file

Table 5.1 VPC’s Terraform variables

Variable Type Value Description

region String None The name of the region, such as eu-central-1,
in which to deploy the VPC.

shared_
credentials_file

String ~/.aws/
credentials

The path to the shared credentials file. If this
is not set and a profile is specified, ~/.aws/
credentials will be used.

aws_profile String profile The AWS profile name as set in the shared
credentials file.

cidr_block String 10.0.0.0/16 The CIDR block for the VPC. The allowed block
size is between a /16 netmask (65,536 IP
addresses) and /28 netmask (16 IP addresses).

http://www.terraform.io/docs/providers/aws/index.html

106 CHAPTER 5 Discovering Jenkins as code with Terraform
Before running Terraform, we need to install the AWS plugin for Terraform. You can
do this by executing the following command:

terraform init

This installs the AWS provider plugin and initializes a new configuration:

NOTE To be able to use Terraform for the examples in this chapter, add the
VPCFullAccess policy to the IAM user associated with Terraform.

Use the following command to generate an execution plan of changes that will be
applied (for a dry run):

terraform plan --var-file="variables.tfvars"

You can specify individual variables on the command line with the -var option when
running terraform plan. However, because we have a lot of variables to set, it is
more convenient and handy to use a variable definitions file called variables.tfvars.

vpc_name String management Ensure that your VPC is using appropriate naming
for tagging to manage it more efficiently and
adhere to AWS resource tagging best practices.

author String None Name of the owner of the VPC. It’s optional, but
it’s recommended to tag your AWS resources to
track the monthly costs by owner or environment.

Table 5.1 VPC’s Terraform variables (continued)

Variable Type Value Description

107Provisioning an AWS VPC
 This file contains dynamic variables declared in the variables.tf file such as for the
AWS region and credentials file. Any variable for which you define a value needs to
exist in variables.tf, as shown in the following listing.

region="YOUR AWS REGION"
shared_credentials_file="PATH TO .aws/credentials FILE"
aws_profile="AWS PROFILE"
author="AUTHOR NAME"

NOTE If you named the variable definition files terraform.tfvars or terraform
.tfvars.json, they will be loaded automatically by Terraform.

You can also load variables from environment variables. Terraform will parse any envi-
ronment variables that are prefixed with TF_VAR. For example, if Terraform finds an
environment variable named TF_VAR_aws_profile, it will use its value as the string
value of the aws_profile variable.

 The terraform plan command will display the target plan, which is particularly
useful to validate the changes in advance and avoid unwanted changes. The output
should look like this:

NOTE I highly recommend encrypting the state and plan files because they
can potentially store secrets.

Listing 5.2 Terraform dynamic variables

108 CHAPTER 5 Discovering Jenkins as code with Terraform
We can see that one resource will be created. Now we are comfortable that Terraform
is going to do the right thing! We can apply the changes with the following command:

terraform apply --var-file="variables.tfvars"

Type yes to apply the actions, and Terraform will create the AWS VPC resource:

On the AWS VPC dashboard, you should see an additional VPC called management
with the 10.0.0.0/16 CIDR block created, as shown in figure 5.5.

Figure 5.5 AWS VPC dashboard

Awesome—we have a custom VPC!

5.2.2 VPC subnets

Creating a VPC is not enough; to be able to place Jenkins instances in this isolated net-
work, we also need a subnet. This subnet belongs to a previously created VPC, so we
have to pass a VPC ID when we create it. We don’t have to hardcode it, though. Terra-
form, via interpolation syntax, allows us to reference any other resource via its ID.

 Create a subnets.tf file with two public subnets and two private subnets in different
availability zones for resiliency, as shown in the following listing. Each subnet has its
own CIDR block that is a subset of the VPC CIDR block.

resource "aws_subnet" "public_subnets" {
 vpc_id = aws_vpc.management.id

Listing 5.3 VPC subnets

109Provisioning an AWS VPC
 cidr_block = "10.0.${count.index * 2 + 1}.0/24"
 availability_zone = element(var.availability_zones, count.index)
 map_public_ip_on_launch = true

 count = var.public_subnets_count

 tags = {
 Name = "public_10.0.${count.index * 2 +

1}.0_${element(var.availability_zones, count.index)}"
 Author = var.author
 }
}

resource "aws_subnet" "private_subnets" {
 vpc_id = aws_vpc.management.id
 cidr_block = "10.0.${count.index * 2}.0/24"
 availability_zone = element(var.availability_zones, count.index)
 map_public_ip_on_launch = false

 count = var.private_subnets_count

 tags = {
 Name = "private_10.0.${count.index *

2}.0_${element(var.availability_zones, count.index)}"
 Author = var.author
 }
}

The code uses interpolation with a count attribute to give us a parameterized subnet.
With this, we can calculate the subnet CIDR block with expressions such as
10.0.${count.index*2+1}.0/24. You can also use the cidrsubnet(prefix,
newbits, netnum) method to calculate the subnet address within a VPC CIDR
block. (Refer to the documentation at http://mng.bz/WBj0 for more details.)

 Set the default number of subnets to 2 and define the availability zones where the
subnets will be located as variables in the variables.tf file. (You can use the aws ec2
describe-availability-zones command to view the availability zones within
your AWS region.) Table 5.2 provides the complete list of Terraform variables.

Table 5.2 Subnet Terraform variables

Variable Type Value Description

availability_zones List None Availability zone for spinning up the VPC
subnet

public_subnets_count Number 2 The number of public subnets to create

private_subnets_count Number 2 The number of private subnets to create

The count.index variable has the distinct index
number (starting with 0) and is used to construct a

unique CIDR block within the 10.0.0.0/16 range

Specify true to indicate that instances
launched into the subnet should be
assigned a public IP address

Gives a unique name to the subnet; for
example, public_10.0.0.0_eu-central-1

https://aws.amazon.com/fr/ec2/pricing/on-demand/
https://aws.amazon.com/fr/ec2/pricing/on-demand/
https://aws.amazon.com/fr/ec2/pricing/on-demand/

110 CHAPTER 5 Discovering Jenkins as code with Terraform
Run the terraform plan command to generate an action plan. This validates the
configuration that will apply to the current infrastructure:

If you are comfortable with the deployment plan, apply the configuration with the
terraform apply command. The subnets should be created inside the VPC, as
shown in figure 5.6.

Figure 5.6 VPC’s public and private subnets

111Provisioning an AWS VPC
After you’ve created the VPC and subnets, you need to create private and public route
tables to define the traffic-routing mechanism in VPC subnets.

5.2.3 VPC route tables

As stated earlier, the typical configuration for a VPC divides it into public and private
subnets. To let instances deployed in private subnets have access to the internet with-
out being exposed to the public, we will create private and public route tables for fine-
grained traffic control.

 Create a public_rt.tf file, define an internet gateway resource, and attach it to the
VPC created earlier:

resource "aws_internet_gateway" "igw" {
 vpc_id = aws_vpc.management.id

 tags = {
 Name = "igw_${var.vpc_name}"
 Author = var.author
 }
}

Within public_rt.tf, define a public route table and a route that points all traffic
(0.0.0.0/0) to the internet gateway:

resource "aws_route_table" "public_rt" {
 vpc_id = aws_vpc.management.id

 route {
 cidr_block = "0.0.0.0/0"
 gateway_id = aws_internet_gateway.igw.id
 }

 tags = {
 Name = "public_rt_${var.vpc_name}"
 Author = var.author
 }
}

So far, the public route table is not associated with any subnet. You need to associate it
with public subnets in your VPC so that traffic coming from those subnets is routed to
the internet gateway:

resource "aws_route_table_association" "public" {
 count = var.public_subnets_count
 subnet_id = element(aws_subnet.public_subnets.*.id, count.index)
 route_table_id = aws_route_table.public_rt.id
}

NOTE I recommend generating an execution plan before deploying
resources with Terraform to avoid any surprises when Terraform manipulates
infrastructure.

112 CHAPTER 5 Discovering Jenkins as code with Terraform
Once you’ve applied Terraform changes with terraform apply, head over to the
VPC dashboard and jump to the Route Tables section. You should see the public route
table, as shown in figure 5.7.

Figure 5.7 VPC’s public route table

With the public route table created, go ahead and create the private route table.
 Create a private_rt.tf file and define a NAT gateway resource inside a public subnet

to enable Jenkins instances that will be deployed in private subnets later to connect to
the internet. Then, associate an Elastic IP address with the NAT gateway, shown in the
following listing.

resource "aws_eip" "nat" {
 vpc = true

 tags = {
 Name = "eip-nat_${var.vpc_name}"
 Author = var.author
 }
}

resource "aws_nat_gateway" "nat" {
 allocation_id = aws_eip.nat.id
 subnet_id = element(aws_subnet.public_subnets.*.id, 0)

 tags = {
 Name = "nat_${var.vpc_name}"
 Author = var.author
 }
}

Listing 5.4 VPC NAT gateway

113Provisioning an AWS VPC
Within the same file, create a private route table with a route that forwards all traffic
(0.0.0.0/0) to the ID of the NAT gateway that you created, as shown in the following
listing.

resource "aws_route_table" "private_rt" {
 vpc_id = aws_vpc.management.id

 route {
 cidr_block = "0.0.0.0/0"
 nat_gateway_id = aws_nat_gateway.nat.id
 }
 tags = {
 Name = "private_rt_${var.vpc_name}"
 Author = var.author
 }
}

NOTE If you prefer to manage a NAT instance, you can replace the current
route that points to the NAT gateway with a route to the NAT instance.

Finally, assign private subnets to the private route table with the following code block:

resource "aws_route_table_association" "private" {
 count = var.private_subnets_count
 subnet_id = element(aws_subnet.private_subnets.*.id, count.index)
 route_table_id = aws_route_table.private_rt.id
}

The Elastic IP address is a static public IPv4 address, so it may be useful to mask the
failure of a NAT gateway by rapidly remapping the address to another NAT gateway.

 Use terraform apply to apply the infrastructure changes. A private route table
should be created, as shown in figure 5.8.

Figure 5.8 VPC’s private route table

Listing 5.5 Private route table

114 CHAPTER 5 Discovering Jenkins as code with Terraform
An additional route table rule should be created to point internet-bound traffic to the
NAT gateway. This enables Jenkins instances in the private subnets to have access to
the internet.

 Our Jenkins cluster will be deployed inside private subnets. Hence, instances won’t
be publicly accessible from the internet (because the cluster doesn’t have a public IP).
To securely access Jenkins instances, we will deploy a bastion host.

NOTE You can skip this solution if you set up a remote access virtual private
network (VPN) like OpenVPN Access Server. Refer to the official guide at
https://openvpn.net/aws-video-tutorials/byol/ for instructions.

5.2.4 VPC bastion host

A bastion host, also called a jump box, provides secure access to EC2 instances located in
private subnets via a single controlled point of entry. A bastion host is a special-
purpose machine, deployed in a public subnet, and has access to private instances
within private subnets.

 These instances are accessed with the help of SSH or RDP protocols. After a con-
nection is established with the bastion host, it allows using SSH or RDP to log in to
other instances. In this way, it behaves like a jump box.

 In a new bastion.tf file, define an EC2 instance resource within a public subnet to
reach it from the outside internet:

resource "aws_instance" "bastion" {
 ami = data.aws_ami.bastion.id
 instance_type = var.bastion_instance_type
 key_name = aws_key_pair.management.id
 vpc_security_group_ids = [aws_security_group.bastion_host.id]
 subnet_id = element(aws_subnet.public_subnets, 0).id
 associate_public_ip_address = true

 tags = {
 Name = "bastion"
 Author = var.author
 }
}

The EC2 instance uses an Amazon 2 Linux machine image. We use the aws_ami data
source to get the AMI ID from the AWS marketplace. The most_recent attribute is
enabled to use the recent AMI if more than one result is returned:

data "aws_ami" "bastion" {
 most_recent = true
 owners = ["amazon"]

 filter {
 name = "name"
 values = ["amzn2-ami-hvm-*-x86_64-ebs"]
 }
}

https://openvpn.net/aws-video-tutorials/byol/

115Provisioning an AWS VPC
NOTE If you want to add an extra layer of security for the bastion host, you
can bake your own machine image with HashiCorp Packer by using the same
procedure described in chapter 4.

While creating the EC2, we attached an SSH key pair to be able to access via SSH to
the bastion host with the private key. The key pair uses our public SSH key located
under the .ssh folder in the working directory. You can also generate a new one with
the ssh-keygen command. The following is the Terraform snippet code; the
aws_key_pair resource takes as a parameter the SSH public-key file location:

resource "aws_key_pair" "management" {
 key_name = "management"
 public_key = file(var.public_key)
}

By default, SSH access to newly created EC2 instances is disabled. To allow SSH access
to the bastion hosts, we will associate a security group to the running instance. The
security group will allow inbound (ingress) traffic on port 22 (SSH) from anywhere
(0.0.0.0/0). The CIDR source block can be replaced with your own public IP address/
32 or network address to enhance security and prevent security breaches:

resource "aws_security_group" "bastion_host" {
 name = "bastion_sg_${var.vpc_name}"
 description = "Allow SSH from anywhere"
 vpc_id = aws_vpc.management.id

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "bastion_sg_${var.vpc_name}"
 Author = var.author
 }
}

You can use a website such as icanhazip.com to retrieve your machine’s public IP
address with the following code block:

data "http" "ip" {
 url = "http://ipv4.icanhazip.com"
}

116 CHAPTER 5 Discovering Jenkins as code with Terraform
If you want to use this in a network ingress rule, you can reference the IP address with
the data.http.ip.body attribute.

 Once we have our networking setup ready, declare the new Terraform variables in
variables.tf. Refer to chapter5/variables.tf for the complete list of variables.

 Then, apply the changes with terraform apply. A public EC2 instance should be
deployed inside the VPC in a public subnet, as shown in figure 5.9.

Figure 5.9 Bastion host deployed in a public subnet

We can copy the instance’s public IP address directly from the EC2 console. Alterna-
tively, we can use the Terraform outputs feature to display the IP address in the termi-
nal session by defining an outputs.tf file with the following content:

output "bastion" {
 value = ${aws_instance.bastion.public_ip}
}

To get the instance’s IPv4 public IP, you can reissue the terraform apply or
terraform output command:

117Setting up a self-healing Jenkins master
With this Terraform code, we have our bastion host ready and can use it to set up an
SSH tunnel to access private instances:

ssh -L TARGET_PORT:TARGET_INSTANCE_PRIVATE_IP:22 ec2-user@BASTION_IP

NOTE You can take this further and deploy an Auto Scaling group (min=1
and max=1) to ensure that a bastion host instance is always available. Also for
cost optimization, you can use Spot instances instead of on-demand instances.

After creating these files, the directory structure should look as follows:

terraform.tf
vpc.tf
subnets.tf
private_rt.tf
public_rt.tf
bastion.tf
variables.tf
variables.tfvars
outputs.tf

The files can be called anything. We’ve named them based on the AWS resources
declared on each, and for convenience and identification. Remember all files that
end in .tf will be loaded by Terraform.

5.3 Setting up a self-healing Jenkins master
Now that our VPC has been created, we can deploy a dedicated EC2 instance to host
the Jenkins master component within a private subnet, by defining an aws_instance
resource in the jenkins_master.tf file with the following attributes. The instance is
backed by an EBS volume (SSD) of 30 GB, which makes it suitable for a broad range
of workloads:

resource "aws_instance" "jenkins_master" {
 ami = data.aws_ami.jenkins-master.id
 instance_type = var.jenkins_master_instance_type
 key_name = aws_key_pair.management.id
 vpc_security_group_ids = [aws_security_group.jenkins_master_sg.id]
 subnet_id = element(aws_subnet.private_subnets, 0)

 root_block_device {
 volume_type = "gp3"
 volume_size = 30
 delete_on_termination = false
 }

 tags = {
 Name = "jenkins_master"
 Author = var.author
 }
}

118 CHAPTER 5 Discovering Jenkins as code with Terraform
The 30 GB storage value can change based on the number and size of the projects you
will continuously build, because Jenkins settings and build logs are stored on the mas-
ter by default.

NOTE A proper tagging policy for Jenkins instances is pivotal in cloud cost
optimization. It leverages the use of filters within AWS bills and enforces
tracking and cost allocation.

The EC2 instance uses the Jenkins master AMI baked by Packer in chapter 4, refer-
enced by the aws_ami data resource:

data "aws_ami" "jenkins-master" {
 most_recent = true
 owners = ["self"]

 filter {
 name = "name"
 values = ["jenkins-master-*"]
 }
}

We’ll attach a security group to the instance to allow SSH from the bastion host only
and inbound traffic on port 8080 (Jenkins web dashboard) from VPC CIDR block; see
the following listing.

resource "aws_security_group" "jenkins_master_sg" {
 name = "jenkins_master_sg"
 description = "Allow traffic on port 8080 and enable SSH"
 vpc_id = aws_vpc.management.id

 ingress {
 from_port = "22"
 to_port = "22"
 protocol = "tcp"
 security_groups = [aws_security_group.bastion_host.id]
 }

 ingress {
 from_port = "8080"
 to_port = "8080"
 protocol = "tcp"
 cidr_blocks = [var.cidr_block]
 }

 egress {
 from_port = "0"
 to_port = "0"

Listing 5.6 Jenkins security group

119Setting up a self-healing Jenkins master
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "jenkins_master_sg"
 Author = var.author
 }
}

Next, define the instance type used to deploy the EC2 instance as a variable. For the
sake of simplicity, t2.large (8 GB of memory and 2vCPU) should be enough, as we
won’t be allocating executors/workers on the master. Hence, the Jenkins master won’t
be overloaded by build jobs.

 However, the amount of memory Jenkins needs depends on your project build
needs and tools required by the same builds. Each build node connection will take
two to three threads, which equals about 2 MB or more of memory. You will also need
to factor in CPU overhead for Jenkins if a lot of users will be accessing the Jenkins user
interface.

 That’s why we will deploy Jenkins workers later, to delegate builds to workers and
keep the bulk of the work off the master itself. Therefore, a general-purpose instance
to host a Jenkins master can provide a balance between compute and memory
resources.

NOTE For more information, see the EC2 general-purpose instance docu-
mentation: https://aws.amazon.com/ec2/pricing/on-demand/.

The t2.large instance type may be a good option (though this instance type is not
part of the AWS Free Tier, so you should terminate it or turn it off when you’re done
experimenting). Declare it as a variable in the variables.tfvars file:

variable "jenkins_master_instance_type" {
 type = string
 description = "Jenkins master EC2 instance type"
 default = "t2.large"
}

NOTE I encourage you to benchmark your project builds on several Amazon
EC2 instance types to select the most appropriate configuration.

Generate an execution plan with this command:

terraform plan --var-file=variables.tfvars

You should see output similar to the following (the full terraform plan has been
cropped for brevity):

https://aws.amazon.com/ec2/pricing/on-demand/

120 CHAPTER 5 Discovering Jenkins as code with Terraform

Since the execution plan looks good, enter yes, and you’ll see your Jenkins master
EC2 instance being deployed. Once the provisioning process is completed, the
instance should be available on the EC2 dashboard, as shown in figure 5.10.

Figure 5.10 Jenkins master EC2 instance

121Setting up a self-healing Jenkins master
While this instance is private (it has no public IP address), we can set up an SSH tun-
nel by using the bastion host and executing the following commands (obviously, with
different values):

ssh -L 4000:10.0.0.71:22 ec2-user@35.180.122.81
ssh ec2-user@localhost -p 4000

You can check that Jenkins is running by issuing the service jenkins status
command. Figure 5.11 shows the output.

Figure 5.11 SSH tunnel connection

To access the Jenkins dashboard, we will create a public load balancer in front of the
EC2 instance. This Elastic load balancer will accept HTTP traffic on port 80 and for-
ward it to the EC2 instance on port 8080. Also, it automatically checks the health of
the registered EC2 instance on port 8080. If the Elastic Load Balancing (ELB) finds
the instance unhealthy, it stops sending traffic to the Jenkins instance. Within jenkins_
master.tf, declare the load balancer resource:

resource "aws_elb" "jenkins_elb" {
 subnets = \
 [for subnet in aws_subnet.public_subnets : subnet.id]
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_jenkins_sg.id]
 instances = [aws_instance.jenkins_master.id]

 listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"
 }

122 CHAPTER 5 Discovering Jenkins as code with Terraform
 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:8080"
 interval = 5
 }
 tags = {
 Name = "jenkins_elb"
 Author = var.author
 }
}

The load balancer will accept incoming HTTP traffic from anywhere (you should lock
the incoming traffic to the specific IP address range from which you expect traffic) by
assigning the following security group configuration. Later, we will add an HTTPS lis-
tener to use an SSL protocol to establish secure connections over the HTTP layer.
Define the load balancer’s security group within jenkins_master.tf; here is the
resource code block:

resource "aws_security_group" "elb_jenkins_sg" {
 name = "elb_jenkins_sg"
 description = "Allow http traffic"
 vpc_id = aws_vpc.management.id

 ingress {
 from_port = "80"
 to_port = "80"
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 egress {
 from_port = "0"
 to_port = "0"
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "elb_jenkins_sg"
 Author = var.author
 }
}

Next, update the Jenkins master security group to allow traffic on port 8080 from the
load balancer security group ID only:

ingress {
 from_port = "8080"
 to_port = "8080"
 protocol = "tcp"
 security_groups = [aws_security_group.elb_jenkins_sg.id]
}

123Setting up a self-healing Jenkins master
Output the load balancer DNS URL by defining a new output section in the outputs.tf
file:

output "jenkins-master-elb" {
 value = aws_elb.jenkins_elb.dns_name
}

After you apply the changes with Terraform, the Jenkins master load balancer URL
should be displayed in your terminal session:

Point your favorite browser to the URL, and you should have access to the Jenkins
web dashboard. You can see the Welcome to Jenkins! message on the home page
(figure 5.12).

Figure 5.12 Jenkins web dashboard

Awesome! You have a running Jenkins server behind an Elastic Load Balancer.
 If your goal is to architect for high availability, you need to maintain a redundant

Jenkins master in separate availability zones. However, because the Jenkins master

124 CHAPTER 5 Discovering Jenkins as code with Terraform
configuration is stored in the $JENKINS_HOME directory instead of a centralized
database, you need to use an external plugin such as the High Availability Manage-
ment plugin from CloudBees (https://docs.cloudbees.com/plugins/ci/cloudbees-ha)
or set up the $JENKINS_HOME directory on a shared network drive, so it could be
accessible by multiple Jenkins master instances.

NOTE In chapter 14, we will go through how to use a solution like Amazon
Elastic File System (EFS) to mount a volume to share the $JENKINS_HOME
folder across multiple instances.

5.4 Running Jenkins with native SSL/HTTPS
Having secure access to the Jenkins dashboard is a plus. That’s why we will use a free
SSL provided by AWS to serve the content with HTTPS at your custom domain name
and provide encrypted network connections; see figure 5.13.

NOTE If you're running Jenkins locally, you can generate a self-signed certifi-
cate and deploy a reverse proxy like NGINX. If you opt to go with a different
cloud provider, you can generate a certificate issued by a certificate authority
(CA) for free with Let’s Encrypt.

Figure 5.13 Free SSL certificates from AWS Certificate Manager

You can easily get an SSL certificate with AWS Certificate Manager (ACM). This ser-
vice makes it easy to provision, manage, and deploy SSL/TLS certificates on AWS-
managed resources.

https://docs.cloudbees.com/plugins/ci/cloudbees-ha

125Running Jenkins with native SSL/HTTPS
 Head to the ACM dashboard and click the Request a Certificate button to create a
new SSL certificate. Select Request a Public Certificate and add your domain name.
You might also want to secure your subdomains by adding an asterisk. Once AWS vali-
dates that you own those domain names, the status will change from Pending Valida-
tion to Issued. Copy the SSL Amazon Resource Name (ARN).

 Update the load balancer resource to enable the HTTPS listener on port 443. Set
the ACM SSL ARN on the HTTPS listener. The load balancer uses the certificate to
terminate the connection and then decrypt requests from clients before sending
them to the Jenkins instance:

listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
}

Add an ingress rule to the load balancer security group to allow incoming HTTPS
traffic:

ingress {
 from_port = "443"
 to_port = "443"
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
}

Then create an A record in the Route 53 service (https://aws.amazon.com/route53/)
pointing to the load balancer fully qualified domain name (FQDN). The Terraform
code for the DNS record will look like this:

resource "aws_route53_record" "jenkins_master" {
 zone_id = var.hosted_zone_id
 name = "jenkins.${var.domain_name}"
 type = "A"

 alias {
 name = aws_elb.jenkins_elb.dns_name
 zone_id = aws_elb.jenkins_elb.zone_id
 evaluate_target_health = true
 }
}

NOTE If you don’t have a hosted zone in Amazon Route 53, you can skip to
the next section and stick with the load balancer FQDN.

This resource block will create an A record, which maps the jenkins.domain.com URL
to an AWS alias to the load balancer FQDN.

 Finally, define the referenced Terraform variables in the variables.tf file. Table 5.3
lists the variables to define in addition to the variables defined earlier in this chapter.

Exposes an HTTPS listener
and forwards incoming
requests on port 443 to port
8080 of the EC2 instance.

Allows inbound traffic on
port 443 from anywhere
(0.0.0.0/0)

Sets up an alias record
(jenkins.domain.com) that
points to the Jenkins load
balancer FQDN

https://aws.amazon.com/route53/

126 CHAPTER 5 Discovering Jenkins as code with Terraform

Define an output section to display the Jenkins public DNS URL by referencing the
Route 53 A record resource:

output "jenkins-dns" {
 value = "https://${aws_route53_record.jenkins_master.name}"
}

Issue the terraform apply command for changes to take effect. It should deploy
the needed resources and display the Jenkins dashboard URL:

The Jenkins load balancer now should be listening on both the HTTP (80) and
HTTPS (433) ports, as shown in figure 5.14.

Figure 5.14 Allowing HTTPS and HTTP on ELB

Table 5.3 DNS Terraform variables

Variable Type Value Description

hosted_zone_id String None The ID of the hosted zone to contain the A record

domain_name String None The domain name to use, such as domain.com

ssl_arn String None ARN of SSL certificate you have created in AWS ACM

Concatenates the alias record name
with the https:// keyword to

construct the Jenkins HTTPS URL

127Running Jenkins with native SSL/HTTPS
Point your browser to the subdomain name created with Terraform. The Jenkins web
dashboard should be served through HTTPS, as shown in figure 5.15.

Figure 5.15 The Jenkins dashboard is now served through HTTPS. If you’re using Chrome, you should
see a green lock in the URL bar.

So far, we have deployed a private standalone Jenkins master instance behind a public
load balancer, as shown in figure 5.16.

Figure 5.16 Jenkins standalone setup on AWS

In the next section, we will deploy additional Jenkins workers to offload the load from
the Jenkins master.

NOTE Maintaining a regular backup of your Jenkins EBS volume is crucial to
ensuring that the Jenkins instance can be restored in the event of data cor-
ruption or loss. Refer to the official documentation for instructions: http://
mng.bz/807P.

http://mng.bz/807P
http://mng.bz/807P

128 CHAPTER 5 Discovering Jenkins as code with Terraform
5.5 Dynamically autoscaling the Jenkins worker pool
Running a single Jenkins instance is a good start, but in the real world, a single
instance is a single point of failure. If that instance crashes or becomes overwhelmed
by too many builds, developers can no longer deliver their releases. The solution is to
run a cluster of Jenkins workers and adjust the size of the cluster up or down based on
resource utilization.

5.5.1 Launch configuration

You can certainly deploy Jenkins workers as separate EC2 instances (rerunning the
previous steps). However, we want the instances to be deployed and replaced automat-
ically for autorecovery. That’s why we will rely on a standard AWS feature called Auto
Scaling groups.

NOTE For more details on how the AWS EC2 autoscaling feature works, refer
to chapter 3 about architecting Jenkins for scale.

The first step in creating an ASG is to create a launch configuration, which describes
how to configure each Jenkins worker instance. Declare an aws_launch_configu-
ration resource in the jenkins_workers.tf file:

resource "aws_launch_configuration" "jenkins_workers_launch_conf" {
 name = "jenkins_workers_config"
 image_id = data.aws_ami.jenkins-worker.id
 instance_type = var.jenkins_worker_instance_type
 key_name = aws_key_pair.management.id
 security_groups = [aws_security_group.jenkins_workers_sg.id]
 user_data = data.template_file.user_data_jenkins_worker.rendered

 root_block_device {
 volume_type = "gp2"
 volume_size = 30
 delete_on_termination = false
 }

 lifecycle {
 create_before_destroy = true
 }
}

NOTE You should benchmark performance for your projects to determine
the appropriate instance type you need, as well as the amount of disk space.

Similarly to the Jenkins master, the workers will be deployed across private subnets
and will use the Jenkins worker AMI built with Packer in chapter 4:

data "aws_ami" "jenkins-worker" {
 most_recent = true

Configures a blueprint with the baked Jenkins
worker AMI and key name that should be used for

the instances, and assigns a security group

The user data to
provide when
launching the

instance. It will
autojoin the running

instance to the
Jenkins cluster.

Customizes details
about the root block
device of the instance

129Dynamically autoscaling the Jenkins worker pool

c

 owners = ["self"]

 filter {
 name = "name"
 values = ["jenkins-worker*"]
 }
}

To be able to set up the Jenkins cluster, the master needs to set up a bidirectional con-
nection with the workers. Hence, we need to allow SSH from the Jenkins master secu-
rity group ID (allowing SSH from the bastion host can be helpful for future
debugging and troubleshooting):

resource "aws_security_group" "jenkins_workers_sg" {
 name = "jenkins_workers_sg"
 description = "Allow traffic on port 22 from Jenkins master SG"
 vpc_id = aws_vpc.management.id

 ingress {
 from_port = "22"
 to_port = "22"
 protocol = "tcp"
 security_groups = [aws_security_group.jenkins_master_sg.id,
aws_security_group.bastion_host.id]
 }

 egress {
 from_port = "0"
 to_port = "0"
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "jenkins_workers_sg"
 Author = var.author
 }
}

Finally, we define user-data, a script that will be executed at boot time on each Jen-
kins worker instance. The script takes as a parameter the Jenkins admin credentials,
Jenkins SSH credential ID, as well as the Jenkins IP address.

 The SSH credential ID refers to the credential we created with the Groovy script at
initialization time in chapter 4; the credential contains the private SSH key located in
the .ssh folder in the working directory. The private SSH key will be used by the Jen-
kins master to add the Jenkins workers via SSH:

data "template_file" "user_data_jenkins_worker" {
 template = "${file("scripts/join-cluster.tpl")}"

 vars = {
 jenkins_url = "http://${aws_instance.jenkins_master.private_ip}:8080"
 jenkins_username = var.jenkins_username

The data source resource is
used to get the ID of the
baked Jenkins worker AMI.

Allows inbound traffi
on port 22 (SSH) from
the Jenkins master
and bastion host
security groups

Allows outbound traffic
from anywhere for all
protocols (–1)

130 CHAPTER 5 Discovering Jenkins as code with Terraform
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}

The scripts/join-cluster.tpl script will fetch the running instance’s private IP address
from the EC2 metadata (available at 169.254.169.254/latest/meta-data). The script
will then issue an HTTP request to Jenkins with the Groovy script in the following list-
ing to add the instance to the cluster.

#!/bin/bash
JENKINS_URL="${jenkins_url}"
JENKINS_USERNAME="${jenkins_username}"
JENKINS_PASSWORD="${jenkins_password}"
TOKEN=$(curl -u $JENKINS_USERNAME:$JENKINS_PASSWORD
''$JENKINS_URL'/crumbIssuer/api/xml?xpath= \
concat(//crumbRequestField,":",//crumb)')
INSTANCE_NAME=$(curl -s 169.254.169.254/latest/meta-data/local-hostname)
INSTANCE_IP=$(curl -s 169.254.169.254/latest/meta-data/local-ipv4)
JENKINS_CREDENTIALS_ID="${jenkins_credentials_id}"

curl -v -u $JENKINS_USERNAME:$JENKINS_PASSWORD -H "$TOKEN" -d 'script=
import hudson.model.Node.Mode
import hudson.slaves.*
import jenkins.model.Jenkins
import hudson.plugins.sshslaves.SSHLauncher
DumbSlave dumb = new DumbSlave("'$INSTANCE_NAME'",
"'$INSTANCE_NAME'",
"/home/ec2-user",
"3",
Mode.NORMAL,
"workers",
new SSHLauncher("'$INSTANCE_IP'", 22, "'$JENKINS_CREDENTIALS_ID'"),
RetentionStrategy.INSTANCE)
Jenkins.instance.addNode(dumb)
' $JENKINS_URL/script

This configuration allows three executors to be run in parallel in each worker. If you
plan to use only the master as a job scheduler, you can configure its number of execu-
tors setting to 0 to ensure that project builds will happen on only the worker machines.
The resource block also defines a workspace directory on the worker instance that the
worker agent can use to run build jobs. This configuration uses /home/ec2-user as a
workspace. Nothing mission-critical is stored in this directory; everything important is
transferred back to the master instance after the build is done, so you usually don’t
need to be concerned with backing up this directory.

Listing 5.7 Autojoining Jenkins workers

Replaces the variables with the given
values in the user_data_jenkins
_worker Terraform resource

Fetches a valid token from
the Jenkins master server

Fetches the instance private
IP address and hostname

from the EC2 metadata

Issues a GET request on the
Jenkins server with a
Groovy script in the

request payload. The script
will add the current

instance as a Jenkins agent.

131Dynamically autoscaling the Jenkins worker pool
 We have also defined a label called workers, so each worker instance will join the
Jenkins cluster under that label. Hence, you can configure your build jobs to run on
only workers’ machines.

 Next, define the Jenkins master credentials and worker instance type as variables
in the variable.tf file. Table 5.4 lists the variables.

NOTE You can significantly reduce your Jenkins workers’ costs (up to 90%
cost savings) by using Amazon EC2 Spot instances (http://aws.amazon.com/
ec2/spot), or by subscribing to Amazon Savings Plans (https://aws.amazon
.com/savingsplans/).

Finally, issue terraform apply to deploy the Jenkins workers.

5.5.2 Auto Scaling group

Now that the Jenkins workers’ blueprint is defined in a launch configuration, we can
deploy an Auto Scaling group to deploy similar Jenkins workers based on the launch
configuration.

 Create the ASG by using the aws_autoscaling_group resource within the
jenkins_workers.tf file:

resource "aws_autoscaling_group" "jenkins_workers" {
 name = "jenkins_workers_asg"
 launch_configuration =

aws_launch_configuration.jenkins_workers_launch_conf.name
 vpc_zone_identifier = \
 [for subnet in aws_subnet.private_subnets : subnet.id]
 min_size = 2
 max_size = 10
 depends_on = [aws_instance.jenkins_master, aws_elb.jenkins_elb]
 lifecycle {
 create_before_destroy = true
 }
 tag {
 key = "Name"
 value = "jenkins_worker"
 propagate_at_launch = true
 }
 tag {

Table 5.4 Jenkins workers’ Terraform variables

Variable Type Value Description

jenkins_username String None Jenkins admin username

jenkins_password String None Jenkins admin password

jenkins_credentials_id String None Jenkins worker SSH-based creden-
tial ID

jenkins_worker_instance_type String t2.medium Jenkins worker EC2 instance type

Deploys an ASG of two EC2
instances (minimum) in
different subnets for resiliency

http://aws.amazon.com/ec2/spot
http://aws.amazon.com/ec2/spot
https://aws.amazon.com/savingsplans/
https://aws.amazon.com/savingsplans/
https://aws.amazon.com/savingsplans/

132 CHAPTER 5 Discovering Jenkins as code with Terraform
 key = "Author"
 value = var.author
 propagate_at_launch = true
 }
}

This ASG will run 2 to 10 workers (defaulting to 2 for the initial launch), each tagged
with the name jenkins_worker. The ASG uses a reference to fill in the launch con-
figuration name.

NOTE The keyword depends_on is used to ensure that the Jenkins master
instance is running before deploying workers, as the workers need the Jen-
kins master IP to join the cluster successfully.

The launch configuration is immutable, so you can’t modify it after it was created (for
example, to upgrade the Jenkins worker instance type or change the base AMI).
Therefore, you will need to destroy the launch configuration and create a new one
instead; that’s why the create_before_destroy life cycle setting is used.

 To create the autoscaling group, run terraform apply on your terminal session:

133Dynamically autoscaling the Jenkins worker pool
The provisioning process should take a few seconds. When you refresh your EC2 con-
sole, you’ll see the output in figure 5.17 in the dashboard.

Figure 5.17 Jenkins workers deploying inside an ASG

NOTE Chapter 14 covers another approach: we’ll deploy the worker nodes in
Docker containers to use EC2 instances efficiently (with multiple builds to
run independently on the same server) as well as to run in a “clean” build
environment every time.

Great! We have two Jenkins workers running inside an ASG.

5.5.3 Autoscaling scaling policies

So far, the number of workers is static and fixed. To scale the number of workers
dynamically, we will define scaling policies based on CPU utilization. This gives you
extra capacity to handle the build of additional jobs without maintaining an excessive
number of idle Jenkins workers and paying extra money.

 Create a cloudwatch.tf file and define an AWS CloudWatch metric alarm based on
CPU utilization. The CloudWatch alarm will trigger a scale-out event to add a new Jen-
kins worker instance if the average CPU utilization is over 80% for a period of 2 min-
utes, as shown in the following listing.

resource "aws_cloudwatch_metric_alarm" "high-cpu-jenkins-workers-alarm" {
 alarm_name = "high-cpu-jenkins-workers-alarm"
 comparison_operator = "GreaterThanOrEqualToThreshold"
 evaluation_periods = "2"
 metric_name = "CPUUtilization"
 namespace = "AWS/EC2"
 period = "120"
 statistic = "Average"
 threshold = "80"

 dimensions = {
 AutoScalingGroupName = aws_autoscaling_group.jenkins_workers.name
 }

Listing 5.8 CloudWatch scale-out alarm

134 CHAPTER 5 Discovering Jenkins as code with Terraform
 alarm_description = "This metric monitors workers cpu utilization"
 alarm_actions = [aws_autoscaling_policy.scale-out.arn]
}

resource "aws_autoscaling_policy" "scale-out" {
 name = "scale-out-jenkins-workers"
 scaling_adjustment = 1
 adjustment_type = "ChangeInCapacity"
 cooldown = 300
 autoscaling_group_name = aws_autoscaling_group.jenkins_workers.name
}

NOTE It’s up to you what to monitor, but the metrics most useful for knowing
when you should scale up and add another Jenkins worker or scale down by
terminating a worker are probably CPU utilization, memory utilization, and
network utilization.

Similarly, we define another CloudWatch alarm to trigger a scale-in event to remove a
Jenkins worker if the average CPU utilization is less than 20% for a period of 2 min-
utes; see the following listing.

resource "aws_cloudwatch_metric_alarm" "low-cpu-jenkins-workers-alarm" {
 alarm_name = "low-cpu-jenkins-workers-alarm"
 comparison_operator = "LessThanOrEqualToThreshold"
 evaluation_periods = "2"
 metric_name = "CPUUtilization"
 namespace = "AWS/EC2"
 period = "120"
 statistic = "Average"
 threshold = "20"

 dimensions = {
 AutoScalingGroupName = aws_autoscaling_group.jenkins_workers.name
 }

 alarm_description = "This metric monitors ec2 cpu utilization"
 alarm_actions = [aws_autoscaling_policy.scale-in.arn]
}

resource "aws_autoscaling_policy" "scale-in" {
 name = "scale-in-jenkins-workers"
 scaling_adjustment = -1
 adjustment_type = "ChangeInCapacity"
 cooldown = 300
 autoscaling_group_name = aws_autoscaling_group.jenkins_workers.name
}

The cooldown period is set to 300 seconds to ensure that the ASG doesn’t launch or
terminate additional Jenkins workers before the previous scaling activity takes effect.

NOTE When a scale-in event occurs, the ASG will terminate a Jenkins worker
based on the termination policy. Refer to chapter 3 for more information.

Listing 5.9 CloudWatch scale-in alarm

135Dynamically autoscaling the Jenkins worker pool
If you run the terraform apply command, you’ll see that Terraform wants to create
two CloudWatch alarms (the output has been cropped for brevity):

You can access Amazon EC2 Auto Scaling (figure 5.18) by signing into the AWS Man-
agement Console, choosing EC2 from the console home page, and then choosing
Auto Scaling Groups from the navigation pane.

Figure 5.18 Auto Scaling group scaling policies

Next, we will run the Stress tool to test the scaling policies of the workers’ ASG.

136 CHAPTER 5 Discovering Jenkins as code with Terraform
5.5.4 Workers CPU utilization load

SSH to one of the Jenkins workers by setting up an SSH tunnel from a bastion host.
Install the Stress tool with the Yum package manager:

sudo yum update
sudo yum install -y stress

To run the Stress tool, enter the following command. It will generate a thread to max
out two CPU cores (which is all we need, as we’re using t2.large instances):

stress --cpu 2

This gives you a chance to see what will happen to the autoscaling policies when real
jobs are being built on Jenkins and CloudWatch alarms start triggering.

 You can use the top command to monitor the CPU utilization of the process cre-
ated by the Stress tool or use CloudWatch metrics on the EC2 instance. The CPU utili-
zation will hit 100% for an amount of time, as shown in figure 5.19.

NOTE CloudWatch basic monitoring refreshes every 5 minutes, and our auto-
scaling policies require a metric to be met for 2 consecutive minutes, so we
had to run stress tests for at least 5 minutes to ensure that our policies had
enough time to be triggered.

Figure 5.19 Jenkins worker CPU utilization usage

CloudWatch aggregates metric data points based on the statistic of CPU utilization
associated with the CloudWatch alarm. When the alarm is breached, the scale-out pol-
icy is triggered, as shown in figure 5.20.

137Dynamically autoscaling the Jenkins worker pool

Figure 5.20 CloudWatch scale-out alarm triggered

When the metric value gets to 80%, the desired capacity of the group increases by one
instance to two instances; see figure 5.21.

Figure 5.21 Scale-out policy invoked

After the new instance is running, the user-data script will be executed, and the
worker will join the cluster, as you can see in figure 5.22.

Figure 5.22 The new worker has joined the cluster automatically.

138 CHAPTER 5 Discovering Jenkins as code with Terraform
If the metric value gets to 20%, the desired capacity of the group decreases by one
instance; see figure 5.23.

Figure 5.23 Terminating an unused worker because of a scale-in event

As a result, the terminated worker won’t be reachable and will be marked offline on
the Jenkins web dashboard (figure 5.24).

Figure 5.24 The terminated Jenkins worker is unreachable.

NOTE When you’re done experimenting with Terraform, it’s a good idea to
remove all the resources you created so AWS doesn’t charge you for them.
Run the terraform destroy command to delete the existing AWS infra-
structure.

139Summary
In this chapter, you learned how to deploy a highly available, secure, and resilient Jen-
kins cluster on AWS by using the IaC tool Terraform and how to use the baked Packer
images to deploy workers to scale. Figure 5.25 summarizes the deployed architecture.

Figure 5.25 Jenkins distributed builds on AWS

Terraform is a vendor-agnostic tool that can manage infrastructure for multiple
resource providers. Therefore, in the upcoming chapter, you’ll learn to deploy the
preceding architecture on other cloud providers such as Microsoft Azure and Google
Cloud Platform by using the same configuration files.

Summary
 Infrastructure as code is an approach to defining infrastructure and network

components through descriptive or high-level code.
 Terraform is an IaC tool that works with any cloud, be it private, on premises, or

a public provider. Terraform allows safe and convenient management of infra-
structure resources.

 The Jenkins master should be hosted on an instance that has enough CPU and
network bandwidth to handle concurrent users.

 Jenkins workers should be immutable, able to be thrown away quickly and
brought up or added into the cluster with as little manual interaction as possi-
ble. This can be achieved by leveraging AWS Auto Scaling groups.

 Architect Jenkins for high availability and fault tolerance by spreading Jenkins
workers across multiple availability zones.

Deploying HA Jenkins on
multiple cloud providers
You’ve already seen how to accomplish fault tolerance by deploying the Jenkins
cluster in AWS. The chapter will try to achieve the same required speed and auto-
mation on the infrastructure level by using the same tools and processes to auto-
mate the creation of a cluster on different cloud providers such as Microsoft Azure,
Google Cloud Platform, and DigitalOcean—ranging from infrastructure-as-a-
service (IaaS) to platform-as-a-service (PaaS) providers.

 You might notice that some parts of this chapter are similar, or even the same as,
those you read in the previous chapter. The reason for the partial repetition is to
achieve the goal of this book, which is to illustrate the use of Jenkins with cloud-
native applications—and because not everyone is adopting AWS as their main

This chapter covers
 Automating the build process of Jenkins VMs with Packer

 Deploying a Jenkins cluster on Azure, GCP, and DigitalOcean

 Reducing the cost of deploying Jenkins workers by creating
them on demand

 Using the same Packer template to create identical Jenkins
machine images in different cloud providers
140

141Google Cloud Platform
cloud provider, I want to make this book useful for others and for those who skipped
chapter 5 and jumped right here.

NOTE Using the providers detailed in this chapter carries some benefits and
drawbacks. No matter which provider you choose, you'll always encounter
issues at some point along the way.

6.1 Google Cloud Platform
We all know that AWS doesn’t have the most user-friendly web console. Google Cloud
Platform (GCP) has managed to outperform AWS by offering a better user experience.
GCP consists of a variety of services ranging from computing, to network, to extract-
transform-load (ETL) pipelines that are 25% cheaper than its rival (AWS) because of
lower-increment billing (10 minutes instead of 1 hour).

 Plus, GCP has more expertise when it comes to big data, with services like Big-
Query (https://cloud.google.com/bigquery), Cloud Bigtable (https://cloud.google
.com/bigtable), and Dataflow (https://cloud.google.com/dataflow). In addition, you
can run container workloads on Kubernetes and deploy machine learning (ML) mod-
els with TensorFlow; both Kubernetes and TensorFlow originated from Google. How-
ever, GCP still lacks features compared to AWS, which is the oldest and most mature
cloud vendor on the market.

 Why use Jenkins with GCP, then? You can have seamless integration with Kuber-
netes; with services like Google Kubernetes Engine (GKE), you can run ephemeral
Jenkins workers, ensuring that each build runs on a clean environment. Native sup-
port for Docker containers is another reason, with services like Container Registry to
store and manage Docker images built within CI/CD pipelines. In addition, you can
have integrated security and compliance with detailed reports on vulnerability
impacts and available fixes of build artifacts. Finally, you pay per usage when you use
GCP virtual machines (VMs) to speed up your Jenkins builds.

 With that being said, let’s head over and deploy a Jenkins cluster with Terraform
and Packer on GCP. To get started, sign up for a free account with a Gmail address
(https://console.cloud.google.com/). You will automatically get a 12-month free trial
with a $300 credit. You need to provide your credit card details, but you won’t be
charged extra until after your trial period ends or you have exhausted the $300 credit.

NOTE The estimated cost to deploy a Jenkins cluster is $0.00. This cost
assumes that you’re within the GCP Free Tier limits and that you terminate all
resources within 1 hour of deploying the infrastructure.

6.1.1 Building Jenkins VM images

For Packer to build a custom image, it needs to interact with GCP. Therefore, we need
to create a dedicated service account for Packer to be authorized to access resources
in Google APIs.

https://cloud.google.com/bigquery
https://cloud.google.com/bigtable
https://cloud.google.com/bigtable
https://cloud.google.com/bigtable
https://cloud.google.com/dataflow
https://console.cloud.google.com/

142 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 Head to the GCP console and navigate to the IAM & Admin dashboard, shown in
figure 6.1. In the Service Accounts section, create a new service account with Packer
as a name, and click the Create button.

Figure 6.1 Creating a Packer service account

Assign the Project Owner role to the service account (or at least select Compute
Engine Instance Admin and Service Account User roles) and click the Continue but-
ton, as shown in figure 6.2.

Figure 6.2 Setting Packer service account permissions

143Google Cloud Platform
Each service account is associated with a key (JSON or P12 format), which is managed
by GCP. This key is used for service-to-service authentication. Download the JSON key
by clicking the Create Key button. The service account file is created and downloaded
on the computer. Copy this JSON file and place it in a secure folder. Ensure that the
Google Compute Engine API is enabled on your GCP project.

NOTE If you’re unfamiliar with Packer, refer to chapter 4 for a step-by-step
guide on installation and configuration.

Next update the Packer template file for the Jenkins worker provided in chapter 4’s
listing 4.16 with the following content, or copy and paste the content from the GitHub
repository at chapter6/gcp/packer/worker/setup.sh.

{
 "variables" : {
 "service_account" : "SERVICE ACCOUNT JSON FILE PATH",
 "project": "GCP PROJECT ID",
 "zone": "GCP ZONE ID"
 },
 "builders" : [
 {
 "type": "googlecompute",
 "image_name" : "jenkins-worker",
 "account_file": "{{user `service_account`}}",
 "project_id": "{{user `project`}}",
 "source_image_family": "centos-8",
 "ssh_username": "packer",
 "zone": "{{user `zone`}}"
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

NOTE The JSON account file is not required if you’re running the baking
process from a Google Compute Engine (GCE) instance with a properly con-
figured GCE service account. Packer will fetch the credentials from the meta-
data server.

Listing 6.1 uses the googlecompute builder to create a machine image on top of the
CentOS base image. Then it uses the shell script provided in chapter 4’s listing 4.13 to
provision the temporary machine to install all needed dependencies—Git, JDK, and
Docker.

Listing 6.1 Jenkins worker template file

Defines variables that will
be provided at runtime.

The values can be fetched
from the GCP dashboard.

Runs the shell
script in privileged
mode to install the
Git client, Docker,
and needed
dependencies

144 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 The power of Packer comes from leveraging template files to create identical vir-
tual machine images independently of the target platform. Therefore, we can use the
same template file to build an identical Jenkins image for AWS, GCP, or Azure.

NOTE The scripted shell is explained in depth in chapter 4. All source code is
available on the GitHub repository in the chapter6 folder.

The template file in listing 6.1 uses a set of variables such as the service account key
file created earlier, the name of the zone where the builder machine will be provi-
sioned, and the Google Cloud project ID that will own the image. The service_
account variable can be implicit if you specify the path to the JSON file with the
GOOGLE_APPLICATION_CREDENTIALS environment variable.

 Packer will deploy a temporary instance from CentOS 8. A list of available images
can be found on the Images dashboard, as you can see in figure 6.3.

Figure 6.3 CentOS base image from GCE images

NOTE You can also use the gcloud compute images list command to list
available images in a specific GCP location.

After supplying all the necessary variables, issue a packer build command. The out-
put should be similar to the following output, which has been cropped for the sake of
brevity:

145Google Cloud Platform
Once the baking process is done, the Jenkins worker image should be available on the
Google Compute Engine (GCE) console, as you can see in figure 6.4.

Next, to build the Jenkins master machine image, we will use the same blueprint pro-
vided in chapter 4’s listing 4.12. The only difference is the use of googlecompute in
the builders section. The full template file, shown in the following listing, can be
downloaded from chapter6/gcp/packer/master/setup.sh.

{
 "variables" : {
 "service_account" : "SERVICE ACCOUNT JSON PATH",
 "project": "PROJECT ID",
 "zone": "ZONE ID",
 "ssh_key" : "PRIVATE SSH KEY PATH"
 },
 "builders" : [
 {
 "type": "googlecompute",
 "image_name" : "jenkins-master-v22041",
 "account_file": "{{user `service_account`}}",
 "project_id": "{{user `project`}}",
 "source_image_family": "centos-8",
 "ssh_username": "packer",
 "zone": "{{user `zone`}}"
 }
],
 "provisioners" : [
 ...
]
}

NOTE This code listing already exists in the GitHub repository. You do not
need to type it. It is shown for illustration purposes only.

Listing 6.2 Jenkins master template file

Figure 6.4 Jenkins worker custom image

146 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
Before we take this template and build an image from it, let’s validate the template by
running the following command:

packer validate template.json

With a properly validated template, it is time to build the Jenkins images. This is done
by calling the packer build command with the template file as an argument. The
output should look similar to the following. Note that this process typically takes a few
minutes:

When Packer is done building the image, head over to the GCP console, The newly
created image will be in the Images section, as shown in figure 6.5.

Figure 6.5 Jenkins master custom image

147Google Cloud Platform
So far, you have learned how to automate the build process for the Jenkins machines
images on GCP. In the next section, we will use Terraform to deploy VM instances
based on those images. But first, we will deploy a private network on which our Jen-
kins cluster will be isolated.

6.1.2 Configuring a GCP network with Terraform

At the end of this section, you will have an isolated VPN running in different zones, as
shown in figure 6.6.

Figure 6.6 The Google VPN architecture consists of multiple subnetworks deployed in different zones. To access
private instances, a bastion host can be used.

The VPC will be spun up in a single GCP region. It will be subdivided into subnets,
each subnet contained within a single zone. Within a public subnet, a Google com-
pute instance will be deployed with a role of a bastion host to give remote access to
instances deployed in private subnets.

 On the IAM console, shown in figure 6.7, create a dedicated service account for
Terraform with Project Owner permission and download the JSON private key. This
file contains credentials that will be needed for Terraform to manage the resources on
your GCP project.

148 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers

Figure 6.7 Terraform service account

Create a terraform.tf file, declare google as a provider, and configure it to use the ser-
vice account created in the previous step; see the following listing.

provider "google" {
 credentials = file(var.credentials_path)
 project = var.project
 region = var.region
}

Create a network.tf file and define a regional VPC network, as shown in the following
listing. (If you plan to deploy Jenkins instances across multiple GCP regions, you need
to change the routing mode to global.)

resource "google_compute_network" "management" {
 name = var.network_name
 auto_create_subnetworks = false
 routing_mode = "REGIONAL"
}

Within the same file, declare two public and two private subnets, as shown in the next
listing. Each subnet has its own CIDR block that is a subset of the network CIDR block
(10.0.0.0/16).

resource "google_compute_subnetwork" "public_subnets" {
 count = var.public_subnets_count

Listing 6.3 Declaring Google as a provider

Listing 6.4 Defining a GCP network named management

Listing 6.5 Defining public and private subnetworks

149Google Cloud Platform
 name = "public-10-0-${count.index * 2 + 1}-0"
 ip_cidr_range = "10.0.${count.index * 2 + 1}.0/24"
 region = var.region
 network = google_compute_network.management.self_link
}

resource "google_compute_subnetwork" "private_subnets" {
 count = var.private_subnets_count
 name = "private-10-0-${count.index * 2}-0"
 ip_cidr_range = "10.0.${count.index * 2}.0/24"
 region = var.region
 network = google_compute_network.management.self_link
 private_ip_google_access = true
}

Before applying the changes with terraform apply, declare variables used to param-
eterize and customize the deployment in variables.tf. Table 6.1 lists the variables.

We can now run Terraform to deploy the infrastructure. First, initialize Terraform to
download the latest version of the Google Cloud provider plugin:

terraform init

Table 6.1 GCP Terraform variables

Name Type Value Description

credentials_path String None The path to the service account key file in JSON
format. This can be specified using the
GOOGLE_CREDENTIALS environment variable.

project String None The default project to manage resources in. If
another project is specified on a resource, it will
take precedence. This can also be specified
using the GOOGLE_PROJECT environment
variable.

region String None The default region to manage resources in. If
another region is specified on a regional
resource, it will take precedence. Alternatively,
this can be specified using the GOOGLE_REGION
environment variable.

network_name String management Name of the virtual network. The name must be
1–63 characters long and match the regular
expression [a-z]([-a-z0-9]*[a-z0-9])?

public_subnets_
count

Number 2 The number of public subnetworks. By default, we
will create two public subnets in different zones
for resiliency.

private_subnets_
count

Number 2 The number of private subnetworks. By default,
we will create two private subnets in different
zones for resiliency.

Defines a unique
CIDR range within
the 10.0.0.0/16
block using the
count.index
variable

150 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
The command output is given here:

Run a plan step to validate the configuration syntax and show a preview of what will
be created:

terraform plan --var-file=variables.tfvars

NOTE To set lots of variables, it is more convenient to specify their values in a
variable definitions file (with a filename ending in either .tfvars or .tfvars
.json) and then specify that file on the command line with the -var-file
flag.

Now execute the terraform apply command to apply those changes:

terraform apply --var-file=variables.tfvars

You will see output similar to the following (cropped for brevity):

It should take only a few moments to provision the private network. When it is fin-
ished, you should see something like figure 6.8.

151Google Cloud Platform
Figure 6.8 VPC network and its public and private subnets

To be able to SSH into private Jenkins instances, we will deploy a bastion host. Create
bastion.tf and define a VM instance in a public subnet with a static IPv4 public IP
address. To SSH into the bastion instance using Terminal (as opposed to the GCP con-
sole), you must generate and upload a public SSH key (located by default under
~/.ssh/id_rsa.pub, or generate a new one with ssh-keygen). The metadata attri-
bute defined in the following listing references the public SSH key.

resource "google_compute_address" "static" {
 name = "ipv4-address"
}
resource "google_compute_instance" "bastion" {
 project = var.project
 name = "bastion"
 machine_type = var.bastion_machine_type
 zone = var.zone
 tags = ["bastion"]
 boot_disk {
 initialize_params {
 image = var.machine_image
 }
 }
 network_interface {
 subnetwork = google_compute_subnetwork.public_subnets[0].self_link

 access_config {
 nat_ip = google_compute_address.static.address
 }

Listing 6.6 Bastion host resource

152 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 }
 metadata = {
 ssh-keys = "${var.ssh_user}:${file(var.ssh_public_key)}"
 }
}

Within the same file, create a firewall rule to allow SSH from anywhere on the bastion
host, as shown in the following listing. (It’s recommended to enable ingress from only
the IP address you wish to allow access from.)

resource "google_compute_firewall" "allow_ssl_to_bastion" {
 project = var.project
 name = "allow-ssl-to-bastion"
 network = google_compute_network.management.self_link

 allow {
 protocol = "tcp"
 ports = ["22"]
 }

 source_ranges = ["0.0.0.0/0"]

 source_tags = ["bastion"]
}

Finally, create an outputs.tf file and use the Terraform output variable to act as
helper to expose the public IP address of the bastion virtual machine:

output "bastion" {
 value = "${google_compute_instance.bastion.network_interface
 .0.access_config.0.nat_ip }"
}

After the terraform apply command has finished, you should see output similar to
this:

Listing 6.7 Bastion host firewall rules

Allows inbound traffic on
port 22 (SSH) from anywhere

Outputs the bastion
instance’s public IP address

153Google Cloud Platform
On the GCE console, a new VM instance should be deployed, as in figure 6.9.

Figure 6.9 Bastion VM instance

With the jump box deployed, we can now access private instances in the VPC network.

6.1.3 Deploying Jenkins on Google Compute Engine

Now that the VPC is created, we will deploy a VM instance based on the Jenkins master
image within a private subnet and expose a public load balancer to access the Jenkins
web dashboard on port 8080, as described in figure 6.10.

Figure 6.10 Jenkins master VM inside VPC

154 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
Create a jenkins_master.tf file and define a private compute instance with the attri-
butes in the following listing.

resource "google_compute_instance" "jenkins_master" {
 project = var.project
 name = "jenkins-master"
 machine_type = var.jenkins_master_machine_type
 zone = var.zone

 tags = ["jenkins-ssh", "jenkins-web"]

 depends_on = [google_compute_instance.bastion]

 boot_disk {
 initialize_params {
 image = var.jenkins_master_machine_image
 }
 }

 network_interface {
 subnetwork = google_compute_subnetwork.private_subnets[0].self_link
 }

 metadata = {
 ssh-keys = "${var.ssh_user}:${file(var.ssh_public_key)}"
 }
}

The compute instance uses the following firewall, which allows SSH from the bastion
host only and inbound traffic on port 8080 from anywhere. (I recommend restricting
the traffic to your network CIDR block.)

resource "google_compute_firewall" "allow_ssh_to_jenkins" {
 project = var.project
 name = "allow-ssh-to-jenkins"
 network = google_compute_network.management.self_link

 allow {
 protocol = "tcp"
 ports = ["22"]
 }

 source_tags = ["bastion", "jenkins-ssh"]
}

resource "google_compute_firewall" "allow_access_to_ui" {
 project = var.project
 name = "allow-access-to-jenkins-web"
 network = google_compute_network.management.self_link

Listing 6.8 Jenkins master compute instance

Listing 6.9 Jenkins master firewall and traffic control

Attaches jenkins-ssh and jenkins-
web networks to the VM instance.
The groups allow inbound traffic
on port 22 and 8080 (Jenkins
dashboard), respectively.

Allows inbound traffic
on port 22 (SSH)

https://portal.azure.com/

155Google Cloud Platform
 allow {
 protocol = "tcp"
 ports = ["8080"]
 }

 source_ranges = ["0.0.0.0/0"]

 source_tags = ["jenkins-web"]
}

Use terraform apply to deploy the Jenkins compute instance. Once the deploy-
ment is completed, a new VM will be deployed, as you can see in figure 6.11.

Figure 6.11 Jenkins master VM instance

The instance is deployed inside a private subnetwork. To be able to access the Jenkins
web dashboard, we need to deploy a public load balancer in front of the VM instance.

 Load balancing on GCP is different than on other cloud providers. The primary
difference is that GCP uses forwarding rules instead of routing instances. These for-
warding rules are combined with backend services, target pools, and health checks to
construct a functional load balancer across an instance group.

 First we define a target pool resource that defines the instances that should receive
the incoming traffic, as shown in the next listing. In our case, the target pool will con-
sist of the Jenkins master VM instance.

resource "google_compute_target_pool" "jenkins-master-target-pool" {
 name = "jenkins-master-target-pool"
 session_affinity = "NONE"
 region = var.region

 instances = [
 Google_compute_instance.jenkins_master.self_link
]

 health_checks = [
 google_compute_http_health_check.jenkins_master_health_check.name
]
}

Listing 6.10 Jenkins master target pool

Allows inbound traffic on port 8080,
where the Jenkins dashboard is exposed

Defines Jenkins master
VM instance as a
target of the network
load balancer

https://www.packer.io/docs/builders/azure.html

156 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
The cloud load balancer forwards traffic to the Jenkins master only if it’s up and ready
to receive the traffic. That’s why we define a health-check resource to send health-
check requests to the Jenkins master at a specific frequency on port 8080; see the fol-
lowing listing.

resource "google_compute_http_health_check" "jenkins_master_health_check" {
 name = "jenkins-master-health-check"
 request_path = "/"
 port = "8080"
 timeout_sec = 4
 check_interval_sec = 5
}

Finally, in the next listing, we define a forwarding rule to direct traffic to the target
pool defined earlier.

resource "google_compute_forwarding_rule" "jenkins_master_forwarding_rule" {
 name = "jenkins-master-forwarding-rule"
 region = var.region
 load_balancing_scheme = "EXTERNAL"
 target = google_compute_target_pool.jenkins-master-target-pool.self_link
 port_range = "8080"
 ip_protocol = "TCP"
}

Use terraform apply to deploy the public load balancer. On the Network Services
dashboard, you should have the configuration shown in figure 6.12.

Figure 6.12 Public load balancer with Jenkins VM as a backend

Listing 6.11 Jenkins master health check

Listing 6.12 Load balancer forwarding rule

Defines a template for how
the Jenkins master should be
checked for health, via HTTP

If the incoming packet matches the given IP
address, IP protocol, and port range tuple, it will
be forwarded to the Jenkins master target pool.

157Google Cloud Platform
As a backend, the load balancer uses Jenkins master instance and forwards incoming
traffic on port 8080 to the backend on the same port. Also, it sets up an HTTP health
check on port 8080.

 To display the IP address of the load balancer, create an output section in the
outputs.tf file:

output "jenkins" {
 value = google_compute_forwarding_rule \
.jenkins_master_forwarding_rule.ip_address
}

Issue the terraform output command on the console, and the Jenkins load bal-
ancer IP address should be displayed:

You can now point your browser to the IP address on port 8080 and see the Jenkins
welcome screen. If you see a screen like the one in figure 6.13, you’ve successfully
deployed Jenkins on GCP!

Figure 6.13 Public load balancer IP address to access the Jenkins dashboard

NOTE The forwarding rule may take several minutes to be provisioned. While
it’s being created, you might see 404 and 500 errors in the browser.

6.1.4 Launching automanaged workers on GCP

Arguably one of the most powerful features of Jenkins is its ability to dispatch build
jobs across many workers. It is quite easy to set up a farm of build machines, either to
share the load across multiple machines or to run build jobs in different environ-
ments. This is an effective strategy that can potentially increase the capacity of your CI
infrastructure dramatically.

http://www.digitalocean.com/
http://www.digitalocean.com/
http://www.digitalocean.com/

158 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 Demand for Jenkins workers can also fluctuate over time. If you are working with
product release cycles, you may need to run a much higher number of workers toward
the end of the cycle. Therefore, to avoid paying for extra resources while Jenkins
workers are idle, we will deploy Jenkins workers inside an instance group and set up
autoscaling policies to trigger scale-out or scale-in events that add or remove Jenkins
workers, respectively, based on metrics such as CPU utilization.

NOTE In chapter 13, we will cover how to use an open source solution like
Prometheus to export Jenkins custom metrics, including its integration with
the scaling process of Jenkins workers.

Figure 6.14 summarizes the architecture we’re going to deploy in this section.

Figure 6.14 Jenkins cluster deployment on Google Cloud

First, create a jenkins_workers.tf file and define the instance template that will be used
as a blueprint to define the Jenkins workers configurations; see the following listing.

resource "google_compute_instance_template" "jenkins-worker-template" {
 name_prefix = "jenkins-worker"
 description = "Jenkins workers instances template"
 region = var.region

 tags = ["jenkins-worker"]
 machine_type = var.jenkins_worker_machine_type

Listing 6.13 Jenkins worker template configuration

159Google Cloud Platform

 metadata_startup_script =
data.template_file.jenkins_worker_startup_script.rendered

 disk {
 source_image = var.jenkins_worker_machine_image
 disk_size_gb = 50
 }

 network_interface {
 network = google_compute_network.management.self_link
 subnetwork = google_compute_subnetwork.private_subnets[0].self_link
 }

 metadata = {
 ssh-keys = "${var.ssh_user}:${file(var.ssh_public_key)}"
 }
}

We will deploy the instances inside a private subnetwork and will execute the startup
script in the following listing to make the running virtual machine join the cluster.
This script is similar to the shell script provided in chapter 5’s listing 5.7.

data "template_file" "jenkins_worker_startup_script" {
 template = "${file("scripts/join-cluster.tpl")}"

 vars = {
 jenkins_url = "http://${google_compute_forwarding_rule.
jenkins_master_forwarding_rule.ip_address}:8080"
 jenkins_username = var.jenkins_username
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}

We will be using the Google Cloud metadata server to fetch the instance name and
private IP address. The metadata server request’s output is in JSON format, so we’ll
use the jq utility to parse the JSON and grab the target attributes:

INSTANCE_NAME=$(curl -s metadata.google.internal/0.1/meta-data/hostname)
INSTANCE_IP=$(curl -s metadata.google.internal/0.1/meta-data/network
| jq -r '.networkInterface[0].ip')

Next, we will define a firewall rule to allow SSH on Jenkins workers from the Jenkins
master and bastion host, as shown in the following listing.

resource "google_compute_firewall" "allow_ssh_to_worker" {
 project = var.project
 name = "allow-ssh-to-worker"
 network = google_compute_network.management.self_link

Listing 6.14 Jenkins worker startup script

Listing 6.15 Jenkins master firewall and traffic control

A shell script that will be
executed the first time the

VM instance is launched.
The script will autojoin the

instance as a Jenkins agent.

The join-cluster.tpl template
file takes as parameters
the Jenkins credentials and
URL. The values will be
interpolated at runtime.

https://shortener.manning.com/EDRJ

160 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 allow {
 protocol = "tcp"
 ports = ["22"]
 }

 source_tags = ["bastion", "jenkins-ssh", "jenkins-worker"]
}

Then, we define an instance group based on the template file with a target size of two
workers by default; see the next listing.

resource "google_compute_instance_group_manager" "jenkins-workers-group" {
 provider = google-beta
 name = "jenkins-workers"
 base_instance_name = "jenkins-worker"
 zone = var.zone

 version {
 instance_template = google_compute_instance_template
.jenkins-worker-template.self_link
 }

 target_pools = [google_compute_target_pool
.jenkins-workers-pool.id]
 target_size = 2
}

resource "google_compute_target_pool" "jenkins-workers-pool" {
 provider = google-beta
 name = "jenkins-workers-pool"
}

Once the new resources are deployed with terraform apply, two worker instances
should be running, as shown in figure 6.15.

 However, the number of workers is static and fixed, for now. To be able to scale
Jenkins workers for heavy build jobs, we will deploy an autoscaler based on CPU

Listing 6.16 Jenkins worker instance group

Allows inbound traffic
on port 22 (SSH)

Creates and manages pools of
homogeneous VM instances (two
instances) from a common instance
template (jenkins-worker-template)

Figure 6.15 Jenkins worker instance groups

https://shortener.manning.com/N4yD

161Google Cloud Platform
utilization. Define the following resource to trigger a scale-out event if the CPU utili-
zation is over 80%. Within jenkins_workers.tf, add the code in the following listing.

resource "google_compute_autoscaler" "jenkins-workers-autoscaler" {
 name = "jenkins-workers-autoscaler"
 zone = var.zone
 target = google_compute_instance_group_manager.jenkins-workers-group.id

 autoscaling_policy {
 max_replicas = 6
 min_replicas = 2
 cooldown_period = 60

 cpu_utilization {
 target = 0.8
 }
 }
}

Once the changes are deployed with Terraform, the autoscaling policy will be config-
ured on the Jenkins worker instance group, as you can see in figure 6.16.

Figure 6.16 Instance group scaling based on CPU utilization

As a result, the workers will automatically join the cluster after the startup script is exe-
cuted (figure 6.17). Awesome! You are running a Jenkins cluster on GCP.

Figure 6.17 Jenkins worker VM instances joined the cluster.

Listing 6.17 Jenkins worker autoscaler

Scales Jenkins worker instances in
managed instance groups according to the
autoscaling policy. The policy is based on
the CPU utilization of the instances.

162 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
6.2 Microsoft Azure
Both Microsoft Azure and AWS follow a similar approach by offering a variety of
cloud-based services under one hood. However, organizations that use Microsoft soft-
ware typically have an Enterprise Agreement that provides discounts on that software.
These organizations can typically obtain significant incentives for using Azure.

 If you plan to use Azure, you can deploy the Jenkins solution template from the
Azure Marketplace. However, if you’re looking to have full control over Jenkins, fol-
low this section to learn how to build a Jenkins cluster from scratch and scale your Jen-
kins workers on demand based on Azure virtual machines.

NOTE While Azure and Google Cloud have seen a fairly significant amount
of growth, AWS is still the leader. This is mainly due to AWS being the first to
invest in and shape the cloud computing industry. Google Cloud and Azure
have some catching up to do.

Before getting started, if you’re new to Azure, you may sign up for an Azure free
account (https://portal.azure.com/) to start exploring with a free $200 credit.

6.2.1 Building golden Jenkins VM images in Azure

During the build process, Packer creates temporary Azure resources as it builds the
source VM. Therefore, it needs to be authorized to interact with the Azure API.

 Create an Azure service principal (SP) with permissions to create and manage
resources with the following commands. An SP represents an application accessing
your Azure resources. It is identified by a client ID (aka application ID) and can use a
password or a certificate for authentication.

 To create an SP, copy these commands:

$sp = New-AzADServicePrincipal -DisplayName "PackerServicePrincipal"
$BSTR = [System.Runtime
.InteropServices.Marshal]::SecureStringToBSTR($sp.Secret)
$plainPassword = [System.Runtime
.InteropServices.Marshal]::PtrToStringAuto($BSTR)
New-AzRoleAssignment -RoleDefinitionName
 Contributor -ServicePrincipalName $sp.ApplicationId

You can execute the commands on Azure PowerShell, as shown in figure 6.18.

Figure 6.18 Creating Azure credentials

https://portal.azure.com/

163Microsoft Azure
Then output the password and application ID by executing the following commands:

$plainPassword
$sp.ApplicationId

Save the application ID and password for later.
 To authenticate to Azure, you also need to obtain your Azure tenant and subscrip-

tion IDs, which can be fetched with Get-AzSubscription or from Azure Active
Directory (AD). AD, shown in figure 6.19, is an identity management service that con-
trols access and security to Azure resources with the right roles and permissions.

Figure 6.19 Packer registration on Azure Active Directory

Note the client ID and key. This will be used as credentials in Packer to provision
resources in Azure.

 To build the Jenkins worker image, create a template.json file. In the template, you
define builders and provisioners that carry out the actual build process. Packer has a
builder for Azure called azure-arm that allows you to define Azure images. Add the
following content to template.json or download the full template from chapter6/
azure/packer/worker/template.json.

{
 "variables" : {
 "subscription_id" : "YOUR SUBSCRIPTION ID",
 "client_id": "YOUR CLIENT ID",
 "client_secret": "YOUR CLIENT SECRET",
 "tenant_id": "YOUR TENANT ID",
 "resource_group": "RESOURCE GROUP NAME",
 "location": "LOCATION NAME"
 },
 "builders" : [
 {
 "type": "azure-arm",

Listing 6.18 Jenkins worker template with Azure builder

List of runtime variables to
make the Packer template
portable and reusable

164 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 "subscription_id": "{{user `subscription_id`}}",
 "client_id": "{{user `client_id`}}",
 "client_secret": "{{user `client_secret`}}",
 "tenant_id": "{{user `tenant_id`}}",
 "managed_image_resource_group_name": "{{user `resource_group`}}",
 "managed_image_name": "jenkins-worker",
 "os_type": "Linux",
 "image_publisher": "OpenLogic",
 "image_offer": "CentOS",
 "image_sku": "8.0",
 "location": "{{user `location`}}",
 "vm_size": "Standard_B1s"
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

If you’re running Packer in a virtual machine, you can assign a managed identity to
the virtual machine. No configuration properties are required to be set.

 The template in listing 6.18 deploys a temporary instance based on CentOS 8.0
and provisions the instance with a shell script to install needed dependencies. The
choice of CentOS is not arbitrary. Both Amazon Linux Image and CentOS have simi-
larities, especially the support of the Yum package manager. To use the same scripts
provided in previous chapters and keep consistent and identical Jenkins images, we’ll
use CentOS.

 Bake the image with the packer build command. Here’s an example of the output:

Packer will provision an instance of type
Standard_B1s (1 RAM and 1vCPU) based
on the CentOS 8.0 machine image.

165Microsoft Azure
It takes a few minutes for Packer to build the VM, run the provisioners, and bake the
Jenkins worker image. Once completed, the image is created in the resource group
set in the resource_group variable, as shown in figure 6.20.

Figure 6.20 Jenkins worker machine image

A similar workflow will be applied to build the Jenkins master image. The following is
the template.json file (the complete template is available at chapter6/azure/packer/
master/template.json).

{
 "variables" : {...},
 "builders" : [
 {
 "type": "azure-arm",
 "subscription_id": "{{user `subscription_id`}}",
 "client_id": "{{user `client_id`}}",
 "client_secret": "{{user `client_secret`}}",
 "tenant_id": "{{user `tenant_id`}}",
 "managed_image_resource_group_name": "{{user `resource_group`}}",
 "managed_image_name": "jenkins-master-v22041",
 "os_type": "Linux",
 "image_publisher": "OpenLogic",
 "image_offer": "CentOS",
 "image_sku": "8.0",
 "location": "{{user `location`}}",
 "vm_size": "Standard_B1ms"
 }
],
 "provisioners" : [
 ...
]
}

Listing 6.19 Jenkins worker template with Azure builder

List of variables has been
omitted for brevity; the
complete list is in listing 6.18.

166 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
Once the template is defined, bake the image with Packer. The baking process should
take a few minutes to create the image. Once the image has been created, it should be
available on the Images dashboard from the Azure portal, as shown in figure 6.21.

Figure 6.21 Jenkins master machine image

With both Jenkins master and worker images available, you can now create a Jenkins
cluster from your custom images with Terraform.

6.2.2 Deploying a private virtual network

Before deploying the Jenkins cluster, we need to set up a private network with the
architecture shown in figure 6.22 to secure access to the cluster.

Figure 6.22 VPN on Azure

NOTE To enable Terraform to provision resources into Azure, create an
Azure Active Directory service principal by following the same steps described
in section 6.2.1.

167Microsoft Azure
Create a terraform.tf file and declare azurerm as a provider, as shown in the following
listing. The provider section tells Terraform to use an Azure provider. To get values
for subscription_id, client_id, client_secret, and tenant_id, see sec-
tion 6.2.1.

provider "azurerm" {
 version = "=1.44.0"

 subscription_id = var.subscription_id
 client_id = var.client_id
 client_secret = var.client_secret
 tenant_id = var.tenant_id
}

Run terraform init to download the latest version of the Azure plugin and build
the .terraform directory:

Next, create a virtual_network.tf file on which you define a virtual network called
management in the 10.0.0.0/16 address space with public and private subnets and an
additional subnet called AzureBastionSubnet reserved for a bastion host, as shown
in the following listing.

data "azurerm_resource_group" "management" {
 name = var.resource_group
}

resource "azurerm_virtual_network" "management" {
 name = "management"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 address_space = [var.base_cidr_block]
 dns_servers = ["10.0.0.4", "10.0.0.5"]

 dynamic "subnet" {
 for_each = [for s in var.subnets: {
 name = s.name
 prefix = cidrsubnet(var.base_cidr_block, 8, s.number)
 }]

Listing 6.20 Defining an Azure provider

Listing 6.21 Azure virtual network definition

List of IP addresses
of DNS servers

Defines a list of
subnets within the
10.0.0.0/16 space

168 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 content {
 name = subnet.value.name
 address_prefix = subnet.value.prefix
 }
 }

 subnet {
 name = "AzureBastionSubnet"
 address_prefix = cidrsubnet(var.base_cidr_block, 11, 224)
 }

 tags = {
 environment = "management"
 }
}

NOTE We can tag our resources in Azure with a key-value pair. It’s useful for
cost optimization. So we will add the environment tag with value manage-
ment to all the resources we create.

Before applying the changes, declare the variables used to parameterize and custom-
ize the Terraform deployment in variables.tf. Table 6.2 lists the variables.

Table 6.2 Azure Terraform variables

Name Type Value Description

subscription_id String None The subscription ID to be used. This can also be
sourced from the ARM_SUBSCRIPTION_ID envi-
ronment variable.

client_id String None The client ID to be used. This can also be sourced
from the ARM_CLIENT_ID environment variable.

client_secret String None The client secret to be used. This can also be
sourced from the ARM_CLIENT_SECRET environ-
ment variable.

tenant_id String None The Tenant/Directory ID to be used. This can also
be sourced from the ARM_TENANT_ID environ-
ment variable

resource_group String None The name of the resource group in which to create
the virtual network.

location String None The location/region where the virtual network is
created. Changing this forces a new resource to be
created. Refer to Azure Locations documentation
for a full list of supported locations.

base_cidr_block String 10.0.0.0/16 The address space (CIDR block) that is used for
the virtual network.

subnets Map None A map holding a list of subnets to create inside the
virtual network.

Defines a list of
subnets within the
10.0.0.0/16 space

Defines a dedicated
subnet where
the Bastion host
will be deployed

169Microsoft Azure
When authenticating as a service principal using a client certificate, the following
fields should be set: client_certificate_password and client_certificate_
path.

 Now it’s time to run the terraform apply command. Terraform will call Azure
APIs to set up the new virtual network as shown here:

To verify the results within the Azure portal, browse to the management resource
group. The new virtual network is located under this group, as shown in figure 6.23.

 To access private Jenkins machines, we need to deploy a gateway or proxy servers,
also known as jump boxes or bastion hosts. Fortunately, Azure provides a managed
service called Azure Bastion offering Remote Desktop Protocol (RDP) and SSH access
to any VM without the need to manage a hardened bastion instance and apply security
patches (no operational overhead).

170 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers

Figure 6.23 Management virtual network

To deploy the Azure Bastion service into the existing Azure virtual network, create a
bastion.tf file with the following content. The bastion host service will be deployed
into the dedicated AzureBastionSubnet subnet:

resource "azurerm_public_ip" "bastion_public_ip" {
 name = "bastion-public-ip"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 allocation_method = "Static"
 sku = "Standard"
}
data "azurerm_subnet" "bastion_subnet" {
 name = "AzureBastionSubnet"
 virtual_network_name = azurerm_virtual_network.management.name
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]
}
resource "azurerm_bastion_host" "bastion" {
 name = "bastion"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]

 ip_configuration {
 name = "bastion-configuration"
 subnet_id = data.azurerm_subnet.bastion_subnet.id
 public_ip_address_id = azurerm_public_ip.bastion_public_ip.id
 }
}

Use a Terraform output variable to act as a helper to expose the bastion IP address by
referencing the azurerm_public_ip resource.

Listing 6.22 Azure Bastion service deployment

Requests a static
public IP address

Reference to a subnet in which
the bastion host will be created. It

also associates the provisioned public
IP address to the bastion host.

171Microsoft Azure

output "bastion" {
 value = azurerm_public_ip.bastion_public_ip.ip_address
}

Run terraform apply to apply the configuration. A bastion service will be deployed
into the management resource group, as shown in figure 6.24.

Figure 6.24 Azure bastion host

6.2.3 Deploying a Jenkins master virtual machine

With the VPN being deployed, we can deploy our Jenkins cluster. Figure 6.25 summa-
rizes the target architecture.

Figure 6.25 Jenkins VM inside a private subnet

Listing 6.23 Bastion host public IP address

172 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
Deploy a virtual machine based on the Jenkins master image built with Packer earlier.
Define the resource in jenkins_master.tf with the following code.

data "azurerm_image" "jenkins_master_image" {
 name = var.jenkins_master_image
 resource_group_name = data.azurerm_resource_group.management.name
}

resource "azurerm_virtual_machine" "jenkins_master" {
 name = "jenkins-master"
 resource_group_name = data.azurerm_resource_group.management.name
 location = var.location
 vm_size = var.jenkins_vm_size

 network_interface_ids = [
 azurerm_network_interface.jenkins_network_interface.id,
]

 os_profile {
 computer_name = var.config["os_name"]
 admin_username = var.config["vm_username"]
 }

 os_profile_linux_config {
 disable_password_authentication = true
 ssh_keys {
 path = "/home/${var.config["vm_username"]}/.ssh/authorized_keys"
 key_data = file(var.public_ssh_key)
 }
 }

 storage_os_disk {
 name = "main"
 caching = "ReadWrite"
 managed_disk_type = "Standard_LRS"
 create_option = "FromImage"
 disk_size_gb = "30"
 }

 storage_image_reference {
 id = data.azurerm_image.jenkins_master_image.i
 }

 delete_os_disk_on_termination = true
}

NOTE We allowed 30 GB as the disk size for the virtual machine. Jenkins
needs some disk space to perform builds and keep archives and build logs.

SSH key data is provided in the ssh_key section, and the username is provided in the
os_profile section with password authentication disabled.

 The Jenkins virtual machine uses the B-Series Azure VM family with burstable CPU
performances. This VM family provides the right balance between computing and

Listing 6.24 Jenkins master virtual machine

Disables password
authentication and enables SSH

as an authentication mechanism

Specifies the type of managed disk that should
be created. Possible values are Standard_LRS,
StandardSSD_LRS, or Premium_LRS.

Provisions the VM from the
baked Jenkins master image

Deletes the OS disk automatically
when deleting the VM

173Microsoft Azure
network bandwidth. I recommend selecting your VM family type based on your proj-
ect build needs and requirements.

 Listing 6.24 created a VM named jenkins-master, and now we’ll attach the vir-
tual network interface, as shown in the following listing.

data "azurerm_subnet" "private_subnet" {
 name = var.subnets[2].name
 virtual_network_name = azurerm_virtual_network.management.name
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]
}

resource "azurerm_network_interface" "jenkins_network_interface" {
 name = "jenkins_network_interface"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]

 ip_configuration {
 name = "internal"
 subnet_id = data.azurerm_subnet.private_subnet.id
 private_ip_address_allocation = "Dynamic"
 }
}

The virtual network interface connects the Jenkins master to the private network subnet.
 Once you provide the needed Terraform variables in variables.tfvars, issue terra-

form apply. Creating the Jenkins VM, shown in figure 6.26, from your Packer image
and the expected resources takes a few minutes.

Listing 6.25 Jenkins VM network configuration

Deploys the
Jenkins master

instance in a
private subnet
and assigns a

dynamic
private IP

address

Figure 6.26
Jenkins master
virtual machine

174 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
The Jenkins virtual machine should be accessible through a Bastion host only. Figure
6.27 confirms that the machine was deployed within a private subnet.

Figure 6.27 Jenkins master deployed in a private subnet

However, to access the Jenkins dashboard, we will deploy a load balancer in front of
the VM. Create a loadbalancers.tf file on which you define an Azure load balancer and
a security rule to serve the Jenkins dashboard and attach it to a public IP address, as
shown in the following listing.

resource "azurerm_public_ip" "jenkins_lb_public_ip" {
 name = "jenkins-lb-public-ip"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 allocation_method = "Static"
}
resource "azurerm_lb" "jenkins_lb" {
 name = "jenkins-lb"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name

 frontend_ip_configuration {
 name = "publicIPAddress"
 public_ip_address_id = azurerm_public_ip.jenkins_lb_public_ip.id
 }
}
resource "azurerm_lb_rule" "jenkins_lb_rule" {
 name = "jenkins-lb-rule"
 resource_group_name = data.azurerm_resource_group.management.name
 protocol = "tcp"
 enable_floating_ip = false
 probe_id = azurerm_lb_probe.jenkins_lb_probe.id
 loadbalancer_id = azurerm_lb.jenkins_lb.id
 backend_address_pool_id = azurerm_lb_backend_address_pool

Listing 6.26 Jenkins dashboard load balancer configuration

Associates a public IP
address to the load balancer

The load balancer listens on port
80 for incoming requests and
communicates with the Jenkins
master instance through port 8080.

175Microsoft Azure
.jenkins_backend.id
 frontend_ip_configuration_name = "publicIPAddress"
 frontend_port = 80
 backend_port = 8080
}

Within the same file, define an Azure backend address pool and assign it to the load
balancer. Then set a health check on port 8080, as shown in the following listing.

resource "azurerm_lb_backend_address_pool" "jenkins_backend" {
 resource_group_name = data.azurerm_resource_group.management.name
 loadbalancer_id = azurerm_lb.jenkins_lb.id
 name = "jenkins-backend"
}
resource "azurerm_lb_probe" "jenkins_lb_probe" {
 resource_group_name = data.azurerm_resource_group.management.name
 loadbalancer_id = azurerm_lb.jenkins_lb.id
 name = "jenkins-lb-probe"
 protocol = "Http"
 request_path = "/"
 port = 8080
}

Azure allows for opening ports to traffic via security groups, which can also be man-
aged in the Terraform configuration. Add the following to security_groups.tf and pro-
ceed to run plan/apply to create the security rule to allow inbound traffic on port
8080 and SSH traffic on TCP port 22.

resource "azurerm_network_security_group" "jenkins_security_group" {
 name = "jenkins-sg"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name

 security_rule {
 name = "AllowSSH"
 priority = 100
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "22"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 }

Listing 6.27 Jenkins dashboard health check

Listing 6.28 Jenkins master security group

The load balancer listens on
port 80 for incoming
requests and communicates
with the Jenkins master
instance through port 8080.

The URI used for
requesting health status
from the backend endpoint

Port on which the probe
queries the backend endpoint

Allows inbound traffic on
port 22 (SSH) from anywhere

176 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 security_rule {
 name = "AllowHTTP"
 priority = 200
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "8080"
 source_address_prefix = "Internet"
 destination_address_prefix = "*"
 }
}

Finally, assign the security group to the virtual network interface attached to the Jen-
kins master virtual machine, as shown in the following listing.

resource "azurerm_network_interface" "jenkins_network_interface" {
 name = "jenkins_network_interface"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 network_security_group_id =

azurerm_network_security_group.jenkins_security_group.id
 depends_on = [azurerm_virtual_network.management]

 ip_configuration {
 name = "internal"
 subnet_id = data.azurerm_subnet.private_subnet.id
 private_ip_address_allocation = "Dynamic"
 load_balancer_backend_address_pools_ids =
 [azurerm_lb_backend_address_pool.jenkins_backend.id]
 }
}

Apply the changes with the terraform apply command. Once Terraform com-
pletes, your load balancer is ready. Obtain its public IP address from outputs.tf by add-
ing the following code.

output "jenkins" {
 value = azurerm_public_ip.jenkins_lb_public_ip.ip_address
}

Let’s verify the resources by using the Azure portal. As you can see in figure 6.28,
Terraform created all the expected resources under the management resource group.

Listing 6.29 Jenkins network interface configuration

Listing 6.30 Jenkins master firewall and traffic control

Allows inbound traffic on port
8080, where the Jenkins web
dashboard is served

Assigns the Jenkins security group
to the virtual network interface

configured in a private subnet

177Microsoft Azure

Figure 6.28 Public load balancer pointing to Jenkins master VM

Now point your web browser to the public IP address of the load balancer in the
address bar. The default Jenkins home page will be displayed, as shown in figure 6.29.

Figure 6.29 Jenkins dashboard accessible from LB public IP address

You can now sign in with admin credentials defined in the Groovy init scripts while
baking the Jenkins master machine image.

178 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
6.2.4 Applying autoscaling to Jenkins workers

We’re ready to deploy Jenkins workers to offload build projects from the master. The
workers will be deployed inside an autoscaling set to be provisioned dynamically. Fig-
ure 6.30 illustrates the target deployment architecture.

Figure 6.30 Jenkins workers scale set

We need to deploy Jenkins worker machines inside a machine scale set. A Jenkins
worker will be based on the Jenkins worker image built earlier with Packer and will be
deployed inside a private subnet. Create jenkins_workers.tf with the following content.

data "azurerm_image" "jenkins_worker_image" {
 name = var.jenkins_worker_image
 resource_group_name = data.azurerm_resource_group.management.name
}
resource "azurerm_virtual_machine_scale_set" "jenkins_workers_set" {
 name = "jenkins-workers-set"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 upgrade_policy_mode = "Manual"
 sku {
 name = var.jenkins_vm_size
 tier = "Standard"
 capacity = 2
 }
 storage_profile_image_reference {
 id = data.azurerm_image.jenkins_worker_image.id
 }
 storage_profile_os_disk {
 caching = "ReadWrite"
 create_option = "FromImage"

Listing 6.31 Jenkins worker machine scale set

References the Jenkins
worker machine image ID

179Microsoft Azure
 managed_disk_type = "Standard_LRS"
 }
 os_profile {
 computer_name_prefix = "jenkins-worker"
 admin_username = var.config["vm_username"]
 custom_data = data.template_file.jenkins_worker_startup_script.rendered
 }
 os_profile_linux_config {
 disable_password_authentication = true
 ssh_keys {
 path = "/home/${var.config["vm_username"]}/.ssh/authorized_keys"
 key_data = file(var.public_ssh_key)
 }
 }
 network_profile {
 name = "private-network"
 primary = true
 network_security_group_id =

azurerm_network_security_group.jenkins_worker_security_group.id
 ip_configuration {
 name = "private-ip-configuration"
 primary = true
 subnet_id = data.azurerm_subnet.private_subnet.id
 }
 }
}

NOTE You should test your projects on multiple Azure VM family types to
determine the appropriate machine type for Jenkins workers, as well as the
amount of disk space.

Each Jenkins worker machine will execute a custom script (chapter6/azure/
terraform/scripts/join-cluster.tpl) at runtime to join the Jenkins cluster; see the fol-
lowing listing.

data "template_file" "jenkins_worker_startup_script" {
 template = "${file("scripts/join-cluster.tpl")}"

 vars = {
 jenkins_url = "http://

${azurerm_public_ip.jenkins_lb_public_ip.ip_address}:8080"
 jenkins_username = var.jenkins_username
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}

The script will use Azure Instance Metadata Service (IMDS) to fetch information
regarding the machine’s private IP address and hostname and will issue a POST
HTTP request to the Jenkins RESTful API to establish a bidirectional connection with
the machine and join the cluster:

Listing 6.32 Jenkins workers launch script

Disables password authentication
and configures the SSH credentials

Assigns a security group to the VM instances
and requests private IP addresses

Initialization script
to autojoin the VM as
a Jenkins agent

180 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
INSTANCE_NAME=$(curl -s http://169.254.169.254/metadata/instance/compute/name
?api-version=2019-06-01&format=text)
INSTANCE_IP=$(curl -s http://169.254.169.254/metadata/instance/network/

interface/0/ipv4/ipAddress/0/privateIpAddress
?api-version=2017-08-01&format=text)

A security group will be attached to the virtual network interface attached to the scale
set. It allows inbound traffic on port 22 (SSH), as shown in the following listing.

resource "azurerm_network_security_group" "jenkins_worker_security_group" {
 name = "jenkins-worker-sg"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 security_rule {
 name = "AllowSSH"
 priority = 100
 direction = "Inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "22"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 }
}

Once the deployment has completed, the content of the resource group resembles
that shown in figure 6.31.

Figure 6.31 Jenkins worker virtual machine scale set

Listing 6.33 Jenkins worker security group

Allows incoming traffic on
port 22 (SSH) from anywhere.
It’s recommended to restrict
the access to your network
CIDR block.

181Microsoft Azure
Figure 6.32 Static number of Jenkins workers

By default, two Jenkins workers will be up and running, as shown in figure 6.32.
 To be able to scale workers based on build jobs and pipeline running, we will use

Azure autoscale policies to trigger a scale-out or scale-in based on CPU utilization of
the worker machines. Within jenkins_workers.tf, add the following resource block.

resource "azurerm_monitor_autoscale_setting" "jenkins_workers_autoscale" {
 name = "jenkins-workers-autoscale"
 resource_group_name = data.azurerm_resource_group.management.name
 location = var.location
 target_resource_id =

azurerm_virtual_machine_scale_set.jenkins_workers_set.id

 profile {
 name = "jenkins-autoscale"
 capacity {
 default = 2
 minimum = 2
 maximum = 10
 }
 rule {
 metric_trigger {
 metric_name = "Percentage CPU"
 metric_resource_id =

azurerm_virtual_machine_scale_set.jenkins_workers_set.id
 time_grain = "PT1M"
 statistic = "Average"
 time_window = "PT5M"
 time_aggregation = "Average"
 operator = "GreaterThan"
 threshold = 80
 }
 scale_action {
 direction = "Increase"
 type = "ChangeCount"
 value = "1"
 cooldown = "PT1M"
 }
 }

Listing 6.34 Jenkins worker autoscaling policies

Defines the minimum and maximum
numbers of Jenkins workers

Monitors the CPU
utilization of the
workers—if it
hits 80%, a new
Jenkins worker’s
VM will be
deployed.

182 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 rule {
 metric_trigger {
 metric_name = "Percentage CPU"
 metric_resource_id =

azurerm_virtual_machine_scale_set.jenkins_workers_set.id
 time_grain = "PT1M"
 statistic = "Average"
 time_window = "PT5M"
 time_aggregation = "Average"
 operator = "LessThan"
 threshold = 20
 }

 scale_action {
 direction = "Decrease"
 type = "ChangeCount"
 value = "1"
 cooldown = "PT1M"
 }
 }
 }
}

Apply the changes with terraform apply. Then, head over to the Jenkins worker
scale set configuration. In the Scaling section, define a new autoscale policy, as shown
in figure 6.33.

Figure 6.33 Jenkins worker autoscaling policies

Monitors the CPU
utilization of the
workers—if it’s
below 20%, an
existing Jenkins
worker VM will be
terminated.

183DigitalOcean
NOTE Once you’re finished playing with the Jenkins cluster, you will likely
want to tear down everything that was created so that you don’t incur any fur-
ther costs.

Great! You are now able to deploy a self-healing Jenkins cluster on Microsoft Azure.

6.3 DigitalOcean
When we think of cloud computing providers, we are typically referring to the three
giants in the industry: Azure, Google Cloud, and AWS. Unlike those providers that are
known to everyone, DigitalOcean (www.digitalocean.com) is relatively new. You might
be wondering why you should choose DigitalOcean over other providers. The reason
lies in the differences between the three big players and DigitalOcean.

 They differ in many aspects. One is small, while the others (AWS, GCP, and Azure)
are huge. DigitalOcean provides virtual machines (called Droplets). There are no bells
and whistles. You do not get lost in a catalog of services, since they are almost nonexis-
tent. Plus, DigitalOcean’s interface allows developers to quickly set up machines
because of its friendly design. Moreover, it’s affordable and has cheaper instances,
which is a good starting point for beginner businesses and startups. (If you don’t have
a DigitalOcean account, you will need to create one; you will get $100 of free credits.)

 To use Packer with DigitalOcean, we first need to generate a DigitalOcean API
token. This can be done on the DigitalOcean Applications & API page. Click the Gen-
erate New Token button to obtain a token with read and write permissions, as shown
in figure 6.34.

Figure 6.34 Packer API access token

6.3.1 Creating Jenkins DigitalOcean Snapshots

We’re using the same template covered in listings 6.1 and 6.2; the only difference is the
use of the digitalocean Packer builder to interact with the DigitalOcean API. The
builder takes a CentOS source image and runs the provisioning necessary—installing

www.digitalocean.com

184 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
the tools required for building Jenkins jobs on the image after launching it—and then
snapshots it into a reusable image; see the following listing. This reusable image can
then be used as the foundation of new Jenkins workers that are launched within Digital-
Ocean by using Terraform.

{
 "variables" : {
 "api_token" : "DIGITALOCEAN API TOKEN",
 "region": "DIGITALOCEAN REGION"
 },
 "builders" : [
 {
 "type": "digitalocean",
 "api_token": "{{user `api_token`}}",
 "image": "centos-8-x64",
 "region": "{{user `region`}}",
 "size": "512mb",
 "ssh_username": "root",
 "snapshot_name": "jenkins-worker"
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

Include your DigitalOcean API token and target region (refer to the official docu-
mentation for a list of supported regions: http://mng.bz/EDRJ). Then run the
packer build template.json command. You’ll get a working Jenkins worker
image in your DigitalOcean account in a couple of minutes, as shown in figure 6.35.

Figure 6.35 Jenkins worker image snapshot

Listing 6.35 Jenkins worker image with DigitalOcean builder

DigitalOcean API token
and target region

The build Droplet will
be based on CentOS 8.

http://mng.bz/EDRJ

185DigitalOcean
Similarly, update the Jenkins master template referenced in listing 6.2 to use the
digitalocean builder. The provisioning part creates a Jenkins credential based on a
private SSH key used to deploy Jenkins workers. This is needed, as Jenkins needs to set
up a bidirectional connection with workers via SSH.

{
 "variables" : {
 "api_token" : "DIGITALOCEAN API TOKEN",
 "region": "DIGITALOCEAN REGION",
 "ssh_key" : "PRIVATE SSH KEY FILE"
 },
 "builders" : [
 {
 "type": "digitalocean",
 "api_token": "{{user `api_token`}}",
 "image": "centos-8-x64",
 "region": "{{user `region`}}",
 "size": "2gb",
 "ssh_username": "root",
 "snapshot_name": "jenkins-master-2.204.1"
 }
],
 "provisioners" : [
 ...
]
}

This template has been cropped for brevity. The full JSON file can be downloaded
from chapter6/digitalocean/packer/master/template.json.

 Run the packer validate command to make sure that everything is copacetic.
Then issue a packer build command. Once the build and provisioning part is fin-
ished, the Jenkins master snapshot should be ready to be used, as shown in figure 6.36.

Figure 6.36 Jenkins master image snapshot

Listing 6.36 Jenkins master image with DigitalOcean builder

186 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
6.3.2 Deploying a Jenkins master Droplet

In this step, you’ll write Terraform template files for automating Jenkins cluster Drop-
let deployments of the snapshot containing the Jenkins master and worker you just
built using Packer.

 Define a terraform.tf file and declare DigitalOcean as a provider. The provider
needs to be configured with the proper API token before it can be used, as shown in
the following listing.

provider "digitalocean" {
 token = var.token
}

Run terraform init to download the DigitalOcean plugin needed to translate the
Terraform instructions into API calls:

Define a single resource of the type digitalocean_droplet named jenkins-
master in the jenkins_master.tf file, as shown in Listing 6.38. Then set its parameters
according to the variable values and add an SSH key (using its fingerprint) from your
DigitalOcean account to the Droplet resource. The deployed Droplet will be of type
s-1vcpu-2gb, which comes up with 1 GB of RAM and 1vCPU.

 For heavier workloads and larger projects, and to handle concurrent users connect-
ing to the Jenkins web dashboard, a large Droplet type might be required. Refer to the
official documentation for the list of available Droplet sizes: http://mng.bz/N4yD.

data "digitalocean_image" "jenkins_master_image" {
 name = var.jenkins_master_image
}

Listing 6.37 Defining the DigitalOcean provider

Listing 6.38 Jenkins master Droplet

http://mng.bz/N4yD

187DigitalOcean
resource "digitalocean_droplet" "jenkins_master" {
 name = "jenkins-master"
 image = data.digitalocean_image.jenkins_master_image.id
 region = var.region
 size = "s-1vcpu-2gb"
 ssh_keys = [var.ssh_fingerprint]
}

On DigitalOcean, you can upload your SSH public key to your account, which lets you
add it to your Droplets at creation time (figure 6.37). This lets you log in to your Jen-
kins master without a password while still remaining secure.

Figure 6.37 Adding a public SSH key

Next, attach a firewall to the Jenkins master Droplet with rules allowing inbound traf-
fic on port 22 and 8080 from anywhere; see the following listing. For security pur-
poses, I recommend limiting SSH incoming traffic to your CIDR network block.

resource "digitalocean_firewall" "jenkins_master_firewall" {
 name = "jenkins-master-firewall"

 droplet_ids = [digitalocean_droplet.jenkins_master.id]

 inbound_rule {
 protocol = "tcp"
 port_range = "22"
 source_addresses = ["0.0.0.0/0", "::/0"]
 }

 inbound_rule {
 protocol = "tcp"
 port_range = "8080"
 source_addresses = ["0.0.0.0/0", "::/0"]
 }

Listing 6.39 Jenkins master Droplet’s firewall

Uses the Jenkins
master image
backed previously
with Packer

Provisions a Droplet with
2 GB of RAM and 1vCPU

Allows inbound traffic on
port 22 (SSH) from anywhere

Allows inbound traffic on port 8080, where
the Jenkins web dashboard is served from

188 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
 outbound_rule {
 protocol = "tcp"
 port_range = "1-65535"
 destination_addresses = ["0.0.0.0/0", "::/0"]
 }

 outbound_rule {
 protocol = "udp"
 port_range = "1-65535"
 destination_addresses = ["0.0.0.0/0", "::/0"]
 }

 outbound_rule {
 protocol = "icmp"
 destination_addresses = ["0.0.0.0/0", "::/0"]
 }
}

Paste the following code to the outputs.tf file to display the IP address of the Jenkins
master Droplet when the deployment is complete.

output "master" {
 value = digitalocean_droplet.jenkins_master.ipv4_address
}

Define the Terraform variables listed in table 6.3 in a new variable.tf file. Set their val-
ues in variables.tfvars to keep secrets and sensitive information out of template files.

Run the terraform plan command to see the effect of the deployment before
execution:

Listing 6.40 Jenkins master public IP address

Table 6.3 DigitalOcean Terraform variables

Name Type Value Description

token String None This is the DigitalOcean API token.
Alternatively, this can also be specified
using DIGITALOCEAN_TOKEN environ-
ment variables.

region String None The DigitalOcean region in which deploy
the Jenkins master.

jenkins_master_image String None The name of the Jenkins master image
that was built previously with Packer.

ssh_fingerprint String None SSH ID or fingerprint. To retrieve the info,
head to the DigitalOcean Security dash-
board.

Allows outbound traffic on
all ports from anywhere

189DigitalOcean

You can now move on to validating and deploying it on a Droplet with a terraform
apply command. The deployment process should take a few seconds to finish. Then
a new Jenkins master Droplet will be available in the Droplets console, and Terra-
form should display the IP address of the Jenkins master Droplet, as you can see in fig-
ure 6.38.

Figure 6.38 Jenkins master Droplet

Open your favorite browser and connect to the public IPv4 that was returned by the
previous command. A preconfigured Jenkins dashboard should be displayed; see
figure 6.39.

190 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers

on,

n

Figure 6.39 Jenkins dashboard access with Droplet public IP

6.3.3 Building Jenkins worker Droplets

Now to delegate build jobs to workers and offload the Jenkins master Droplet. Several
build workers will be deployed to absorb the build activity.

 Create a jenkins_workers.tf file where you define Jenkins worker Droplets. The
workers will be launched from the Jenkins worker image.

data "digitalocean_image" "jenkins_worker_image" {
 name = var.jenkins_worker_image
}

data "template_file" "jenkins_worker_startup_script" {
 template = "${file("scripts/join-cluster.tpl")}"

 vars = {
 jenkins_url = "http://

${digitalocean_droplet.jenkins_master.ipv4_address}:8080"
 jenkins_username = var.jenkins_username
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}
resource "digitalocean_droplet" "jenkins_workers" {
 count = var.jenkins_workers_count
 name = "jenkins-worker"
 image = data.digitalocean_image.jenkins_worker_image.id
 region = var.region
 size = "s-1vcpu-2gb"
 ssh_keys = [var.ssh_fingerprint]
 user_data = data.template_file.jenkins_worker_startup_script.rendered
 depends_on = [digitalocean_droplet.jenkins_master]
}

Listing 6.41 Jenkins worker Droplets

The script is used to make the
Droplet autojoin the cluster as
a Jenkins agent/worker.

Indicates the number of
Jenkins workers to create

In this Droplet configurati
we’re using 1 GB of RAM
and 1vCPU as configuratio
for Jenkins workers.

The launch script is passed in the
user_data section so it can be executed

the first time the Droplet is running.

191DigitalOcean
The count variable is used to define the number of workers to deploy. Each Droplet
will execute a shell script at startup. This script is similar to the one provided in previ-
ous sections, except for the use of the DigitalOcean metadata server to fetch the Drop-
let IP address and hostname:

INSTANCE_NAME=$(curl -s http://169.254.169.254/metadata/v1/hostname)
INSTANCE_IP=$(curl -s http://169.254.169.254/metadata/v1/
interfaces/public/0/ipv4/address)

Finally, to set up a bidirectional connection between Jenkins master and workers, we
define a firewall allowing inbound traffic on TCP port 22.

resource "digitalocean_firewall" "jenkins_workers_firewall" {
 name = "jenkins-workers-firewall"

 droplet_ids =
[for worker in digitalocean_droplet.jenkins_workers : worker.id]

 inbound_rule {
 protocol = "tcp"
 port_range = "22"
 source_droplet_ids = [digitalocean_droplet.jenkins_master.id]
 }
}

After a few minutes, the workers’ Droplets will finish provisioning, and you’ll see out-
put similar to figure 6.40.

Figure 6.40 Jenkins worker Droplets

Go back to the Jenkins dashboard. The new deployed workers should join the cluster
after executing the user data script covered in chapter 5’s listing 5.7; see figure 6.41.

Listing 6.42 Jenkins worker firewall

Allows the Jenkins master
to SSH to the Jenkins workers

192 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers
Figure 6.41 Worker Droplets joining the cluster

You can take this architecture further by deploying a load balancer in front of the Jen-
kins master Droplet to forward traffic to port 8080 and creating a DNS record point-
ing to the load balancer FQDN; see figure 6.42.

Figure 6.42 Jenkins cluster architecture on DigitalOcean

When you’re finished, clean up the infrastructure by running the following:

terraform destroy --var-file=variables.tfvars

This chapter has covered how to deploy and operate a resilient and self-healing Jen-
kins cluster from scratch on numerous cloud providers with IaC tools. I’ve also
explained how to architect Jenkins workers for scale with autoscaling policies and met-
rics alarms. In the next chapter, we will implement pipelines as code on Jenkins for
numerous cloud-native applications such as Dockerized microservices and serverless
applications.

193Summary
Summary
 The power of Packer comes from leveraging template files to create identical

Jenkins machine images independently of the target platform.
 Deploying Jenkins on Google Cloud Platform comes with seamless native sup-

port for Kubernetes.
 Azure offers a variety of cloud-based services and might be a good alternative

for running Jenkins on the cloud.
 Running Jenkins on DigitalOcean can be a cost-efficient solution for beginner

businesses and startups.

194 CHAPTER 6 Deploying HA Jenkins on multiple cloud providers

Part 3

Hands-on CI/CD pipelines

You’ve smashed through parts 1 and 2 but you’re still hungry for more. I
understand. Thankfully, this part is designed to give you a lot to chew on.

 You’ll implement CI/CD workflows for real-world, cloud-native applications.
In the next few chapters, you’ll run automated tests with Docker, analyze your
Docker images for security vulnerabilities, and deploy containerized microser-
vices on Docker Swarm and Kubernetes. You’ll learn how to automate the
deployment process for your serverless applications. This is just a tiny glimpse, so
roll up your sleeves and let’s dive into this!

196 CHAPTER

Defining a pipeline
as code for microservices
The previous chapters covered how to deploy a Jenkins cluster on multiple cloud
providers by using automation tools: HashiCorp Packer and Terraform. In this
chapter, we will define a continuous integration (CI) pipeline for Dockerized
microservices.

 In chapter 1, you learned that CI is continuously testing and building all
changes of the source code before integrating them into the central repository. Fig-
ure 7.1 summarizes the stages in this workflow.

This chapter covers
 Using a Jenkins multibranch pipeline plugin and

GitFlow model

 Defining multibranch pipelines for containerized
microservices

 Triggering a Jenkins job on push events using
GitHub webhooks

 Exporting Jenkins jobs configuration as XML and
cloning Jenkins jobs
197

198 CHAPTER 7 Defining a pipeline as code for microservices
Figure 7.1 Continuous integration stages

Every change to the source code triggers the CI pipeline, which launches the auto-
mated tests. This comes with many benefits:

 Detecting bugs and issues earlier, which results in a dramatic decrease in main-
tenance time and costs

 Ensuring that the codebase continues to work and meets the spec requirements
as the system grows

 Improving team velocity by establishing a fast-feedback loop

While automated tests come with multiple benefits, they’re extremely time-consuming
to implement and execute. Therefore, we will use a testing framework based on the
target service runtime and requirements.

 Once tests are successful, the source code is compiled and an artifact is built. Then
it will be packaged and stored in a remote registry for version control and deployment
later.

 Chapter 8 covers how to write a classic CI pipeline for containerized microservices.
The end result will look like the CI pipeline in figure 7.2.

Figure 7.2 Target CI pipeline

Continuous integration

Quality
tests

Unit
tests

Security
checks Build PushCheckout

199Introducing microservices-based applications
These steps cover the most basic flow of a continuous integration process. In the fol-
lowing chapters, once you are comfortable with this workflow, we’ll go even further.
We’ll start by creating our multibranch pipeline from scratch with Jenkins and contin-
uously running pipelines with GitHub webhooks.

7.1 Introducing microservices-based applications
It can be challenging to create a reliable CI/CD process for a microservices architec-
ture. The goal of the pipeline is to allow teams to build and deploy their services
quickly and independently, without disrupting other teams or destabilizing the appli-
cation as a whole.

 To illustrate how to define a CI/CD pipeline from scratch for containerized micro-
services, I have implemented a simple web application based on a microservices archi-
tecture. We are going to integrate and deploy a web-based application called
Watchlist, where users can browse the top 100 greatest movies of all time and add
them to their watching list.

 The project includes tests, benchmarks, and everything needed to run the applica-
tion locally and on the cloud. The deployed application will look like figure 7.3.

Figure 7.3 Watchlist marketplace UI

200 CHAPTER 7 Defining a pipeline as code for microservices
Figure 7.4 illustrates the application architecture and flow.

Figure 7.4 The Loader service takes an array of movies in JSON format and forwards them one by one
to a message queue (for example, Amazon SQS). From there, a Parser service will consume the items
and fetch the movie’s details from the IMDb database and save the result into MongoDB. Finally, the data
is served through a RESTful API by the Store service and visualized with the Marketplace UI.

NOTE Amazon Simple Queue Service (SQS) is a distributed message queuing service.
It is intended to provide a highly scalable managed message queue to resolve
issues arising from producer-consumer problems and to decouple distributed
application services. See https://aws.amazon.com/sqs/ for more details.

The architecture is composed of multiple services written in different languages to
illustrate the advantages of the microservices paradigm and the use of Jenkins to auto-
mate the build and deployment process of different runtime environments. Table 7.1
lists the microservices.

Table 7.1 Application microservices

Service Language Description

Loader Python Responsible for reading a JSON file containing a list of movies and push-
ing each movie item to Amazon SQS.

Parser Golang Responsible for consuming movies by subscribing to SQS and scraping
movie information from the IMDb website (www.imdb.com) and storing the
metadata (movie’s name, cover, description, and so forth) into MongoDB.

www.imdb.com
https://aws.amazon.com/sqs/

201Introducing microservices-based applications
Before we dig deeper into the CI workflow for the application, let’s see how the distrib-
uted application source code will be organized. When you start moving to microser-
vices, one of the big challenges you will be facing is the organization of the codebase.

 Do you create a repository for each service or a single repo for all services? Each
pattern has its own advantages and disadvantages:

 Multiple repositories—You can have multiple teams independently developing a
service (clear ownership). Plus, smaller codebases are easier to maintain, test,
and deploy with less team coordination. However, having independent teams
might create localized knowledge across the organization and result in teams
lacking an understanding of the bigger picture of the project.

 Mono repository—Having a single source-control repository comes with a simpli-
fied project organization with less overhead from managing project dependen-
cies. It also improves the overall work culture when teams work on a mono
repository. However, versioning might become more complicated, and perfor-
mance and scalability issues may arise.

Both patterns have pros and cons, and neither is a silver bullet. You should under-
stand their benefits and limitations, and use them to make an informed decision on
what’s best for you and your project.

 The way you structure your codebase will impact the design of the CI/CD pipeline.
Having a project hosted on a single repository might result in a single pipeline with
fairly complex stages. Pipeline size and complexity are often a huge pain point. As the
number of services evolves within an organization, the management of pipelines
becomes a bigger issue as well. In the end, most pipelines end as a spaghetti mix of npm,
pip, and Maven scripts sprinkled with some bash scripts all over the place. On the other
side, adopting a multiple-repositories strategy might result in multiple pipelines to
manage and code duplication. Fortunately, solutions are available to reduce pipeline
management, including using shared pipeline segments and shared Groovy scripts.

NOTE Chapter 14 covers how to write a shared library in Jenkins to share
common code and steps across multiple pipelines.

This book illustrates how to build CI/CD pipelines for both patterns. For microser-
vices, we will adopt the multiple repositories strategy. We will cover the mono-repo
approach while building CI/CD pipelines for serverless functions.

Store Node.js Responsible for serving a RESTful API with endpoints to fetch a list of
movies and insert new movies into the watch list database in the
MongoDB server.

Marketplace Angular and
TypeScript

Responsible for serving a frontend to browse movies by calling the Store
RESTful API.

Table 7.1 Application microservices (continued)

Service Language Description

202 CHAPTER 7 Defining a pipeline as code for microservices
 First, create four Git repositories to store the source code for each service
(Loader, Parser, Store, and Marketplace). In this book, I’m using GitHub, but any
SCM system can be used, such as GitLab, Bitbucket, or even SVN. Make sure you have
Git installed on the machine that you will use to perform the steps mentioned in the
following section.

NOTE Throughout this book, we will use the GitFlow model for branch man-
agement. For more information, read chapter 2.

Once the repositories are created, clone them to your workspace and create three
main branches: develop, preprod, and master branches to help organize the code and
isolate the under-development code from the one running in production. This
branching strategy is a slimmer version of the GitFlow workflow branching model.

NOTE The complete Jenkinsfile for each service can be found in the chapter7/
microservices folder within the book’s GitHub repository.

Use the following commands to create the target branches and push them to the
remote repository:

git clone https://github.com/mlabouardy/movies-loader.git
cd movies-loader
git checkout -b preprod
git push origin preprod
git checkout -b develop
git push origin develop

To view the branches in the Git repository, run this command in your terminal:

git branch -a

An asterisk (*) will be next to the branch that you’re currently on (develop). Output
similar to the following should be displayed in your terminal session:

Next, copy the code from the book’s GitHub repository to each Git repository on the
develop branch, and then push the changes to the remote repository:

git add .
git commit -m "loading from json file"
git push origin develop

The GitHub repository should look like figure 7.5.

203Defining multibranch pipeline jobs
Figure 7.5 The Loader GitHub repository has the service source’s code.

NOTE For now, we push the changes directly to the develop branch. Later, you
will see how to create pull requests and set up a review process with Jenkins.

The movies-loader source code is available in the chapter7/microservices/movies-
loader folder. Repeat the same process to create the movies-parser, movies-store, and
movies-marketplace GitHub repositories.

7.2 Defining multibranch pipeline jobs
To integrate the application source code with Jenkins, we need to create Jenkins jobs
to continuously build it. Head over to Jenkins web dashboard and click the New Item
button at the top-left corner, or click the Create New Jobs link to create a new job, as
shown in figure 7.6.

Figure 7.6 Jenkins new job creation

204 CHAPTER 7 Defining a pipeline as code for microservices
NOTE For a step-by-step guide on deploying Jenkins, refer to chapter 5.

On the resultant page, you will be presented with various types of Jenkins jobs to
choose from. Enter the name of the project, scroll down, select Multibranch Pipeline,
and click the OK button. The Multibranch Pipeline option allows us to automatically
create a pipeline for each branch on the source-control repository.

 Figure 7.7 shows the multibranch job pipeline for the movies-loader service.

Figure 7.7 Jenkins new job settings

NOTE The Jenkins Multibranch Pipeline plugin (https://plugins.jenkins.io/
workflow-multibranch/) is installed by default on the baked Jenkins master AMI.

I’ll briefly summarize the new job types here and then explain each in more detail in
upcoming chapters:

 Freestyle project—This is a classic way of creating a Jenkins job, wherein each CI
stage is represented by using UI components and forms. The job is a web-based
configuration, and any modification is done through the Jenkins dashboard.

 Inheritance project—The purpose of this project type is to bring true inheritance
of properties between multiple job definitions to Jenkins. It allows you to share
common properties only once and create Jenkins jobs to inherit them across
many projects.

 Pipeline—This job type lets you either paste a Jenkinsfile directly into the job UI
or reference a single Git repository as the source and then specify a single
branch where the Jenkinsfile is located. This job can be useful if you plan to use
a trunk-based workflow to manage your project source code.

https://plugins.jenkins.io/workflow-multibranch/
https://plugins.jenkins.io/workflow-multibranch/

205Git and GitHub integration
 Folder—This is a way to group multiple projects together rather than a type of
project itself. This is different from the view tabs on the Jenkins dashboard,
which provide just a filter. Rather, this is like a directory folder on the server,
storing nested items.

 Multibranch pipeline—This is a type of project we will use through this book. As
its name indicates, it allows us to automatically create nested jobs for each Git
branch containing a Jenkinsfile.

 Organization—Certain source-control platforms provide a mechanism for
grouping multiple repositories into organizations. This project type allows you
to use a Jenkinsfile in the repositories within an organization and execute a
pipeline based on the Jenkinsfile. Currently, the project type supports only
GitHub and Bitbucket organizations.

NOTE The trunk-based strategy uses one central repository with a single entry
(called a trunk or master) for all changes to the project.

To be clear, having these new job types available depends on having the requisite
plugins installed. If you baked the Jenkins master machine image with the list of
plugins provided in chapter 4’s section 4.3.2, you will get all the job types discussed in
the preceding list.

7.3 Git and GitHub integration
The pipeline script (Jenkinsfile) will be versioned in GitHub. Therefore, we need to
configure the Jenkins job to fetch it from the remote repository.

 Set a name and description in the General section. Then, select the code source
from the Branch Sources section. Configure the pipeline to refer to GitHub for source-
control management by selecting GitHub from the drop-down list; see figure 7.8.

Figure 7.8 Branch Sources configuration

206 CHAPTER 7 Defining a pipeline as code for microservices
For checkout credentials, open a new tab and go to the Jenkins dashboard. Click Cre-
dentials and then System. On the Global Credentials page, from the menu on the left,
click the Add Credentials link. Next, create a new Jenkins global credential of type
Username and Password to access the microservices projects in Git. The GitHub user-
name and password can be set as shown in figure 7.9. However, it’s not recommended
to use a personal GitHub account.

NOTE The Jenkins Credentials plugin (https://plugins.jenkins.io/credentials/)
is installed by default on the baked Jenkins master machine image. It is part of
the essential plugins listed in chapter 4’s section 4.3.2.

Figure 7.9 Jenkins credentials provider

Therefore, I have created a dedicated Jenkins service account on GitHub and used
an access token instead of the account password. You can create the access token
by signing in with the GitHub credentials and navigating to Settings. Then, from the
left menu, select Developer Settings and select Personal Access Tokens, as shown in
figure 7.10.

Figure 7.10 GitHub personal access tokens

https://plugins.jenkins.io/credentials/

207Git and GitHub integration
Click the Generate New Token button, give a name to the access token, and select the
repo access from the list of authorized scopes, as shown in figure 7.11. For private
repositories, you must ensure that the repo scope is selected, and not just the
repo:status and public_repo scopes. The token name is helpful, as you’ll likely
have many of these tokens for many applications.

Figure 7.11 Jenkins dedicated token for GitHub access

As the GitHub warning in figure 7.12 indicates, you must copy the token after you
generate it, as you won’t be able to see it again. If you fail to do so, your only recourse
will be to regenerate the token.

Figure 7.12 Jenkins personal access token

Paste in the GitHub personal access token to the Password field. Give a unique ID to
your GitHub credentials by typing a string in the ID field and add a meaningful descrip-
tion to the Description field, as shown in figure 7.13. Then click the Save button.

208 CHAPTER 7 Defining a pipeline as code for microservices
Figure 7.13 GitHub credentials configuration on Jenkins

Go back to the job configuration tab, shown in figure 7.14, and select the credentials
you created from the Credentials drop-down list. Set the repository HTTPS clone
URL and set the discovering behavior to allow scanning of all repository branches.
Then, scroll all the way down and click the Apply and Save buttons.

Figure 7.14 GitHub repository configuration on Jenkins

NOTE We cover Jenkins advanced scanning behaviors and strategies in
chapter 9.

209Git and GitHub integration
Jenkins will scan the GitHub repository, looking for branches with a Jenkinsfile in the
root repository. So far, there are none, and we can check that by clicking the Scan
Repository Log button from the left sidebar.

NOTE In this book, we will use the concept of pipeline as code instead of rep-
resenting each CI stage within the UI as in a Jenkins classic freestyle job. The
pipeline will be described in a Jenkinsfile.

The log output confirms that no Jenkinsfile has been found yet in the GitHub reposi-
tory, as shown in figure 7.15.

Figure 7.15 Jenkins repository scanning logs

It’s time to create a Jenkinsfile. Using your favorite text editor or IDE, create and save
a new text file with the name Jenkinsfile at the root of your local movies-loader
Git repository. Copy the following scripted pipeline code and paste it into your empty
Jenkinsfile.

node('workers'){
 stage('Checkout'){
 checkout scm
 }
}

NOTE We are using scripted pipeline syntax to write most of the Jenkinsfile. How-
ever, the declarative approach will be given when the CI pipeline is completed.

The Checkout stage, as its name indicates, will simply check out the code at the refer-
ence point that triggered the run. You can customize the checkout process by providing
additional parameters. Also, the stages will be executed on Jenkins workers—hence,
the use of the workers label on the node block. We’re assuming we have a Jenkins
worker already set up on the Jenkins instance labeled workers. If no label is provided,
Jenkins will run the pipeline on the first executor that becomes available on any
machine (master or worker).

Listing 7.1 Jenkinsfile using a scripted approach

210 CHAPTER 7 Defining a pipeline as code for microservices
 Save your edited Jenkinsfile and push the changes to the develop branch by run-
ning the following commands:

git add Jenkinsfile
git commit -m "creating Jenkinsfile"
git push origin develop

The Jenkinsfile lives with the source code in GitHub. Therefore, like any code, it can
be peer-reviewed, commented on, and approved before being merged into main
branches; see figure 7.16.

Figure 7.16 Jenkinsfile is stored along with source code

Go back to the Jenkins dashboard, and to trigger the scanning again, click the Scan
Repository Now button. By default, this will automatically trigger builds for all newly
discovered branches, as shown in figure 7.17.

Figure 7.17
Jenkinsfile detected
on develop branch

211Git and GitHub integration
In our current setup, a Jenkinsfile has been found only on the develop branch. If we
click the movies-loader job again. Jenkins should have created a nested job for the
develop branch, as you can see in figure 7.18. There was no pipeline scheduled for the
preprod and master branches since there was no Jenkinsfile on them yet.

Figure 7.18 Build job triggered on the develop branch

NOTE If you ever have problems with jobs for branches not being created or built
automatically, check the Scan Repository Log item from the left job sidebar.

The build should be triggered on the develop branch automatically, and the checkout
stage will be executed and turned green. Note that the Git client should be installed
on the worker where the build is executed.

 The Jenkins Stage view, shown in figure 7.19, lets us visualize the progress of vari-
ous stages of the pipeline in real-time.

Figure 7.19 Pipeline execution

212 CHAPTER 7 Defining a pipeline as code for microservices
NOTE The Jenkins Stage view is a new feature that comes as a part of release
2.x. It works only with Jenkins Pipeline and Jenkins Multibranch pipeline
jobs.

Click the Checkout stage column to view the stage’s logs. You can see that Jenkins
has cloned the movies-loader GitHub repository and checked out the develop branch
to fetch the latest source code changes from the remote repository, as shown in fig-
ure 7.20.

Figure 7.20 Checkout stage logs

To view the complete build log, look for the Build History on the left side. The Build
History tab will list all the builds that have been run. Click the last build number; see
figure 7.21.

Figure 7.21 Build number settings

213Git and GitHub integration
Then, click the Console Output item from the left corner. The complete build logs
will be displayed, as shown in figure 7.22.

Figure 7.22 Build console logs

Now that we have created a Jenkins job for movies-loader, let’s create another Jenkins
job for the movies-parser service; once again, head over to Jenkins main page and
click the New Item button. However, to save time, copy the configuration from the
previous job, as shown in figure 7.23.

Figure 7.23 Parser job’s creation

214 CHAPTER 7 Defining a pipeline as code for microservices
Click the OK button. The movies-parser job will reflect all features of the cloned
movies-loader job. Update appropriately the GitHub repository HTTPS clone URL,
job description, and display name, as shown in figure 7.24.

Figure 7.24 Parser job GitHub configuration

Push the same Jenkinsfile used in the previous job to the develop branch of the
movies-parser GitHub repository. Then click Apply for changes to take effect.

 After saving, the build will always run from the current version of Jenkinsfile into
the repository, as shown in figure 7.25.

Figure 7.25 Parser job list of active branches

215Discovering Jenkins jobs’ XML configuration
Follow the same steps to create Jenkins jobs for the movies-store and movies-market-
place services.

 While Git is the most used distributed version control nowadays, Jenkins comes
with built-in support for Subversion. To use source code from a Subversion repository,
you simply provide the corresponding Subversion URL—it will work fine with any of
the three Subversion protocols of HTTP, SVN, or File. Jenkins will check that the URL
is valid as soon as you enter it. If the repository requires authentication, you can create
a Jenkins credential of type Username with Password, and select it from the Creden-
tials drop-down list, as shown in figure 7.26.

Figure 7.26 SVN repository configuration

You can fine-tune the way Jenkins obtains the latest source code from your Subversion
repository by selecting an appropriate value in the Check-out Strategy drop-down list.

7.4 Discovering Jenkins jobs’ XML configuration
Another way to create or clone a multibranch pipeline job is to export the config.xml
file of an existing job. The XML file contains, as you might expect, the configuration
details for the build job.

 You can view the XML configuration of a job by pointing your browser to JENKINS
_DNS/job/JOB_NAME/config.xml. It should dump the job XML definition in the
browser page, as shown in figure 7.27.

216 CHAPTER 7 Defining a pipeline as code for microservices
Figure 7.27 Job XML configuration

Save the job definition in an XML file and update the XML tags in table 7.2 with the
appropriate values based on the target Jenkins job you’re planning to create.

Table 7.2 XML tags

XML tag Description

<description>
Meaningful description explaining in a few words the purpose of the Jenkins
job

<displayName>
Jenkins job’s display name; general practice is to use the name of the reposi-
tory storing the source code as a value for display name

<repository> Name of the GitHub repository holding the source code, such as movies-store

<repositoryURL>
GitHub repository HTTPS clone URL, set in the following format: https:/./
github.com/username/repository.git

217Discovering Jenkins jobs’ XML configuration
NOTE In chapter 14, we will cover how to use the Jenkins CLI to automate
the import and export of multiple jobs and plugins in Jenkins.

The following listing is an example of an XML config file for the movies-store job. It
illustrates a typical structure of a Jenkins job XML configuration.

<?xml version="1.0" encoding="UTF-8"?>
<org.jenkinsci.plugins.workflow
.multibranch.WorkflowMultiBranchProject plugin="workflow-multibranch@2.21">
 <actions />
 <description>Movies store RESTful API</description>
 <displayName>movies-store</displayName>
 <sources class="jenkins.branch
.MultiBranchProject$BranchSourceList" plugin="branch-api@2.5.5">
 <data>
 <jenkins.branch.BranchSource>
 <source class="org.jenkinsci.plugins
.github_branch_source.GitHubSCMSource" plugin="github-branch-source@2.5.8">
 <id>bf197dad-7d42-4a00-be25-7ae8ea7fef15</id>
 <apiUri>https://api.github.com</apiUri>
 <credentialsId>github</credentialsId>
 <repoOwner>mlabouardy</repoOwner>
 <repository>movies-store</repository>
 <repositoryUrl>
https://github.com/mlabouardy/movies-store.git
 </repositoryUrl>
 <traits>

<org.jenkinsci.plugins.github__branch__source.BranchDiscoveryTrait>
 <strategyId>1</strategyId>
</org.jenkinsci.plugins.github__branch__source.BranchDiscoveryTrait>
 </traits>
 </source>
 </jenkins.branch.BranchSource>
 </data>
 </sources>
</org.jenkinsci.plugins.workflow.multibranch.WorkflowMultiBranchProject>

NOTE The XML has been cropped for brevity. The full job XML definition is
available in the GitHub repository in chapter7/jobs/movies-store.xml.

Once you have updated the config.xml file with the appropriate values, issue an
HTTP POST request with the job XML definition as a payload to the Jenkins URL
with a query parameter name equal to the target job’s name. Figure 7.28 shows an
example for creating a movies-store job with a Postman HTTP API client.

NOTE If CSRF protection is enabled on Jenkins, you will need to create an
API token instead of a crumb issuer token. For more information, refer to
chapter 2.

Listing 7.2 Movies store config.xml

Defines the job’s name
and description

Defines the project
GitHub repository
URL (HTTPS format)

Tells Jenkins to scan all branches
in the GitHub repository looking

for a Jenkinsfile

218 CHAPTER 7 Defining a pipeline as code for microservices

Figure 7.28 Job creation Jenkins RESTful API with Postman

A one-line cURL command can also be used to clone and create a new job:

curl -s https:///<USER>:<API_TOKEN>@JENKINS_HOST/job/JOBNAME/config.xml
| curl -X POST 'https:///<USER>:<API_TOKEN>@JENKINS_HOST/

createItem?name=JOBNAME'
--header "Content-Type: application/xml" -d @-

The Jenkins API token (API_TOKEN variable) can be created from the Jenkins dash-
board by logging with the user that you want to generate the API token for. Then
open the user profile page and click Configure to open the user configuration page.

 Locate the Add new Token button, give a name to the new token, and click the
Generate button, as shown in figure 7.29. Retrieve the token and replace the API_
TOKEN variable in the preceding cURL commands with the generated token value.

Figure 7.29 Jenkins API token generation

219Configuring SSH authentication with Jenkins
NOTE Jenkins jobs can also be created by copying the XML file directly to
the /var/lib/jenkins/jobs/<Job name> folder on the Jenkins master instance
and restarting Jenkins with the service jenkins restart command for
changes to take effect.

Once the four Jenkins jobs are created, you should have the jobs shown in figure 7.30
on the Jenkins main page. You can organize these jobs in one view by creating a Jen-
kins folder. You can create a folder named Watchlist and move these jobs to it.

Figure 7.30 Microservices jobs in Jenkins

To do so, follow these steps: From the sidebar, click New Item, enter Watchlist as a
name in the text box, and select Folder to create the folder. To move the existing jobs
to the folder, click the arrow to the right of the job and select Move. Select Watchlist as
the desired folder and click Move.

 The microservices jobs will be accessible with the following URL format: JENKINS
_DNS/job/Watchlist/job.

 The Jenkins CLI can be used to import or export a job even if its usage is depre-
cated and not recommended for security vulnerabilities (at least for Jenkins 2.53 and
older versions). You can run this command to import your Jenkins job XML file:

java -jar jenkins-cli.jar -s JENKINS_URL
-auth USERNAME:PASSWORD
create-job movies-marketplace < config.xml

An alternative authentication method is to use an access token by replacing the -auth
option with the username:token argument.

7.5 Configuring SSH authentication with Jenkins
Previously, you learned to configure GitHub on Jenkins with username and password
credentials. We also covered how to create a GitHub API access token with granular

220 CHAPTER 7 Defining a pipeline as code for microservices
permissions. This section covers how to use SSH keys instead to authenticate with
project repositories.

NOTE You can generate a one-purpose SSH key for SSH authentication with
remote Git repositories by using the ssh-keygen command.

First, configure the Jenkins public SSH key on GitHub. You can configure SSH on the
GitHub repository by going to the repository settings and adding a deploy key from
the Deploy Keys section. Or simply configure the SSH key globally from the user pro-
file settings. Give a name such as Jenkins and paste the public key (from the
id_rsa.pub file); see figure 7.31.

Figure 7.31 GitHub SSH configuration

NOTE Once a key has been attached to one repository as a deploy key, it can-
not be used on another repository.

To determine whether the key is successfully configured, type the following command
on your Jenkins SSH session. Use the -i flag to provide the path to the Jenkins private
key:

ssh -T -ai PRIVATE_KEY_PATH git@github.com

If the response looks something like Hi username, the key has been properly
configured.

 Now go to Credentials from the left pane inside the Jenkins console and click
Global. Then select Add Credentials and create a credential of type SSH Username
with Private Key. Give it a name and set the value of the SSH private key, as shown in
figure 7.32. The Username should be the username for the GitHub account that hosts
the project. In the Passphrase text box, write the passphrase given while generating
the SSH RSA key. If not set, leave it blank.

221Configuring SSH authentication with Jenkins

Figure 7.32 Configuring GitHub SSH credentials on Jenkins

Head back to the Jenkins job, and under Branch Sources, choose Git from the drop-
down list, set the repository SSH clone URL, and select the saved credentials title
name; see figure 7.33.

If you go to the build output, it should clearly list that the SSH key is being used for
authentication. The following is sample output highlighting the same:

Figure 7.33
Configuring
the Jenkins
job to use
SSH keys

222 CHAPTER 7 Defining a pipeline as code for microservices
Until now, the Checkout stage has been using the credentials and settings configured
in the current Jenkins job. If you want to customize the settings and use specific cre-
dentials, you can replace it with the following listing.

stage('Checkout') {
 steps {
 git branch: 'develop',
 credentialsId: 'github-ssh',
 url: 'git@github.com:mlabouardy/movies-loader.git'
 }
}

This example will clone the develop branch of the movies-loader GitHub repository,
using the SSH credentials saved in the github-ssh Jenkins credentials.

7.6 Triggering Jenkins builds with GitHub webhooks
So far, we have always built the pipeline manually by clicking the Build Now button. It
works but is not very convenient. All team members would have to remember that
after committing to the repository, they need to open Jenkins and start the build.

 To trigger the jobs by push event, we will create a webhook on the GitHub reposi-
tory of each service, as illustrated in figure 7.34. Remember, a Jenkinsfile should also
be present on the respective branch to tell Jenkins what it needs to do when it finds a
change in the repository.

NOTE Webhooks are user-defined HTTP callbacks. They are triggered by an
event in a web application and can facilitate integrating different applications
or third-party APIs.

Figure 7.34 Webhook explained

Navigate to the GitHub repository that you want to connect to Jenkins and click the
repository Settings option. In the menu on the left, click Webhooks, as shown in fig-
ure 7.35.

 GitHub webhooks allow you to notify external services when certain Git events
happen (push, merge, commit, fork, and so forth) by sending a POST request to the
configured service URL.

Listing 7.3 Customized git clone command

Webhook

Push event

Jenkins

223Triggering Jenkins builds with GitHub webhooks
Figure 7.35 GitHub Webhooks section

Click the Add Webhook button to bring up the associated dialog, shown in figure
7.36. Fill in the form with the following values:

 The payload URL should be in the following format: JENKINS_URL/github-
webhook/ (make sure it includes the last forward slash).

 The content type can be either application/json or application/x-www-form-
urlencoded.

 Select the push event as a trigger and leave the Secret field empty (unless a
secret has been created and configured in the Jenkins Configure System >
GitHub Plugin section).

Figure 7.36 Jenkins webhook settings

224 CHAPTER 7 Defining a pipeline as code for microservices
Leave the rest of the options at their default values and then click the Add Webhook
button. A test payload should be sent to Jenkins to set up the hook. If the payload is
successfully received by Jenkins, you should see the webhook with a green check
mark, as shown in figure 7.37.

Figure 7.37 Jenkins webhook settings

With these GitHub updates done, if you push some changes to the Git repository, a
new event should get kicked off automatically. In this scenario, we update the
README.md file:

Go back to your Jenkins project, and you’ll see that a new job was triggered automati-
cally from the commit we made at the previous step. Click the little arrow next to the
job and choose Console Output. Figure 7.38 shows the output.

 The update readme message confirms that the build was triggered automatically
upon pushing the new README.md to the GitHub repository. Now, every time you
publish your changes to your remote repository, GitHub will trigger your new Jenkins
job. Create a similar webhook on the remaining GitHub repositories by following the
same procedure.

225Triggering Jenkins builds with GitHub webhooks

Figure 7.38 GitHub push event

NOTE If you want SVN users to continuously trigger Jenkins jobs after every
commit, you can either configure Jenkins to periodically poll the SVN server
or set up a post-commit hook on the remote repository.

In a different situation, the Jenkins dashboard might not be accessible from a public
network. Instead of executing jobs manually, you can set up a public reverse proxy as
middleware between the GitHub server and Jenkins, and configure the GitHub web-
hook to use the middleware URL. Figure 7.39 explains how to use AWS managed ser-
vices to set up a webhook forwarder for a Jenkins instance within a VPC.

Figure 7.39 GitHub webhook setup with API Gateway

NOTE You can generalize this approach to other services too, such as Bit-
bucket or DockerHub—or anything, really, that emits webhooks.

If you’re using AWS as a cloud provider, you can use a managed proxy called Amazon
API Gateway to invoke a Lambda function when a POST request is invoked on a spe-
cific endpoint, as shown in figure 7.40.

226 CHAPTER 7 Defining a pipeline as code for microservices

Figure 7.40 Triggering a Lambda function with API Gateway

The Lambda function will receive the GitHub payload from API Gateway and relay
it to the Jenkins server. The following listing is a function entry point written in
JavaScript.

const Request = require('request');
exports.handler = (event, context, callback) => {
 Request.post({
 url: process.env.JENKINS_URL,
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 "X-GitHub-Event": event.headers["X-GitHub-Event"]
 },
 json: JSON.parse(event.body)
 }, (error, response, body) => {
 callback(null, {
 "statusCode": 200,
 "headers": {
 "content-type": "application/json"
 },
 "body": "success",
 "isBase64Encoded": false
 })
 })
};

To deploy the GitHub webhook and AWS resources, we will use Terraform. But first,
we need to create a deployment package with the Lambda function index.js entry
point. The deployment package is a zip file that can be generated with the following
command:

zip deployment.zip index.js

Listing 7.4 Lambda function handler

227Triggering Jenkins builds with GitHub webhooks
NOTE This section assumes you’re familiar with the usual Terraform plan/
apply workflow. If you’re new to Terraform, refer to chapter 5.

Next, we define a lambda.tf file containing the Terraform resource definition for an
AWS Lambda function. We set the runtime to be a Node.js runtime environment (the
Lambda handler is written in JavaScript). We define an environment variable named
JENKINS_URL with a value pointing to the Jenkins web dashboard URL, as shown in
the next listing.

resource "aws_lambda_function" "lambda" {
 filename = "../deployment.zip"
 function_name = "GitHubWebhookForwarder"
 role = aws_iam_role.role.arn
 handler = "index.handler"
 runtime = "nodejs14.x"
 timeout = 10
 environment {
 variables = {
 JENKINS_URL = var.jenkins_url
 }
 }
}

Then, we define an API Gateway RESTful API to trigger the preceding Lambda func-
tion when a POST request occurs on the /webhook endpoint. Create a new file,
apigateway.tf, in the same directory as our lambda.tf from the previous step and paste
the following content.

resource "aws_api_gateway_rest_api" "api" {
 name = "GitHubWebHookAPI"
 description = "GitHub Webhook forwarder"
}

resource "aws_api_gateway_resource" "path" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 parent_id = aws_api_gateway_rest_api.api.root_resource_id
 path_part = "webhook"
}

resource "aws_api_gateway_integration" "request_integration" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 resource_id = aws_api_gateway_method.request_method.resource_id
 http_method = aws_api_gateway_method.request_method.http_method
 type = "AWS_PROXY"
 uri = aws_lambda_function.lambda.invoke_arn
 integration_http_method = "POST"
}

Listing 7.5 Lambda function based on Node.js runtime

Listing 7.6 API Gateway RESTful API

228 CHAPTER 7 Defining a pipeline as code for microservices
Finally, in the following listing, we create an API Gateway deployment to activate the
configuration and expose the API at a URL that can be used for webhook configura-
tion. We use a Terraform output variable to display the API deployment URL by refer-
encing the API deployment stage.

resource "aws_api_gateway_deployment" "stage" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 stage_name = "v1"
}

output "webhook" {
 value = "${aws_api_gateway_deployment.stage.invoke_url}/webhook"
}

Before issuing the terraform apply command, you need to define the variables
used in the preceding resources. The variables.tf file will contain the list of variables,
which are detailed in table 7.3.

When Terraform finishes deploying the AWS resources, a new Lambda function called
GitHubWehookForwarder should be created with a trigger of type API Gateway, as
shown in figure 7.41.

Figure 7.41 GitHubWebhookForwarder Lambda function

Listing 7.7 API new deployment stage

Table 7.3 GitHub webhook proxy’s Terraform variables

Variable Type Value Description

region String none The AWS region in which to deploy AWS resources. It can also
be sourced from the AWS_REGION environment variable.

shared_creden
tials_file

String none The path to the shared credentials file. If this is not set and a
profile specified, ~/.aws/credentials will be used.

aws_profile String profile The AWS profile name as set in the shared credentials file.

jenkins_url String none The Jenkins URL, which has the format http:/./IP:8080, or
uses HTTPS if an SSL certificate is being used.

229Triggering Jenkins builds with GitHub webhooks
Furthermore, Terraform will display the RESTful API deployment URL, which you
can use to create a webhook on the target GitHub repository, as shown in figure 7.42.

Figure 7.42 GitHub webhook based on API Gateway URL

Webhooks should be flowing now. You can make a change to your repository and
check that a build starts soon after. You also can add an extra security layer, by requir-
ing a request secret and validating the incoming request signature on the Lambda
function side.

 If you’re running Jenkins locally, you can use a build trigger to poll SCM and
schedule it to run periodically, as shown in figure 7.43. In such a case, Jenkins would
regularly check the repository, and if anything changed, it would run the job.

Figure 7.43 Under the job’s settings, you can define the interval of checks.

After running the pipeline manually for the first time, the automatic trigger is set.
Then it checks GitHub every minute, and for new commits, starts a build. To test that
it works as expected, you can commit and push anything to the GitHub repository and
see that the build starts.

NOTE Polling SCM, even if it’s less intuitive, might be useful if Git commits
are frequent and the build takes a long time, so executing a build upon a
push event every time would cause an overload.

230 CHAPTER 7 Defining a pipeline as code for microservices
So far, you have learned how to integrate Git repositories with Jenkins and define
multibranch pipeline jobs. And we have ended up creating our first complete commit
pipeline. However, with the current state, it doesn’t do much. In the following chap-
ters, we will see what improvements can be made to make the commit pipeline even
better, and we will start by running automated tests within the Jenkins pipelines.

Summary
 A webhook is a mechanism to automatically trigger the build of a Jenkins proj-

ect upon a commit pushed in a remote Git repository.
 The development workflow should be carefully chosen inside the team or orga-

nization because it affects the CI process and defines the way the code is
developed.

 Using multi-repo or mono-repo strategies to organize the codebase will define
the complexity of a CI/CD pipeline as the number of applications evolves
within an organization.

 A pipeline can go through the standard code development process (code
review, pull requests, automated testing, and so forth) when a Jenkinsfile and
application source code live together on the same Git repository.

 Jenkins stores configuration files for the jobs it runs in an XML file. Editing
these XML configuration files has the same effect as editing Jenkins jobs
through the web dashboard.

 A reverse proxy can be useful to let Git webhooks reach a running Jenkins
server behind a firewall.

Running automated
tests with Jenkins
In the previous chapter, you learned how to set up multibranch pipeline jobs for
containerized microservices and for continuously triggering Jenkins upon push
events with webhooks. In this chapter, we will run automated tests within the CI
pipeline. Figure 8.1 summarizes the current CI workflow stages.

This chapter covers
 Implementing CI pipelines for Python, Go, Node.js,

and Angular-based services

 Running pre-integration tests and automated UI
testing with Headless Chrome

 Executing SonarQube static code analysis within
Jenkins pipelines

 Running unit tests inside a Docker container and
publishing code coverage reports

 Integrating dependency checks in a Jenkins
pipeline and injecting security in DevOps
231

232 CHAPTER 8 Running automated tests with Jenkins

Figure 8.1 The test stages covered in this chapter

Test automation is widely considered a cornerstone of Agile development. If you want
to release fast—even daily—with reasonable quality, you have to move to automated
testing. On the other hand, giving less importance to testing can result in customer
dissatisfaction and a delayed product. However, automating the testing process is a bit
more difficult than automating the build, release, and deployment processes. Auto-
mating nearly all the test cases used in an application usually takes a lot of effort. It is
an activity that matures over time. It is not always possible to automate all the testing.
But the idea is to automate whatever testing is possible.

 By the end of this chapter, we will implement the test stage in the target CI pipe-
line shown in figure 8.2.

Figure 8.2 Target CI pipeline

Before resuming the CI pipeline implementation, a quick reminder regarding the
web distributed application we’re integrating with Jenkins: it’s based on a microser-
vices architecture and split into components/services written in different program-
ming languages and frameworks. Figure 8.3 illustrates this architecture.

Continuous integration

Quality
tests

Unit
tests

Security
checks Build PushCheckout

233Running unit tests inside Docker containers

In the following sections, you will learn how to integrate various types of tests in our
CI workflow. We will start with unit testing.

8.1 Running unit tests inside Docker containers
Unit testing is the frontline effort to identify issues as early as possible. The test needs to
be small and quick to execute to be efficient.

 The movies-loader service is written in Python. To define unit tests, we’re going to
use the unittest framework (it comes bundled with the installation of Python). To use
it, we import the unittest module, which offers a rich set of methods to construct and
run tests. The following listing, test_main.py, demonstrates a short unit test to test the
JSON loading and parsing mechanism.

import unittest
import json

class TestJSONLoaderMethods(unittest.TestCase):
 movies = []

 @classmethod
 def setUpClass(cls):
 with open('movies.json') as json_file:
 cls.movies = json.load(json_file)

 def test_rank(self):
 self.assertEqual(self.movies[0]['rank'], '1')

Listing 8.1 Unit testing in Python

Figure 8.3
Watchlist microservices
architecture

234 CHAPTER 8 Running automated tests with Jenkins
 def test_title(self):
 self.assertEqual(self.movies[0]['title'], 'The Shawshank Redemption')

 def test_id(self):
 self.assertEqual(self.movies[0]['id'], 'tt0111161')

if __name__ == '__main__':
 unittest.main()

The setUpClass() method allows us to load the movies.json file before the execu-
tion of each test method. The three individual tests are defined with methods whose
names start with the prefix test. This naming convention informs the test runner
about which methods represent tests. The crux of each test is a call to assert-
Equal() to check for an expected result. For instance, we check whether the first
movie’s title attribute parsed from the JSON file is The Shawshank Redemption.

 To run the test, we can execute the python test_main.py command on Jenkins.
However, it requires Python 3 to be installed. To avoid installing the runtime environ-
ment for each service we are building, we will run the tests inside a Docker container.
That way, we will be using Docker as an execution environment across all Jenkins
workers.

 On the movies-loader repository, create a Dockerfile.test file by using your favorite
text editor or IDE with the following content.

FROM python:3.7.3
WORKDIR /app
COPY test_main.py .
COPY movies.json .

The Dockerfile is built from a Python 3.7.3 official image. It sets a working directory
called app, and copies the test files to the working directory.

NOTE The name convention Dockerfile.test is used to avoid name conflict with
Dockerfile, which is used to build the main application’s Docker image.

Now, update the Jenkinsfile given in listing 7.1 and add a new Unit Test stage, as
shown in the following listing. The stage will create a Docker image based on Dockerfile
.test and then spin up a Docker container from the created image to run the python
test_main.py command to launch unit tests. The Unit Test stage uses a DSL-like
syntax to define the shell instructions.

def imageName = 'mlabouardy/movies-loader'

node('workers'){
 stage('Checkout'){
 checkout scm
 }

Listing 8.2 Movie loader’s Dockerfile.test

Listing 8.3 Movie loader’s Jenkinsfile

https://angular.io/cli
https://jasmine.github.io/

235Running unit tests inside Docker containers
 stage('Unit Tests'){
 sh "docker build -t ${imageName}-test -f Dockerfile.test ."
 sh "docker run --rm ${imageName}-test"
 }
}

The docker build and docker run commands are used to create an image and
build a container from the image, respectively.

NOTE The --rm flag in the docker run command is used to automatically
clean up the container and remove the filesystem when the container exits.

You can use the powershell step in your pipeline on a Windows worker. This step
has the same options as the sh instruction.

 Commit the changes to the develop branch with the following commands:

git add Dockerfile.test Jenkinsfile
git commit -m "unit tests execution"
git push origin develop

In a few seconds, a new build should be triggered on the movies-loader job for the
develop branch. From the movies-loader Multibranch Pipeline job, click the respec-
tive develop branch. On the resultant page, you will see the Stage view for the develop
branch pipeline, as shown in figure 8.4.

Figure 8.4 Unit test stage execution

https://karma-runner.github.io/latest/index.html

236 CHAPTER 8 Running automated tests with Jenkins
Click the Console Output option to view the test results. All three test cases ran, and
the status shows as SUCCESS in the logs, as you can see in figure 8.5.

Figure 8.5 Unit test successful execution logs

The shell commands can be replaced with Docker DSL instructions. I advise using
them where appropriate instead of running Docker commands via the shell, because
they provide high-level encapsulation and ease of use:

stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test",
 "-f Dockerfile.test .")
 imageTest.inside{
 sh 'python test_main.py'
 }
}

The docker.build() method is similar to running the docker build command.
The returned value of the method can be used for a subsequent call to create a
Docker container and run the unit tests. Figure 8.6 shows a successful run of the
pipeline.

237Running unit tests inside Docker containers
Figure 8.6 Using the Docker DSL to run tests

To show results in a graphical, visual way, we can use the JUnit report integration
plugin on Jenkins to consume an XML file generated by Python unit tests.

NOTE The JUnit report integration plugin (https://plugins.jenkins.io/junit/)
is installed by default in the baked Jenkins master machine image.

Update the test_main.py file to use the xmlrunner library, and pass it to the unittest
.main method:

import xmlrunner
...
if __name__ == '__main__':
 runner = xmlrunner.XMLTestRunner(output='reports')
 unittest.main(testRunner=runner)

This will generate test reports in the reports directory. However, we need to address a
problem: the test container will store the result of the tests that it executes within
itself. We can resolve this by mapping a volume to the reports directory. Update the
Jenkinsfile to tell Jenkins where to find the JUnit test report:

stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test",
 "-f Dockerfile.test .")
 sh "docker run --rm -v $PWD/reports:/app/reports ${imageName}-test"
 junit "$PWD/reports/*.xml"
}

NOTE You can also get the report results by using the docker cp command
to copy the report files into the current workspace. Then, set the workspace
as an argument for the JUnit command.

Let’s go ahead and execute this. This will add a chart to the project page in Jenkins
after the changes are pushed to the develop branch and CI execution is completed;
see figure 8.7.

https://plugins.jenkins.io/junit/

238 CHAPTER 8 Running automated tests with Jenkins
Figure 8.7 JUnit test chart analyzer

The historic graph shows several metrics (including failure, total, and duration)
related to the test execution over a period of time. You can also click the chart to get
more details about individual tests.

8.2 Automating code linter integration with Jenkins
Another example of tests to implement within CI pipelines is code linting. Linters can
be used to check the source code and find typos, syntax errors, undeclared variables,
and calls to undefined or deprecated functions. They can help you write better code
and anticipate potential bugs. Let’s see how to integrate code linters with Jenkins.

 The movies-parser service is written in Go, so we can use a Go linter to make sure
that the code respects the code style. A linter may sound like an optional tool, but for
larger projects, it helps to keep a consistent style over your project.

 Dockerfile.test uses golang:1.13.4 as a base image, and installs the golint tool and
service dependencies, as shown in the following listing.

FROM golang:1.13.4
WORKDIR /go/src/github.com/mlabouardy/movies-loader
ENV GOCACHE /tmp
WORKDIR /go/src/github/mlabouardy/movies-parser
RUN go get -u golang.org/x/lint/golint
COPY . .
RUN go get -v

Add the Quality Tests stage to the Jenkinsfile to build a Docker image based on
Dockerfile.test with the docker.build() command, and then use the inside()
instruction on the built image to start a Docker container in daemonized mode to
execute the golint command:

def imageName = 'mlabouardy/movies-parser'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

Listing 8.4 Movie parser’s Dockerfile.test

239Automating code linter integration with Jenkins
 stage('Quality Tests'){
 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 imageTest.inside{
 sh 'golint'
 }
 }
}

NOTE If an ENTRYPOINT instruction is defined in Dockerfile.test, the
inside() instruction will pass the commands defined in its scope as an argu-
ment to the ENTRYPOINT instruction.

The golint execution will result in the logs shown in figure 8.8.

Figure 8.8 The golint command output identifies the missing comments

By default, golint prints only the style issues, and returns (with a 0 exit code), so the
CI never considers that something went wrong. If you specify -set_exit_status,
the pipeline will fail if an issue is reported by golint.

 We can also implement a unit test for the movies-parser service. Go has a built-in
testing command called go test and the package testing, which combine to give a
minimal but complete unit-testing experience.

 Similarly to the movies-loader service, we will write a Dockerfile.test file to execute
the go test command that will execute tests written in the main_test.go file. The code
in the following listing has been cropped for brevity and to highlight the main parts.
You can browse the full code in chapter7/microservices/movies-parser/main_test.go.

package main

import (
 "testing"
)

Listing 8.5 Movie parser’s unit test

240 CHAPTER 8 Running automated tests with Jenkins
const HTML = `
<div class="plot_summary ">
 <div class="summary_text">
 An ex-hit-man comes out of retirement to track down the gangsters
that killed his dog and took everything from him.
 </div>
 ...
</div>
`
func TestParseMovie(t *testing.T) {
 expectedMovie := Movie{
 Title: "John Wick (2014)",
 ReleaseDate: "24 October 2014 (USA)",
 Description: "An ex-hit-man comes ...",
 }

 currentMovie, err := ParseMovie(HTML)
 if expectedMovie.Title != currentMovie.Title {
 t.Errorf("returned wrong title: got %v want %v"
, currentMovie.Title, expectedMovie.Title)
 }
}

This code shows the basic structure of a unit test in Go. The built-in testing package is
provided by Go’s standard library. A unit test is a function that accepts the argument
of type *testing.T and calls the t.Error() method to indicate a failure. This func-
tion must start with a Test keyword, and the latter name should start with an upper-
case letter. In our use case, the function tests the ParseMovie() method, which takes
as a parameter HTML and returns a Movie’s structure.

8.3 Generating code coverage reports
The Unit Tests stage is straightforward: it will execute go test inside the Docker
container created from the Docker test image. Instead of building the test image on
each stage, we move the docker.build() instruction outside the stage to speed up
the pipeline execution time, as you can see in the following listing.

def imageName = 'mlabouardy/movies-parser'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 stage('Quality Tests'){
 imageTest.inside{
 sh 'golint'
 }
 }
 stage('Unit Tests'){

Listing 8.6 Movie parser’s Jenkinsfile

241Generating code coverage reports
 imageTest.inside{
 sh 'go test'
 }
 }
}

Push the changes to the develop branch, and the pipeline should be triggered to exe-
cute the three stages defined on the Jenkinsfile, as shown in figure 8.9.

Figure 8.9 Go CI pipeline

The go test command output is shown in figure 8.10.

Figure 8.10 go test command output

NOTE Go provides the -cover flag to the go test command as a built-in
functionality to check your code coverage.

If we want to get the coverage report in HTML format, you need to add the following
command:

go test -coverprofile=cover/cover.cov
go tool cover -html=cover/coverage.cov -o coverage.html

242 CHAPTER 8 Running automated tests with Jenkins
Figure 8.11 The coverage.html content can be served from the Jenkins dashboard at the end of the test stage.

The commands render an HTML page, shown in figure 8.11, that visualizes line-by-
line coverage of each affected line in the main.go file.

 You can include the previous command in the CI workflow to generate coverage
reports in HTML format.

8.4 Injecting security in the CI pipeline
It’s important to make sure that no vulnerabilities are published to production—at
least no critical or major ones. Scanning project dependencies within a CI pipeline
can ensure this additional level of security. Several dependency scanning solutions
exist, commercial and open source. In this part, we’ll go with Nancy.

 Nancy (https://github.com/sonatype-nexus-community/nancy) is an open source
tool that checks for vulnerabilities in your Go dependencies. It uses Sonatype’s OSS
Index (https://ossindex.sonatype.org/), a mirror of the Common Vulnerabilities
and Exposures (CVE) database, to check your dependencies for publicly filed
vulnerabilities.

NOTE Chapter 9 covers how to use the OWASP Dependency-Check plugin
on Jenkins to detect references to dependencies that have been assigned CVE
entries.

Step one in the process is to install a Nancy binary from the official release page.
Update Dockerfile.test for the movies-parser project to install Nancy version 1.0.22 (at
the time of writing this book) and configure the executable on the PATH variable, as
shown in the following listing.

FROM golang:1.13.4
ENV VERSION 1.0.22
ENV GOCACHE /tmp
WORKDIR /go/src/github/mlabouardy/movies-parser
RUN wget https://github.com/sonatype-nexus-community/nancy/releases/download/

$VERSION/nancy

Listing 8.7 Movie parser’s Dockerfile.test

https://github.com/sonatype-nexus-community/nancy
https://ossindex.sonatype.org/

243Injecting security in the CI pipeline
linux.amd64-$VERSION -O nancy && \
 chmod +x nancy && mv nancy /usr/local/bin/nancy
RUN go get -u golang.org/x/lint/golint
COPY . .
RUN go get -v

To start using the tool, add a Security Tests stage on the Jenkinsfile to run Nancy
with the Gopkg.lock file as parameter, which contains a list of used Go dependencies
in the movies-parser service:

stage('Security Tests'){
 imageTest.inside(‘-u root:root’){
 sh 'nancy /go/src/github/mlabouardy/movies-parser/Gopkg.lock'
 }
}

Push the changes to the remote repository. A new pipeline will be started. At the
Security Tests stage, Nancy will be executed, and no dependency security vulnera-
bility will be reported, as shown in figure 8.12.

Figure 8.12 Dependencies scanning for known vulnerabilities

244 CHAPTER 8 Running automated tests with Jenkins
If Nancy finds a vulnerability in one of your dependencies, it will exit with a nonzero
code, allowing you to use Nancy as a tool in your CI/CD process, and fail builds.

 While you should aim to resolve all security vulnerabilities, some security scan
results may contain false positives. For example, if you see a theoretical denial-of-
service attack under obscure conditions that don’t apply to your project, it may be safe
to schedule a fix a week or two into the future. On the other hand, a more serious vul-
nerability that may grant unauthorized access to customer credit card data should be
fixed immediately. Whatever the case, arm yourself with knowledge of the vulnerabil-
ity so you and your team can determine the proper course of action to mitigate the
security threat.

 Adding the dependency scanning to your pipeline (figure 8.13) is a simple first
step to reduce your attack surface. This is easy to implement, as it requires no server
reconfigurations or additional servers to work. In its most basic form, simply install
the Nancy binary and roll it out.

Figure 8.13 Security injection in CI pipeline

8.5 Running parallel tests with Jenkins
So far, pre-integration tests are running sequentially. One problem we always encoun-
ter is how to run all the tests needed to ensure high-quality changes while still keeping
pipeline times reasonable and changes flowing smoothly. More tests mean greater
confidence, but also longer wait times.

NOTE In chapter 9, we will cover how to use the Parallel Test Execution
plugin to run tests in parallel across multiple Jenkins workers.

One of the features of Jenkins pipelines that you see advertised quite frequently is its
ability to run parts of your build in parallel by using the parallel DSL step.

 Update the Jenkinsfile to use the parallel keyword, as shown in the following
listing. The parallel section contains a list of nested test stages to be run in parallel.

245Running parallel tests with Jenkins
Also, you can force your parallel stages to all be aborted when any one of them fails, by
adding a failFast true instruction.

node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 imageTest.inside{
 sh 'golint'
 }
 },
 'Unit Tests': {
 imageTest.inside{
 sh 'go test'
 }
 },
 'Security Tests': {
 imageTest.inside('-u root:root'){
 sh 'nancy Gopkg.lock'
 }
 }
)
 }
}

If you push those changes to the remote repository, a new build will be invoked (figure
8.14). However, one disadvantage of the standard pipeline view is that you can’t easily
see how the parallel steps progress, because the pipeline is linear, like a pipeline. This
issue has been addressed by Jenkins by providing an alternate view: Blue Ocean.

Figure 8.14 Pre-integration tests’ parallel execution

Listing 8.8 Running tests in parallel

246 CHAPTER 8 Running automated tests with Jenkins
Figure 8.15 shows the results for the same pipeline, with parallel test execution in
Blue Ocean mode.

Figure 8.15 Parallel stages in Blue Ocean

This looks nice and provides great visualization for parallel pipeline stages.

8.6 Improving quality with code analysis
Apart from continuously integrating code, CI pipelines nowadays also include tasks
that perform continuous inspection—inspecting code for its quality in a continuous
approach.

 The movies-store application is written with TypeScript. We will use Dockerfile.test
to build the Docker image to run automated tests, as shown in the following listing.

FROM node:14.0.0
WORKDIR /app
COPY package-lock.json .
COPY package.json .
RUN npm i
COPY . .

The first category of tests will be linting the source code. As you saw earlier in this
chapter, linting is the process of checking the source code for programmatic, syntac-
tic, stylistic errors. Linting puts the whole service in a uniform format. The code lint-
ing can be achieved by writing some rules. Many linters are available, including JSLint,
JSHint, and ESLint.

 When it comes to linting TypeScript code, ESLint (https://eslint.org/) has a
higher-performing architecture than others. For that reason, I’m using ESLint for
linting the Node.js project, as shown in the following listing.

Listing 8.9 Movie store’s Dockerfile.test

https://eslint.org/

247Improving quality with code analysis

def imageName = 'mlabouardy/movies-store'

node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")

 stage('Quality Tests'){
 imageTest.inside{
 sh ‘npm run lint'
 }
 }
}

Copy this content to the movies-store Jenkinsfile and push the changes to the develop
branch. A new build should be triggered. At the Quality Tests stage, we’ll see the
errors regarding undefined keywords (figure 8.16) such as describe and before,
which are part of the Mocha (https://mochajs.org/) and Chai (www.chaijs.com)
JavaScript frameworks. These frameworks are used to describe unit tests (located
under the test folder) efficiently and handily.

Figure 8.16 ESLint problem detection

Listing 8.10 Movie store’s Jenkinsfile

https://mochajs.org/
http://www.chaijs.com

248 CHAPTER 8 Running automated tests with Jenkins
ESLint will return an exit 1 code error, which will break the pipeline. To fix the spot-
ted errors, extend ESLint rules by enabling the Mocha environment for ESLint. We
use the key attribute in eslintrc.json to specify the environments we want to enable by
setting mocha to true:

{
 "env": {
 "node": true,
 "commonjs": true,
 "es6": true,
 "mocha": true
 },

}

If you push the changes, this time the static code analysis results will be successful, as
you can see in figure 8.17.

Figure 8.17 CI pipeline execution after fixing ESLint errors

8.7 Running mocked database tests
While many developers focus on 100% coverage with unit tests, the code you write
must not be tested just in isolation. Integration and end-to-end tests give you that
extra confidence by testing parts of your application together. These parts may be
working just fine on their own, but in a large system, units of code rarely work
separately.

 Typically, for integration or end-to-end tests, your scripts will need to connect to a
real, dedicated database for testing purposes. This involves writing code that runs at
the beginning and end of every test case/suite to ensure that the database is in a
clean, predictable state.

 Using a real database for testing does have some challenges: database operations
can be relatively slow, the testing environment can be complex, and operational

249Running mocked database tests
overhead may increase. Java projects widely use DbUnit with an in-memory database
for this purpose (for example, H2, www.h2database.com/html/main.html). Reusing a
good solution from another platform and applying it to the Node.js world can be the
way to go here.

 Mongo-unit (www.npmjs.com/package/mongo-unit) is a Node.js package that can
be installed by using Node Package Manager (npm) or Yarn. It runs MongoDB in
memory. It makes integration tests easy by integrating well with the Mocha framework
and providing a simple API to manage the database state.

NOTE In chapter 9 and 10, we will run sidecar containers in Jenkins pipe-
lines, such as a MongoDB database, to run end-to-end tests.

The following listing is a simple test (/chapter7/microservices/movies-store/test/
dao.spec.js), written with Mocha and Chai, that uses the mongo-unit package to simu-
late MongoDB by running an in-memory database.

const Expect = require('chai').expect
const MongoUnit = require('mongo-unit')
const DAO = require('../dao')
const TestData = require('./movies.json')

describe('StoreDAO', () => {
 before(() => MongoUnit.start().then(() => {
 process.env.MONGO_URI = MongoUnit.getUrl()
 DAO.init()
 }))
 beforeEach(() => MongoUnit.load(TestData))
 afterEach(() => MongoUnit.drop())
 after(() => {
 DAO.close()
 return MongoUnit.stop()
 })
 it('should find all movies', () => {
 return DAO.Movie.find()
 .then(movies => {
 Expect(movies.length).to.equal(8)
 Expect(movies[0].title).to.equal('Pulp Fiction (1994)')
 })
 })
})

Next, we update the Jenkinsfile to add a new stage that executes the npm run test
command:

stage('Integration Tests'){
 sh "docker run --rm ${imageName}-test npm run test"
}

Listing 8.11 Mocha and Chai unit tests

http://www.h2database.com/html/main.html
http://www.npmjs.com/package/mongo-unit

250 CHAPTER 8 Running automated tests with Jenkins
The npm run test command is an alias; it runs the Mocha command line against
test cases in the test folder (figure 8.18). The command is defined in package.json,
provided in the following listing.

"scripts": {
 "start": "node index.js",
 "test": "mocha ./test/*.spec.js",
 "lint": "eslint .",
 "coverage-text": "nyc --reporter=text mocha",
 "coverage-html": "nyc --reporter=html mocha"
}

Figure 8.18 Unit testing using the Mocha framework

NOTE If your tests depend on other services, Docker Compose can be used to
simplify the startup and connection of all the services that the application
depends on.

8.8 Generating HTML coverage reports
We create a new stage to run the coverage tool with a text output format:

stage('Coverage Reports'){
 sh "docker run --rm ${imageName}-test npm run coverage-text"
}

This will output the text report to the console output, as shown in figure 8.19.

NOTE Istanbul is a JavaScript code coverage tool. For more information,
refer to the official guide at https://istanbul.js.org.

Listing 8.12 Movie store’s package.json

https://istanbul.js.org

251Generating HTML coverage reports
Figure 8.19 Istanbul coverage reports in text format

The metrics that you might see in your coverage reports could be defined as in table 8.1.

By default, Istanbul uses a text reporter, but various other reporters are available. You
can view the full list at http://mng.bz/DKoE.

 To generate the HTML format, we will map a volume to /app/coverage, which is
the folder in which Istanbul will generate the reports. Then, we’ll use the Jenkins
HTML Publisher plugin to display the generated code coverage reports, as shown in
the following listing.

stage('Coverage Reports'){
 sh "docker run --rm
-v $PWD/coverage:/app/coverage ${imageName}-test

Table 8.1 Coverage report metrics

Metric Description

Statements The number of statements in the program that are truly called, out of the total number

Branches The number of branches of the control structures executed

Functions The number of functions called, out of the total number of functions defined

Lines The number of lines of source code that are being tested, out of the total number of
lines present inside the code

Listing 8.13 Publishing code coverage HTML reports

http://mng.bz/DKoE

252 CHAPTER 8 Running automated tests with Jenkins
npm run coverage-html"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])
}

The publishHTML command takes the target block as the main parameter. Within
that, we have several subparameters. The allowMissing parameter is set to false,
so if something goes wrong while generating the coverage report and the report is
missing, the publishHTML instruction will throw an error.

 At the end of the CI pipeline, an HTML file will be generated and consumed by
the HTML Publisher plugin, as shown in figure 8.20.

Figure 8.20 HTML report generation with Istanbul

The HTML report will then be accessible from Jenkins, by clicking the Coverage
Report item from the left panel; see figure 8.21.

Figure 8.21 The coverage report can be accessible from the Jenkins panel.

NOTE The Cobertura plugin (https://plugins.jenkins.io/cobertura/) can
also be used to publish HTML reports. Both plugins show the same results.

https://plugins.jenkins.io/cobertura/

253Generating HTML coverage reports
We can drill down to identify the uncovered lines and functions, as shown in figure 8.22.

Figure 8.22 Deep dive inside the coverage report

NOTE Several tools exist to create coverage reports, depending on the lan-
guage you use (for example, SimpleCov for Ruby, Coverage.py for Python,
and JaCoCo for Java).

You can take this further and run stages in parallel to reduce the waiting time of run-
ning tests, as shown in the following listing.

stage('Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 },
 'Integration Tests': {
 sh "docker run --rm ${imageName}-test npm run test"
 },
 'Coverage Reports': {
 sh "docker run --rm
-v $PWD/coverage:/app/coverage ${imageName}-test
npm run coverage-html"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])
 }
)
}

Listing 8.14 Running pre-integration tests in parallel

254 CHAPTER 8 Running automated tests with Jenkins
Figure 8.23 shows the end result of running this job in the Blue Ocean view.

Figure 8.23 Running tests in parallel

8.9 Automating UI testing with Headless Chrome
For the Angular application, we will create a Dockerfile.test file that installs the Angu-
lar CLI (https://angular.io/cli) and the needed dependencies to run automated tests;
see the following listing.

FROM node:14.0.0
ENV CHROME_BIN=chromium
WORKDIR /app
COPY package-lock.json .
COPY package.json .
RUN npm i && npm i -g @angular/cli
COPY . .

The linting state is similar to the previous part; we will use the TSLint linter, which
comes installed by default for Angular projects. Hence, we will run the npm run lint
alias command defined in package.json, as shown in the following listing.

"scripts": {
 "start": "ng serve",
 "build": "ng build",
 "test": "ng test --browsers=ChromeHeadlessCI --code-coverage=true",
 "lint": "ng lint",
 "e2e": "ng e2e"
 }

Listing 8.15 Movie marketplace’s Dockerfile.test

Listing 8.16 Movie marketplace’s package.json

https://angular.io/cli

255Automating UI testing with Headless Chrome
We update the Jenkinsfile with the following content.

def imageName = 'mlabouardy/movies-marketplace'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 }
)
 }
}

Let’s save this config and run a build. The pipeline should fail and turn red because of
the forced rules on TSLint, as shown in figure 8.24.

Figure 8.24 CI pipeline failure

If you click the Quality Tests stage logs, the logs should display errors regarding miss-
ing semicolons and trailing whitespace, as shown in figure 8.25.

Figure 8.25 Angular linting output logs

Listing 8.17 Movie marketplace’s Jenkinsfile

256 CHAPTER 8 Running automated tests with Jenkins
If you wish to let TSLint pass within your code (figure 8.26), you need to update
tslint.json to disable forced rules or add the /* tslint:disable */ instruction at
the beginning of each file for TSLint to skip the linting process on those files.

Figure 8.26 Angular linting output logs

For Angular unit testing, we will use the Jasmine (https://jasmine.github.io/) and
Karma (https://karma-runner.github.io/latest/index.html) frameworks. Both testing
frameworks support the BDD practice, which describes tests in a human-readable
format for nontechnical people. The sample unit test (chapter7/microservices/
movies-marketplace/src/app/app.component.spec.ts) in the following listing is self-
explanatory. It tests whether the app component has a property text with the value
Watchlist that is rendered in the HTML inside a span element tag.

import { TestBed, async } from '@angular/core/testing';
import { RouterTestingModule } from '@angular/router/testing';
import { AppComponent } from './app.component';

describe('AppComponent', () => {
 beforeEach(async(() => {
 TestBed.configureTestingModule({
 imports: [
 RouterTestingModule
],
 declarations: [
 AppComponent
],
 }).compileComponents();
 }));

Listing 8.18 Movie marketplace’s Karma tests

https://karma-runner.github.io/latest/index.html
https://jasmine.github.io/

257Automating UI testing with Headless Chrome
 it('should create the app', () => {
 const fixture = TestBed.createComponent(AppComponent);
 const app = fixture.debugElement.componentInstance;
 expect(app).toBeTruthy();
 });
 it('should render title', () => {
 const fixture = TestBed.createComponent(AppComponent);
 fixture.detectChanges();
 const compiled = fixture.debugElement.nativeElement;
 expect(compiled.querySelector('.toolbar

span').textContent).toContain('Watchlist');
 });
});

NOTE When creating Angular projects with the Angular CLI, it defaults to
creating and running unit tests by using Jasmine and Karma.

Running unit tests for frontend web applications requires them to be tested in a web
browser. While it’s not an issue on a workstation or host machine, it can become
tedious when running in a restricted environment such as a Docker container. In fact,
these execution environments are generally lightweight and do not contain any
graphical environment.

 Fortunately, Karma tests can be run with a UI-less browser, and two main options
can be used: Chrome Headless or PhantomJS. The example in the following listing
uses Chrome Headless with Puppeteer, which can be configured on a simple flag in
the Karma config (chapter7/microservices/movies-marketplace/karma.conf.js).

module.exports = function (config) {
 config.set({
 basePath: '',
 frameworks: ['jasmine', '@angular-devkit/build-angular'],
 customLaunchers: {
 ChromeHeadlessCI: {
 base: 'Chrome',
 flags: [
 '--headless',
 '--disable-gpu',
 '--no-sandbox',
 '--remote-debugging-port=9222'
]
 }
 },
 browsers: ['ChromeHeadless', 'Chrome'],
 singleRun: true, });
};

Headless Chrome needs sudo privileges to be run unless the --no-sandbox flag is
used. Next, we need to update Dockerfile.test to install Chromium:

RUN apt-get update && apt-get install -y chromium

Listing 8.19 Karma runner configuration

258 CHAPTER 8 Running automated tests with Jenkins
NOTE Chromium/Google Chrome has shipped with the headless mode
since version 59.

Then, we update the Jenkinsfile to run unit tests with the npm run test command.
The command will fire up Headless Chrome and execute Karma.js tests. Next, we gen-
erate a coverage report in HTML format that will be consumed by the HTML Pub-
lisher plugin, as shown in the following listing.

stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 },
 'Unit Tests': {
 sh "docker run --rm
-v $PWD/coverage:/app/coverage ${imageName}-test
npm run test"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])}
)
}

Once changes are pushed to the GitHub repository, a new build will be triggered and
unit tests will be executed, as shown in figure 8.27.

Figure 8.27 Running headless Chrome inside a Docker container

Listing 8.20 Mapping the workspace folder with the Docker container volume

259Automating UI testing with Headless Chrome
The Karma launcher will run the tests on the Headless Chrome browser and display
the code coverage statistics, as shown in figure 8.28.

Also, a generated HTML report will be available in the Artifacts section in the Blue
Ocean view, shown in figure 8.29.

Figure 8.29 Coverage report alongside other artifacts

If you click the coverage report link, it should display the statements and functions
coverage by Angular components and services, as shown in figure 8.30.

Figure 8.28
Successful
execution of
the Karma
unit tests

Figure 8.30
Coverage
statistics by
filename

260 CHAPTER 8 Running automated tests with Jenkins
With this done, it is now possible to run the unit tests with Chromium inside a Docker
container.

8.10 Integrating SonarQube Scanner with Jenkins
While code linters can give you a high-level overview of the quality of your code,
they’re still limited if you want to perform deep static code analysis and inspection to
detect potential bugs and vulnerabilities. That’s where SonarQube comes into play. it
will give you a 360-degree vision of the quality of the codebase by integrating external
libraries like PMD, Checkstyle, and FindBugs. Every time code gets committed, code
analysis is performed.

NOTE SonarQube can be used to inspect code in more than 20 program-
ming languages, including Java, PHP, Go, and Python.

To deploy SonarQube, we will bake a new AMI with Packer. Similarly to previous chap-
ters, we create a template.json file with the content in the following listing (chapter8/
sonarqube/packer/template.json).

{
 "variables" : {...},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ubuntu",
 "ami_name" : "sonarqube-8.2.0.32929",
 "ami_description" : "SonarQube community edition"
 }
],
 "provisioners" : [
 {
 "type" : "file",
 "source" : "sonar.init.d",
 "destination" : "/tmp/"
 },
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

The temporary EC2 instance will be based on Amazon Linux AMI and uses a shell script
to provision the instance to install SonarQube and configure the needed dependencies.

Listing 8.21 Jenkins worker’s Packer template

261Integrating SonarQube Scanner with Jenkins
 The setup.sh script will install SonarQube from the official release page. For this
example, SonarQube 8.2.0 will be installed. SonarQube supports PostgreSQL,
MySQL, Microsoft SQL Server (MSSQL), and Oracle as a backend. I opted to go with
PostgreSQL to store configurations and report results. Then, the script creates a direc-
tory named sonar, sets permissions, and configures SonarQube to start automatically;
see the following listing.

wget https://binaries.sonarsource.com/
Distribution/sonarqube/$SONAR_VERSION.zip -P /tmp
unzip /tmp/$SONAR_VERSION.zip
mv $SONAR_VERSION sonarqube
mv sonarqube /opt/

apt-get install -y unzip curl
sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/
 `lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'
wget -q https://www.postgresql.org/media/keys/ACCC4CF8.asc
-O - | sudo apt-key add -
apt-get install -y postgresql postgresql-contrib
systemctl start postgresql
systemctl enable postgresql
cat > /tmp/db.sql <<EOF
CREATE USER $SONAR_DB_USER WITH ENCRYPTED PASSWORD '$SONAR_DB_PASS';
CREATE DATABASE $SONAR_DB_NAME OWNER $SONAR_DB_USER;
EOF
sudo -u postgres psql postgres < /tmp/db.sql

mv /tmp/sonar.properties /opt/sonarqube/conf/sonar.properties
sed -i 's/#RUN_AS_USER=/RUN_AS_USER=sonar/' sonar.sh
sysctl -w vm.max_map_count=262144
groupadd sonar
useradd -c "Sonar System User" -d /opt/sonarqube -g sonar -s /bin/bash sonar
chown -R sonar:sonar /opt/sonarqube
ln -sf /opt/sonarqube/bin/linux-x86-64/sonar.sh /usr/bin/sonar
cp /tmp/sonar.init.d /etc/init.d/sonar
chmod 755 /etc/init.d/sonar
update-rc.d sonar defaults
service sonar start

NOTE The full shell script is available on the GitHub repository along with a
step-by-step guide. Also, make sure you have at least 4 GB of memory to run
the 64-bit version of SonarQube.

Once you define the needed Packer variables, issue a packer build command to start
the provisioning process. Once the AMI is baked, it should be available on the EC2
dashboard in the Images section, as shown in figure 8.31.

Listing 8.22 Installing SonarQube LTS

262 CHAPTER 8 Running automated tests with Jenkins

Figure 8.31 SonarQube machine image

From there, use Terraform to deploy a private EC2 instance based on the SonarQube
AMI, as shown in the following listing.

resource "aws_instance" "sonarqube" {
 ami = data.aws_ami.sonarqube.id
 instance_type = var.sonarqube_instance_type
 key_name = var.key_name
 vpc_security_group_ids = [aws_security_group.sonarqube_sg.id]
 subnet_id = element(var.private_subnets, 0)

 root_block_device {
 volume_type = "gp2"
 volume_size = 30
 delete_on_termination = false
 }

 tags = {
 Name = "sonarqube"
 Author = var.author
 }
}

Then, define a public load balancer to forward incoming HTTP and HTTPS (optional)
traffic to the instance on port 9000 (the port to which the SonarQube dashboard is
exposed). Also, create an A record in Route 53 pointing to the load balancer FQDN.

 Issue the terraform apply command to provision the instance and other
resources. The instance should be deployed in a few seconds, as shown in figure 8.32.

Figure 8.32 SonarQube private EC2 instance

Listing 8.23 SonarQube EC2 instance resource with Terraform

263Integrating SonarQube Scanner with Jenkins
On the terminal, you should have the URL of the public load balancer in the Outputs
section, as shown in figure 8.33.

Figure 8.33 SonarQube DNS URL

Head over to the URL and log in with the default credentials (figure 8.34). Right now,
no user accounts are configured in SonarQube. However, by default, an admin
account exists with the username admin and the password admin.

Figure 8.34 SonarQube web dashboard

Next, make sure the TypeScript analyzer is enabled from the SonarQube Plugins sec-
tion, as shown in figure 8.35.

Figure 8.35 SonarQube TypeScript analyzer plugin

264 CHAPTER 8 Running automated tests with Jenkins
Then, generate a new token for Jenkins to avoid using SonarQube admin credentials
for security purposes. Go to Administration and navigate to Security. On the same
page under the Tokens section is an option to generate a token; click the Generate
button, shown in figure 8.36.

Figure 8.36 SonarQube Jenkins dedicated token

The server authentication token should be created as a Secret text credential from
Jenkins, as shown in figure 8.37.

Figure 8.37 SonarQube secret text credentials

To trigger the scanning from the CI pipeline, we need to install SonarQube Scanner.
You can choose to either install it automatically or provide the installation path for
this tool on Jenkins workers. It can be installed by choosing Manage Jenkins > Global

265Integrating SonarQube Scanner with Jenkins
Tool Configuration. Or you can bake a new Jenkins worker image with SonarQube
Scanner with the commands shown in the following listing.

wget https://binaries.sonarsource.com/
Distribution/sonar-scanner-cli/sonar-scanner-cli-2.0.1873-linux.zip -P /tmp
unzip /tmp/sonar-scanner-cli-4.2.0.1873-linux.zip
mv sonar-scanner-4.2.0.1873-linux sonar-scanner
ln -sf /home/ec2-user/sonar-scanner/bin/sonar-scanner /usr/bin/sonar-scanner

NOTE The launch configuration of the Jenkins workers is immutable. You
will need to clone the launch configuration, update it with newly built AMI,
and attach it to the Jenkins workers’ Auto Scaling group to create new work-
ers with the Sonar Scanner tool.

Lastly, make Jenkins aware of the SonarQube server installation from the Configure
menu in Manage Jenkins, as shown in figure 8.38.

Figure 8.38 SonarQube server settings

Then, create a sonar-project.properties file in the movies-marketplace root folder to
publish the coverage report to the SonarQube server. This file contains certain sonar
properties, such as which folder to scan and exclude, and the name of the project; see
the following listing.

sonar.projectKey=angular:movies-marketplace
sonar.projectName=movies-marketplace
sonar.projectVersion=1.0.0
sonar.sourceEncoding=UTF-8
sonar.sources=src
sonar.exclusions=**/node_modules/**,**/*.spec.ts

Listing 8.24 SonarQube Scanner installation

Listing 8.25 SonarQube project configuration

266 CHAPTER 8 Running automated tests with Jenkins
sonar.tests=src/app
sonar.test.inclusions=**/*.spec.ts
sonar.ts.tslint.configPath=tslint.json
sonar.javascript.lcov.reportPaths=/home/ec2-user/coverage/marketplace/

lcov.info

Next, update the Jenkinsfile to create a new Static Code Analysis stage.
 Then inject a SonarQube global configuration (secret token and SonarQube

server URL values) with the withSonarQubeEnv block and invoke the sonar-
scanner command to start the analysis process, as shown in the following listing.

stage('Static Code Analysis'){
 withSonarQubeEnv('sonarqube') {
 sh 'sonar-scanner'
 }
}

You can override property values by using the -D flag:

sh 'sonar-scanner -Dsonar.projectVersion=$BUILD_NUMBER'

This option allows us to attach the Jenkins build number with every analysis that we
perform and publish to SonarQube.

 After a successful build, the logs will show you the files and folders SonarQube has
scanned. After scanning, the analysis report is posted to the SonarQube server we
have integrated. This analysis is based on rules defined by SonarQube. If the code
passes the error threshold, it’s allowed to move to the next step in its life cycle. But if it
crosses the error threshold, it’s dropped:

You can define your custom thresholds by creating Quality Profiles, which are a set of
rules that will make the pipeline fail if an issue is raised in your codebase.

Listing 8.26 Triggering SonarQube analysis

267Integrating SonarQube Scanner with Jenkins
NOTE Refer to this official documentation for a step-by-step guide on how to
create SonarQube custom rules with Quality Profiles: http://mng.bz/l9vy.

Finally, on visiting the SonarQube server, the project details should be visible with all
the metrics captured from the code coverage report, as you can see in figure 8.39.

Figure 8.39 SonarQube project metrics

Now you can go inside the movies-marketplace project and discover issues, bugs, code
smells, coverage, or duplication. The dashboard (figure 8.40) shows where you stand
in terms of quality in the glimpse of an eye.

Figure 8.40 SonarQube project deep-dive metrics and issues

Also, when the job is completed, the SonarQube Scanner plugin will detect that a
SonarQube analysis was made during the build. The plugin will then display a badge
and a widget on the Jenkins job page with a link to the SonarQube dashboard as well
as quality gate status, as shown in figure 8.41.

http://mng.bz/l9vy

268 CHAPTER 8 Running automated tests with Jenkins
Figure 8.41 SonarQube integration with Jenkins

The SonarQube analysis was quick, but for larger projects, the analysis might take a
few minutes to complete.

 To wait for the analysis to be completed, we will pause the pipeline with the with-
ForQualityGate step, which waits for SonarQube analysis to be done. To notify the
CI pipeline about the analysis completion, we need to create a webhook on
SonarQube to notify Jenkins when project analysis is done, as shown in figure 8.42.

Figure 8.42 SonarQube webhook creation

269Integrating SonarQube Scanner with Jenkins
Next, in the following listing, we update the Jenkinsfile to integrate the waitFor-
QualityGate step that pauses the pipeline until SonarQube analysis is completed
and returns the quality gate status.

stage('Static Code Analysis'){
 withSonarQubeEnv('sonarqube') {
 sh 'sonar-scanner'
 }
}
stage("Quality Gate"){
 timeout(time: 5, unit: 'MINUTES') {
 def qg = waitForQualityGate()
 if (qg.status != 'OK') {
 error "Pipeline
aborted due to quality gate failure: ${qg.status}"
 }
 }
}

NOTE The quality gate can be moved outside the node{} block to avoid
occupying a Jenkins worker waiting for SonarQube notification.

Commit the changes and push them to the remote repository. A new build will be trig-
gered, and SonarQube analysis will be kicked off automatically. Once the analysis is
completed, a notification will be sent to the CI pipeline to resume the pipeline stages,
as shown in figure 8.43.

NOTE We can set up Post-build actions in Jenkins to notify the user about the
test results.

Figure 8.43 SonarQube project analysis status

Listing 8.27 Adding a quality gate to the Jenkinsfile

270 CHAPTER 8 Running automated tests with Jenkins
As a result, as soon as a developer commits the code to GitHub, Jenkins will fetch/pull
the code from the GitHub repository, perform static code analysis with the help of
Sonar Scanner, and send analysis reports to the SonarQube server.

 In this chapter, you learned how to run various automated tests and how to inte-
grate external tools like Nancy and SonarQube to inspect code quality, detect bugs,
and avoid potential security vulnerabilities while continuously building microservices
within Jenkins CI pipelines. In the next chapter, we will build the Docker image after a
successful run of tests and push the image to a private remote repository.

Summary
 Docker containers are used to run tests to avoid installing multiple runtime

environments for each service we’re integrating and keep a consistent execu-
tion environment across all Jenkins workers.

 Promoting traditional security practices into CI/CD workflows like external
dependencies scanning can enable an additional security layer to avoid security
breaches and vulnerabilities.

 Headless Chrome is a way to run UI tests in a headless environment without the
full browser UI.

 The parallel DSL step gives the ability to easily run pipeline stages in parallel.
 SonarQube is a code-quality management tool that allows teams to manage,

track, and improve the quality of their source code.

Building Docker images
within a CI pipeline
In the previous chapter, you learned how to run automated tests inside Docker con-
tainers within CI pipelines. In this chapter, we will finish the CI workflow by build-
ing a Docker image and storing it inside a private remote repository for versioning;
see figure 9.1.

This chapter covers
 Building Docker images inside Jenkins pipelines

and best practices of writing Dockerfiles

 Using Docker agents as an execution environment
in Jenkins declarative pipelines

 Integrating Jenkins build statuses into GitHub pull
requests

 Deploying and configuring hosted and managed
Docker private registry solutions

 Docker images life cycle within the development
cycle and tagging strategies

 Scanning Docker images for security
vulnerabilities within Jenkins pipelines
271

272 CHAPTER 9 Building Docker images within a CI pipeline
Figure 9.1 The Build and Push stages will be implemented in this chapter.

By the end of this chapter, you should be able to build a similar CI pipeline with these
steps:

1 Check out the source code from a remote repository. The CI server fetches the
code from the version-control system (VCS) on a push event.

2 Run pre-integration tests such as unit tests, security tests, quality tests, and UI tests
inside a Docker container. These might include generating coverage reports and
integrating quality-inspection tools like SonarQube for static code analysis.

3 Compile the source code and build a Docker image (automated packaging).
4 Tag the end image and store it in a private registry.

Figure 9.2 summarizes the end result of the CI workflow.

Figure 9.2 The CI pipeline process

The purpose of this CI pipeline is to automate the process of continuously building,
testing, and uploading the Docker image to the private registry. Reporting for failures/
success happens at every stage.

NOTE The CI design discussed in this chapter and previous ones can be mod-
ified to suit the needs of any type of project; the users just need to identify the
right tools and configurations that can be used with Jenkins.

Continuous integration

Quality
tests

Unit
tests

Security
checks Build PushCheckout

273Building Docker images
9.1 Building Docker images
For now, each push event to the remote repository triggers the pipeline on Jenkins.
The pipeline will be executed based on stages defined in the Jenkinsfile. The first
stage to be launched will be cloning the code from the remote repository, running
automated tests, and publishing coverage reports. Figure 9.3 shows the current CI
workflow for the movies-loader service.

Figure 9.3 Current CI workflow

If the tests are successful, the next stage will be building the artifact; in our case, it will
be a Docker image.

NOTE When you’re building a Docker image for your application, you’re
building on top of an existing image. A broken base image can lead to pro-
duction outages (security breaches, for instance). I recommend using an up-
to-date and well-maintained image.

9.1.1 Using the Docker DSL

To build the main application Docker image, we need to define a Dockerfile with a set
of instructions that specify the environment to use and the commands to run. Create a
Dockerfile in the top-level directory of the movies-loader project, using the following
code.

FROM python:3.7.3
LABEL MAINTAINER mlabouardy
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY movies.json main.py ./
CMD python main.py

Listing 9.1 Movie loader’s Dockerfile

274 CHAPTER 9 Building Docker images within a CI pipeline
The Python-based application will use Python v3.7.3 as a base image, install the run-
time dependencies with the pip manager, and set python main.py as the main com-
mand for the Docker image.

NOTE To maintain the consistency of your image builds, create a requirements
.txt file with transitively pinned versions of all used dependencies.

The order of instructions in a Dockerfile is important. The Docker image is rebuilt
whenever any change occurs in the source code. That’s why I placed the pip
install command in listing 9.1, as the dependencies are not frequently changed.
Therefore, Docker will rely on layer caching that will speed up the build time of the
image. Refer to the official Docker documentation to learn more about the Docker
build cache: http://mng.bz/B10J.

 Finally, we add a Build stage in the Jenkinsfile, which uses the Docker DSL to
build an image based on the Dockerfile in the repository:

stage('Build'){
 docker.build(imageName)
}

The build() method builds the Dockerfile in the current directory by default. You
can override this by providing the Dockerfile path as the second argument of the
build() method.

 The changes are pushed to the develop branch with the following commands:

git add Jenkinsfile Dockerfile
git commit -m "building docker image"
git push origin develop

Then a new build should be triggered, and the image should be built, as shown in fig-
ure 9.4.

Figure 9.4 Python Docker image build logs

https://shortener.manning.com/B10J

275Building Docker images
Figure 9.5 Movie loader CI pipeline

So far, we’ve defined the CI stages in figure 9.5 for the movies-loader CI pipeline. The
movies-parser service’s Dockerfile will be different, as it’s written in Go. Because Go is
a compiled language, we won’t need it at the runtime of the service. Therefore, we will
use Docker’s multistage build feature to reduce the Docker image size, as shown in
the following listing.

FROM golang:1.16.5
WORKDIR /go/src/github.com/mlabouardy/movies-parser
COPY main.go go.mod .
RUN go get -v
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app main.go

FROM alpine:latest
LABEL Maintainer mlabouardy
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=0 /go/src/github.com/mlabouardy/movies-parser/app .
CMD ["./app"]

The Dockerfile is split into two stages. The first stage builds the binary with the go
build command. The second stage uses Alpine as the base image, which is a light-
weight image, and then copies the binary from the first stage.

 The intermediate layer where the Go build tools and compilation happen is about
300 MB. The final image has a minimal footprint of 8 MB. The end result is the same
tiny production image as before, with a significant reduction in complexity. The Go
SDK and any intermediate artifacts are left behind and not saved in the final image.

Listing 9.2 Multistage build usage

276 CHAPTER 9 Building Docker images within a CI pipeline
NOTE The multistage build feature requires Docker engine 17.05 or higher
on the daemon and client.

In the previous Dockerfile, stages are not named and are referred to by their integer
number (starting with 0 for the first FROM instruction). However, we can name the
stages by passing AS NAME to the FROM instruction, as shown in the following listing.

FROM golang:1.16.5 AS builder
WORKDIR /go/src/github.com/mlabouardy/parser
...
FROM alpine:latest
...
COPY --from=builder /go/src/github.com/mlabouardy/movies-parser/app .

Add the Build stage to the project Jenkinsfile, and push the changes to the develop
branch. The pipeline will be triggered, and the result of the build should be similar to
the one shown in figure 9.6.

Figure 9.6 Movie parser CI pipeline

NOTE You could have just as easily based the final image on scratch or distro-
less images, but I prefer to have the convenience of Alpine. Plus, it’s a safe
choice for reducing image size.

The movies-store Docker image will use the Node.js base image from DockerHub; we’re
using the latest LTS node release at the time of writing. I prefer to name a specific ver-
sion, rather than one of the floating tags like node:lts or node:latest, so that if you
or someone else builds this image on a different machine, they will get the same ver-
sion, rather than risking an accidental upgrade and attendant head-scratching.

NOTE In most cases, the best choice for a base image is from the official
images available in DockerHub (https://hub.docker.com/). They tend to be
better controlled than those created by the community.

Listing 9.3 Naming Docker multistages

https://hub.docker.com/

277Building Docker images
Then, we install the needed dependencies for runtime by passing --only=prod.
Finally, we set the npm start command to start the express server when the con-
tainer is created, as shown in the following listing.

FROM node:14.17.0
WORKDIR /app
COPY package-lock.json package.json .
RUN npm i --only=prod
COPY index.js dao.js ./
EXPOSE 3000
CMD npm start

Note that, rather than copying the entire working directory, we are copying only the
package.json and package-lock.json files. This allows us to take advantage of cached
Docker layers. The package-lock.json file records the versions of all dependencies to
ensure that the npm install command in Docker builds is consistent.

 Once the pipeline changes are versioned and the execution is completed, the
CI pipeline so far for movies-store should look similar to the Blue Ocean view in
figure 9.7.

Figure 9.7 Movie store CI pipeline

NOTE During image build, Docker takes all files in the context directory. To
increase the Docker build performance, exclude files and directories by add-
ing a .dockerignore file to the context directory.

9.1.2 Docker build arguments

Finally, for the Angular application (aka movies-marketplace), we will once again use
the multistage build feature to build the static folder with the ng build command.
Then we’ll copy the folder to an NGINX image to serve the content with a web server;
see the following listing.

Listing 9.4 Movie store’s Dockerfile

278 CHAPTER 9 Building Docker images within a CI pipeline

FROM node:14.17.0 as builder
ARG ENVIRONMENT
ENV CHROME_BIN=chromium
WORKDIR /app
RUN apt-get update && apt-get install -y chromium
COPY package-lock.json package.json .
RUN npm i && npm i -g @angular/cli
COPY . .
RUN ng build -c $ENVIRONMENT

FROM nginx:alpine
RUN rm -rf /usr/share/nginx/html/*
COPY --from=builder /app/dist /usr/share/nginx/html
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

NOTE The ENV instruction is available during build and runtime. The ARG
instruction (listing 9.5) is accessible only during build time.

Because we might have multiple Angular configurations (with different settings)
based on the running environment, we will inject a build argument during the build
time to specify the target environment as follows:

stage('Build'){
 docker.build(imageName, '--build-arg ENVIRONMENT=sandbox .')
}

When passing arguments to the build() method, the last value should end with the
folder to use as the build context.

 Finally, make sure to create a .dockerignore file in the root folder of the project to
prevent local modules, debug logs, and temporary files from being copied into the
Docker image. To exclude those directories, we create a .dockerignore file with the
following content:

nodes_modules
coverage
dist
tmp

After pushing the changes, the pipeline should look like the Blue Ocean view in fig-
ure 9.8.

Figure 9.8 Movie marketplace CI pipeline

Listing 9.5 Movie marketplace’s Dockerfile

279Deploying a Docker private registry
Now that the project Docker images are built, we need to store them somewhere.
Therefore, we will deploy a private registry on which we will store all the images built
through the development cycle of the project.

9.2 Deploying a Docker private registry
Continuous integration results in frequent builds and packages. Hence, we need a
mechanism to store all this binary code (builds, packages, third-party plugins, and so
on) in a system akin to a version-control system. Since VCSs such as Git and SVN store
code and not binary files, we need a binary repository tool.

 Many solutions exist, such as Nexus or Artifactory. However, they come with chal-
lenges including managing and hardening the instance. Fortunately, managed solu-
tions also exist, depending on the cloud provider you’re using, such as Amazon Elastic
Container Registry (ECR), Google Container Registry, and Azure Container Registry.

NOTE You can also host your Docker images in DockerHub. If you go with
this approach, you can skip this part.

9.2.1 Nexus Repository OSS

Nexus Repository OSS (www.sonatype.com/products/repository-oss) is a widely used
open source, free artifact repository that can be used to store binaries and build arti-
facts. It can be used to distribute Maven/Java, npm, Helm, Docker, and more.

NOTE Since you’re already familiar with Docker, you can run Nexus Reposi-
tory OSS in a Docker container by using the Docker image from Sonatype.

To deploy Nexus Repository OSS, we need to bake a new machine image with Packer.
The following listing provides the template.json content (the full template is available
in chapter9/nexus/packer/template.json).

{
 "variables" : {...},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "ami_name" : "nexus-3.22.1-02",
 "ami_description" : "Nexus Repository OSS"
 }
],
 "provisioners" : [
 {
 "type" : "file",
 "source" : "./nexus.rc",
 "destination" : "/tmp/nexus.rc"
 },
 {
 "type" : "file",

Listing 9.6 Nexus Repository OSS Packer template

http://www.sonatype.com/products/repository-oss

280 CHAPTER 9 Building Docker images within a CI pipeline
 "source" : "./repository.json",
 "destination" : "/tmp/repository.json"
 },
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

This will create a temporary instance based on the Amazon Linux image and provi-
sion it with a shell script (listing 9.7) that installs the Nexus OSS version from the offi-
cial repository and configures it to run a service with init.d, so it restarts after the
instance reboots. This example uses version 3.30.1-01. The full script is available in
chapter9/nexus/packer/setup.sh.

NEXUS_USERNAME="admin"
NEXUS_PASSWORD="admin123"
echo "Install Java JDK 8"
yum update -y
yum install -y java-1.8.0-openjdk
echo "Install Nexus OSS"
wget https://download.sonatype.com/nexus/3/latest-unix.tar.gz -P /tmp
tar -xvf /tmp/latest-unix.tar.gz
mv nexus-* /opt/nexus
mv sonatype-work /opt/sonatype-work
useradd nexus
chown -R nexus:nexus /opt/nexus/ /opt/sonatype-work/
ln -s /opt/nexus/bin/nexus /etc/init.d/nexus
chkconfig --add nexus
chkconfig --levels 345 nexus on
mv /tmp/nexus.rc /opt/nexus/bin/nexus.rc
echo "nexus.scripts.allowCreation=true" >> nexus-default.properties
systemctl enable nexus
Systemctl start nexus

Then, the script will start Nexus server with the service nexus restart command
and wait for it to be up and ready, as shown in the following listing.

until $(curl --output /dev/null
--silent --head --fail http://localhost:8081); do
 printf '.'
 sleep 2
done

Once the server responds, a POST request will be issued to the Nexus Script API to
create a Docker hosted repository. The scripting API can be used to automate the cre-
ation of complex tasks for the Nexus Repository Manager, as shown next.

Listing 9.7 Installing the Nexus Repository OSS version (setup.sh)

Listing 9.8 Waiting for the Nexus server to be up (setup.sh)

Defines Nexus OSS default
credentials (admin/admin123)

Installs Java JDK 1.8.0, which
is required to run Nexus OSS

Downloads Nexus OSS
from the official

repository and extracts
the archive to the target

281Deploying a Docker private registry

curl -v -X POST -u $NEXUS_USERNAME:$NEXUS_PASSWORD
--header "Content-Type: application/json" 'http://localhost:8081/service/

rest/v1/script'
-d @/tmp/repository.json

NOTE A comprehensive listing of Nexus REST API endpoints and functional-
ity is documented through the NEXUS_HOST/swagger-ui endpoint.

The request payload is a Groovy script that exposes a Docker hosted registry on port
5000:

import org.sonatype.nexus.blobstore.api.BlobStoreManager;
import org.sonatype.nexus.repository.storage.WritePolicy;
repository.createDockerHosted('docker-registry',
5000, 443,
BlobStoreManager.DEFAULT_BLOBSTORE_NAME, true, true, WritePolicy.ALLOW, true)

Issue the packer build command to bake the AMI. Once the provisioning is fin-
ished, the Nexus AMI should be available in the Images section in the AWS Manage-
ment Console, as shown in figure 9.9.

Figure 9.9 Nexus OSS AMI

From there, use Terraform to provision an EC2 instance based on the baked Nexus
OSS AMI. Create a nexus.tf file with the content in the following listing.

resource "aws_instance" "nexus" {
 ami = data.aws_ami.nexus.id
 instance_type = var.nexus_instance_type
 key_name = var.key_name
 vpc_security_group_ids = [aws_security_group.nexus_sg.id]
 subnet_id = element(var.private_subnets, 0)

Listing 9.9 Nexus OSS script API (setup.sh)

Listing 9.10 Nexus EC2 instance resource

Performs a POST request on the Nexus server by
including the default credentials in the request and
the Docker repository config in the request payload

282 CHAPTER 9 Building Docker images within a CI pipeline
 root_block_device {
 volume_type = "gp2"
 volume_size = 50
 delete_on_termination = false
 }

 tags = {
 Author = var.author
 Name = "nexus"
 }
}

NOTE Running Nexus OSS without a problem requires a minimum of 8 GB
of memory. Additionally, I strongly recommend using a dedicated EBS for
blob storage (http://mng.bz/dr7Q).

Also, provision a public load balancer to forward incoming HTTP and HTTPS traffic to
port 8081 of the EC2 instance, which is the port where the Nexus Repository Manager
(dashboard) is exposed. Create a new file, loadbalancers.tf, with the following listing.

resource "aws_elb" "nexus_elb" {
 subnets = var.public_subnets
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_nexus_sg.id]
 instances = [aws_instance.nexus.id]

 listener {
 instance_port = 8081
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
 }

 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:8081"
 interval = 5
 }

 tags = {
 Name = "nexus_elb"
 Author = var.author
 }
}

Within the same file, add another public load balancer, as shown in the next listing.
This will access the Docker private registry pointing to port 5000 of the hosted reposi-
tory on the Nexus Repository Manager.

Listing 9.11 Nexus Repository Manager public load balancer

http://mng.bz/dr7Q

283Deploying a Docker private registry

resource "aws_elb" "registry_elb" {
 subnets = var.public_subnets
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_registry_sg.id]
 instances = [aws_instance.nexus.id]

 listener {
 instance_port = 5000
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
 }
}

Use terraform apply to provision the AWS resources, the Nexus dashboard, and
Docker Registry. URLs should be displayed at the end of the provisioning process in
the Outputs section, as shown in figure 9.10.

Point your favorite browser to the Nexus URL, and the web dashboard in figure 9.11
should be displayed. The default admin password can be found in /opt/sonatype-
work/nexus3/admin.password.

Figure 9.11 Nexus Repository Manager

Listing 9.12 Docker registry public load balancer

Figure 9.10 Nexus
Terraform resources

284 CHAPTER 9 Building Docker images within a CI pipeline
If you jump to Settings from the cogwheel icon and then Repositories, a new Docker
hosted repository should be created. The repository disables tag immutability and
allows image tags to be overwritten by a subsequent image push using the same tag. If
this option is enabled, an error will be returned if you attempt to push an image with
a tag that already exists in the repository. The rest of the configurations should be sim-
ilar to figure 9.12.

To be able to pull and push Docker images to the registry, we will create a custom
Nexus role from the Security section. This role, shown in figure 9.13, will give full
access to the Docker hosted registry.

Figure 9.13 Nexus custom role for the Docker registry

Figure 9.12
Docker-hosted
registry on Nexus

285Deploying a Docker private registry
NOTE For push and pull operations, only nx-*-registry-add and nx-*
-registry-read permissions are required.

Next, we create a Jenkins user and assign to it the custom Nexus role we just created,
as shown in figure 9.14.

Figure 9.14 Docker registry credentials for Jenkins

We can test out the authentication by jumping back to the terminal session on the
local machine and issuing the docker login command:

NOTE The hosted Docker repository is exposed on HTTPS by default. How-
ever, if you expose the private repository on a plain HTTP endpoint only, you
need to configure the Docker daemon to allow insecure connections by pass-
ing the –insecure-registry flag to the Docker engine.

Finally, on Jenkins, create a registry credential of type Username with Password with
the Nexus credentials we created so far for Jenkins (figure 9.15).

286 CHAPTER 9 Building Docker images within a CI pipeline

Figure 9.15 Docker registry credentials

Another alternative to Nexus Repository OSS is an AWS managed service.

9.2.2 Amazon Elastic Container Registry

If you’re using AWS, as I am, you can use a managed AWS service called Elastic Con-
tainer Registry (ECR) to host your private Docker images. From the AWS Manage-
ment Console, navigate to Amazon ECR (https://console.aws.amazon.com/ecr/
repositories). Then, create a repository for each Docker image you want to host or
store. In our project, we need to create four repositories, one for each microservice.
The service-loader repository, for instance, is shown in figure 9.16.

Figure 9.16 ECR new repository

https://console.aws.amazon.com/ecr/repositories
https://console.aws.amazon.com/ecr/repositories

287Deploying a Docker private registry
Once the repository is created, you can click the View Push Commands button, and a
dialog should pop up with a list of instructions on how to tag, push, and pull images to
the remote repository; see figure 9.17.

Figure 9.17 Movie loader ECR repository

Before interacting with the repository, you need to authenticate with ECR. The follow-
ing command for Mac and Linux users can be used to log in to the remote repository:

aws ecr get-login-password --region REGION
| docker login --username AWS --password-stdin
ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com/
mlabouardy/movies-loader

NOTE Replace ACCOUNT_ID and REGION with your Amazon account ID and
AWS region, respectively.

For Windows users, here is the command:

(Get-ECRLoginCommand).Password |
docker login --username AWS --password-stdin
ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com/mlabouardy/movies-loader

Repeat the same procedure to create dedicated ECR repositories per microservice, as
shown in figure 9.18.

Figure 9.18 ECR repository for each microservice

288 CHAPTER 9 Building Docker images within a CI pipeline
9.2.3 Azure Container Registry

For Azure users, the Azure Container Registry service can be used to store container
images without managing a private registry. On the Azure portal (https://portal.azure
.com/), navigate to the Container Registries service and click the Add button to cre-
ate a new registry. Specify the region where you want to deploy the registry and give it
a name, as shown in figure 9.19.

Figure 9.19 Azure new registry configuration

Leave other fields at the defaults and click Create. Once the registry is created, navi-
gate to Access Keys under the Settings section, where you will find the admin user-
name and password that you can use to authenticate to the registry to push or pull
Docker images from Jenkins; see figure 9.20.

 You can use those credentials in Jenkins to push the image within the CI pipeline.
However, I recommend creating a token with granular access control by using role-
based access control (RBAC), or the least privilege principle. The admin account is
designed for only a single user to access the registry, mainly for testing purposes.

 Navigate to the Tokens section and click the Add button to create a new access
token. Give it a name and associate the _repositories_push scope to allow the exe-
cution of the docker push operation only (Jenkins will need to push only images to
the registry); see figure 9.21.

 Generate a password after you have created a token, as shown in figure 9.22. To
authenticate with the registry, the token must be enabled and have a valid password.

https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/

289Deploying a Docker private registry

Figure 9.20 Azure Docker registry admin credentials

Figure 9.21
Azure Docker registry
new access token

Figure 9.22 Azure
Docker registry credentials

290 CHAPTER 9 Building Docker images within a CI pipeline
After generating a password, copy and save it as Jenkins credentials of type Username
with Password. You can’t retrieve a generated password after closing the dialog screen,
but you can generate a new one.

9.2.4 Google Container Registry

For Google Cloud Platform users, a managed service called Google Container Regis-
try (GCR) can be used to host Docker images. To get started, you need to enable API
Container Registry (https://cloud.google.com/container-registry/docs/quickstart)
for your GCP project and then install the gcloud command line. For Linux users, run
the following listing.

curl -O https://dl.google.com/dl/cloudsdk/channels/
rapid/downloads/google-cloud-sdk-344.0.0-linux-x86_64.tar.gz
tar zxvf google-cloud-sdk-344.0.0-linux-x86_64.tar.gz
 google-cloud-sdk
./google-cloud-sdk/install.sh

NOTE For further instructions on how to install the Google Cloud SDK, read
the official GCP guide at https://cloud.google.com/sdk/install.

Next, issue the following command to authenticate with the registry. The resulting
authentication token is persisted in ~/.docker/config.json and reused for any subse-
quent interactions against that repository:

gcloud auth configure-docker

You need to tag the target images with the GCR URI (gcr.io/[PROJECT-ID]) and
push the images with the docker push command. Figure 9.23 shows how to tag and
push the movies-loader Docker image to GCR:

docker tag mlabouardy/movies-loader
eu.gcr.io/PROJECT_ID/mlabouardy/movies-loader
docker push eu.gcr.io/PROJECT_ID/mlabouardy/movies-loader

Listing 9.13 gcloud installation

Figure 9.23
Google Container
Registry images

http://gcr.io/%5BPROJECT-ID%5D/quickstart-image:tag1
https://cloud.google.com/container-registry/docs/quickstart
https://cloud.google.com/sdk/install

291Tagging Docker images the right way
Now that we’ve covered how to deploy a private Docker registry, we will update the
Jenkinsfile for each service to push the image to the remote private registry at the end
of a successful CI pipeline execution.

9.3 Tagging Docker images the right way
Add a new push stage to the Jenkinsfile with the withRegistry block, which authen-
ticates against the registry URL provided in the first parameter by using the creden-
tials provided in the second parameter. Then it persists the changes in ~/.docker/
config.json. Finally, it pushes the image with a tag value equal to the build number ID
(using the env.BUILD_ID keyword). The following listing is the Jenkinsfile for the
movies-loader service after implementing the Push stage.

def imageName = 'mlabouardy/movies-loader'
def registry = 'https://registry.slowcoder.com'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test",
"-f Dockerfile.test .")
 imageTest.inside{
 sh 'python test_main.py'
 }
 }

 stage('Build'){
 docker.build(imageName)
 }

 stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(env.BUILD_ID)
 }
 }
}

NOTE The imageName and registry values must be replaced with your
own Docker private registry URL and name of the image to store,
respectively.

For this example, the build number is 2; therefore, the movies-loader image is pushed
to the registry after tagging it with a tag equal to 2, as shown in figure 9.24.

Listing 9.14 Publishing Docker image to a registry

292 CHAPTER 9 Building Docker images within a CI pipeline

If we head back to the registry (for example, on Nexus Repository Manager), we can
see that a movies-loader image has been successfully pushed (figure 9.25).

Figure 9.25 Docker image stored in Nexus

While the Jenkins build ID can be used to tag the images, it might not be handy. A bet-
ter identifier is the Git commit ID. In this example, we will use it to tag the built
Docker image. On a declarative and scripted pipeline, this information is not available
out of the box. Therefore, we will create a function that uses the Git command line to
fetch the commit ID and return it:

def commitID() {
 sh 'git rev-parse HEAD > .git/commitID'
 def commitID = readFile('.git/commitID').trim()
 sh 'rm .git/commitID'
 commitID
}

Figure 9.24
Docker push
command logs

293Tagging Docker images the right way
From there, we can update the Push stage to tag the image with the value returned by
the commitID() function:

stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())
 }
}

NOTE In chapter 14, we will cover how to create a Jenkins shared library with
custom functions to avoid duplication of code in Jenkinsfiles.

Push the changes to the GitHub repository with the following commands:

git add Jenkinsfile
git commit -m "tagging docker image with git commit id"
git push origin develop

The new CI pipeline stages should look like figure 9.26 for the movies-loader service.

After a successful run on Nexus Repository Manager, a new image with a commit ID
should be available (figure 9.27).

Figure 9.27 Commit ID image tag

Figure 9.26
Movie loader
CI pipeline

294 CHAPTER 9 Building Docker images within a CI pipeline
We will take this further and push the same image with a tag based on the branch
name. This tag will be helpful when we tackle continuous deployment and delivery. It
will allow us to assign a particular tag per environment:

 Latest—Used to deploy the image to the production environment
 Preprod—Used to deploy the image to the staging or preproduction environment
 Develop—Used to deploy the image to the sandbox or development environment

The Push stage code block is as follows:

stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())

 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
}

The env.BRANCH_NAME variable contains the branch name. Also, you can just use
BRANCH_NAME without the env keyword (it hasn’t been required since Pipeline
Groovy Plugin 2.18).

 Lastly, if you’re using Amazon ECR as a private registry, you need to authenticate
first with the AWS CLI to the remote repository before issuing the push instructions.
For AWS CLI 2 users, use the shell instruction in the following listing to invoke the
aws ecr command.

def imageName = 'mlabouardy/movies-loader'
def registry = 'ACCOUNT_ID.dkr.ecr.eu-west-3.amazonaws.com'
def region = 'REGION'

node('workers'){
 ...
 stage('Push'){
 sh "aws ecr get-login-password --region ${region} |
docker login --username AWS
--password-stdin ${registry}/${imageName}"

 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
}

Make sure to substitute the ACCOUNT_ID and REGION variables with your own AWS
account ID and AWS region, respectively. If you’re using a 1.x version of the AWS CLI,
use this code block instead:

Listing 9.15 Publishing the Docker image to ECR

295Tagging Docker images the right way
stage('Push'){
 sh "\$(aws ecr get-login
--no-include-email --region ${region}) || true"
 docker.withRegistry("https://${registry}") {
 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
}

Before triggering the CI pipeline, you will need to give access to Jenkins workers to
perform the push operation on the ECR registry. Therefore, you need to assign an
IAM instance profile to Jenkins worker instances with the AmazonEC2Container-
RegistryFullAccess policy. Figure 9.28 illustrates the IAM instance profile assigned to
Jenkins workers.

Figure 9.28 Jenkins workers’ IAM instance profile

Once you’ve made the required changes, a new build should be triggered. A new
image tag should be pushed to the ECR repository, at the end of the CI pipeline, as
shown in figure 9.29.

Figure 9.29 Movie loader ECR repository images

296 CHAPTER 9 Building Docker images within a CI pipeline
Repeat the same procedure for the rest of the microservices, to push their Docker
image to the end of the CI pipeline, as shown in figure 9.30.

Figure 9.30 Movie marketplace CI pipeline

In a typical workflow, the Docker images should be analyzed, inspected, and scanned
against security rules for compliance and auditing. That’s why, in the upcoming sec-
tion, we will integrate a container inspection and analytics platform within the CI
pipeline to continuously inspect built Docker images for security vulnerabilities.

9.4 Scanning Docker images for vulnerabilities
Anchore Engine (https://github.com/anchore/anchore-engine) is an open source
project that provides a centralized service for inspection, analysis, and certification of
container images. You can run Anchore Engine as a standalone service or as a Docker
container.

NOTE A standalone installation will require at least 4 GB of RAM and enough
disk space available to support the container images you intend to analyze.

You can bake your own AMI with Packer from scratch to install Anchore Engine and
set up the PostgreSQL database. Then, use Terraform to deploy the stack, or you can
simply deploy the configured stack out of the box with Docker Compose. Refer to
chapters 4 and 5 for instructions on how to use Terraform and Packer.

 Launch a private instance in the management VPC with Docker Community Edition
(CE) pre-installed, and then install the Docker Compose tool from the Docker official
guide page. Issue the following command to deploy Anchore Engine:

curl https://docs.anchore.com/current/docs/
engine/quickstart/docker-compose.yaml > docker-compose.yaml
docker-compose up -d

After a few moments, your Anchore Engine services should be up and running, ready
to use. You can verify that the containers are running with the docker-compose ps
command. Figure 9.31 shows the output. Make sure to allow inbound traffic on port
8228 (Anchore API) from the Jenkins master security group ID only, as shown in fig-
ure 9.32.

https://github.com/anchore/anchore-engine

297Scanning Docker images for vulnerabilities

Figure 9.31 Docker Compose stack services

Figure 9.32 Anchore instance’s security group

NOTE You can take this further and deploy a load balancer in front of the
EC2 instance and create an A record in Route 53 pointing to the load bal-
ancer FQDN.

When it comes to Jenkins, an available plugin already makes the integration much
easier. From the main Jenkins menu, select Manage Jenkins and jump to the Manage
Plugins section. Click the Available tab and install the Anchore Container Image Scan-
ner plugin, as shown in figure 9.33.

Figure 9.33 Anchore Container Image Scanner plugin

298 CHAPTER 9 Building Docker images within a CI pipeline
Next, from the Manage Jenkins menu, choose Configure System and scroll down to
the Anchore Configuration. Then, set the Anchore URL with the /v1 route included
and credentials (the default is admin/foobar), as shown in figure 9.34.

Figure 9.34 Anchore plugin configuration

Finally, integrate Anchore into the Jenkins pipeline by creating a file named images in
the project workspace. This file should contain the name of the Docker image to be
scanned and optionally include the Dockerfile. Then, call the Anchore plugin with
the file created as a parameter, as shown in the following listing.

stage('Analyze'){
 def scannedImage =
"${registry}/${imageName}:${commitID()}
${workspace}/Dockerfile"
 writeFile file: 'images', text: scannedImage
 anchore name: 'images'
}

Push the changes with the following commands to the remote repository on the
develop branch:

git add Jenkinsfile
git commit -m "image scanning stage"
git push origin develop

The CI pipeline will be triggered upon the push event. After the image has been built
and pushed to the registry, the Anchore Scanner should be called. It will throw an
error due to Anchore not being able to pull the Docker image from the private regis-
try for analysis and inspection.

 Fortunately, Anchore integrates and supports analyzing images from any registry
compatible with Docker v2. To allow access to the remote images from Anchore,
install the anchor-cli binary from the Anchore EC2 instance:

yum install -y epel-release python-pip
pip install anchorecli

Listing 9.16 Analyzing Docker images with Anchore

299Scanning Docker images for vulnerabilities
Next, we define credentials for the private Docker registry. Run this command; the
REGISTRY parameter should include the registry’s fully qualified hostname and port
number (if exposed):

anchore-cli registry add REGISTRY USERNAME PASSWORD

NOTE The same command can be used to configure a Docker registry hosted
on Nexus or other solutions.

Since we’re using Amazon ECR repositories and running Anchore from an EC2
instance, we will assign an IAM instance profile instead with the AmazonEC2Container-
RegistryReadOnly policy. In this case, we will pass awsauto for both USERNAME and
PASSWORD and instruct the Anchore Engine to inherit the role from the underlying
EC2 instance:

anchore-cli --u admin --p foobar registry add ACCOUNT_ID.dkr.ecr.REGION
.amazonaws.com awsauto awsauto --registry-type=awsecr

To verify that credentials have been properly configured, run the following command
to list the defined registries:

anchore-cli --u admin --p foobar registry list

Rerun the pipeline with the Replay button. This time, Anchore will examine the con-
tents of the image filesystem for vulnerabilities. If high-severity vulnerabilities are
found, this will fail the image build, as shown in figure 9.35.

Figure 9.35 Image scanning with Anchore

300 CHAPTER 9 Building Docker images within a CI pipeline
Once the scanning is finished, Anchore will return with a nonzero exit code if the
image has any known high-severity issues. The result of the Anchore policy evaluation
will be saved in JSON files. Also, the pipeline will show the status of the build (STOP,
WARN, or FAIL), as shown in figure 9.36.

The HTML report is automatically published, as well, on the newly created page.
Clicking the Anchore Report link will display a graphical policy report showing the
summary information and a detailed list of policy checks and results; see figure 9.37.

Figure 9.37 Anchore Common Vulnerabilities and Exposures (CVE) report

Figure 9.36
Anchore
report results

301Writing a Jenkins declarative pipeline
NOTE You can customize Anchore Engine to use your own security policies to
allow/block external packages, OS scanning, and so forth.

And that’s how to define a continuous integration pipeline on Jenkins from scratch
for Dockerized microservices.

NOTE An alternative solution is Aqua Trivy (https://github.com/aquasecurity/
trivy), which is a freely available community edition. Paid solutions also can be
integrated easily with Jenkins such as Sysdig (https://sysdig.com/) and Aqua.

9.5 Writing a Jenkins declarative pipeline
Along with the previous chapters, we have used the scripted pipeline approach to
define the CI pipeline for our project because of the flexibility it gives while using
Groovy syntax. This section covers how to get the same pipeline output with a declara-
tive pipeline approach. This is a simplified and friendlier syntax with specific state-
ments for defining them, without a need to learn or master Groovy language.

 Let’s take as an example the scripted pipeline used for the movies-loader service.
The following listing provides the service Jenkinsfile (cropped for brevity).

node('workers'){
 stage('Checkout'){
 checkout scm
 }
 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test",
"-f Dockerfile.test .")
 imageTest.inside{
 sh "python main_test.py"
 }
 }
 stage('Build'){
 docker.build(imageName)
 }
 stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())

 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
 }
}

This scripted pipeline can be easily converted to a declarative version, by following
these steps:

1 Replace the node('workers') instruction with a pipeline keyword. All valid
declarative pipelines must be enclosed within a pipeline block.

Listing 9.17 Jenkinsfile scripted pipeline

https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://sysdig.com/

302 CHAPTER 9 Building Docker images within a CI pipeline
2 Define an agent section at the top level inside the pipeline block, to define
the execution environment where the pipeline will be executed. In our exam-
ple, the execution will be on Jenkins workers.

3 Wrap stage blocks with a stages section. The stages section contains a stage
for each discrete part of the CI pipeline, such as Checkout, Test, Build, and
Push.

4 Wrap each given stage command and instruction with a steps block.

Create a Jenkinsfile.declarative file with the required changes. The end result should
look like the following listing.

pipeline{
 agent{
 label 'workers'
 }
 stages{
 stage('Checkout'){
 steps{
 checkout scm
 }
 }
 stage('Unit Tests'){
 steps{
 script {
 def imageTest= docker.build("${imageName}-test",
"-f Dockerfile.test .")
 imageTest.inside{
 sh "python test_main.py"
 }
 }
 }
 }
 stage('Build'){
 steps{
 script {
 docker.build(imageName)
 }
 }
 }
 stage('Push'){
 steps{
 script {
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())

 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
 }
 }
 }
 }
}

Listing 9.18 Jenkinsfile declarative pipeline

Defines where the pipeline should be executed.
In the example, the pipeline stages will be
performed on the agents with the workers label.

Clones the GitHub
repository configured in
the Jenkins’s job settings

Builds a Docker image based on
Dockerfile.test and provisions

a container from the image
to run the Python unit tests

Builds the application Docker
image from the Dockerfile

Authenticates with the Docker
remote repository and pushes the

application image to the repository

303Writing a Jenkins declarative pipeline
NOTE The declarative pipeline might also contain a post section to perform
post-build steps such as notification or cleaning up the environment. This sec-
tion is covered in chapter 10.

Update the Jenkins job configuration to use the new declarative pipeline file instead
by updating the Script Path field, as shown in figure 9.38.

Figure 9.38 Jenkinsfile path configuration

Push the declarative pipeline to the remote repository with these commands:

git add Jenkinsfile.declarative
git commit -m "pipeline with declarative approach"
git push origin develop

The GitHub webhook will notify Jenkins upon the push event, and the new declarative
pipeline should be executed, as you can see in figure 9.39.

Figure 9.39 Jenkinsfile declarative pipeline execution

You can now restart any
completed declarative pipe-
line from any top-level stage
that ran in that pipeline. You
can go to the side panel for a
run in the classic UI and
click Restart from Stage, as
shown in figure 9.40.

Figure 9.40 Restart
from Stage feature

304 CHAPTER 9 Building Docker images within a CI pipeline
You will be prompted to choose from a list of top-level stages that were executed in the
original run, in the order they were executed. This allows you to rerun a pipeline
from a stage that failed because of transient or environmental considerations.

NOTE Restarting stages can also be done in the Blue Ocean UI, after your
pipeline has completed, whether it succeeds or fails.

Docker can also be used as an execution environment for running CI/CD pipelines in
the agent section, as shown in the following listing.

pipeline{
 agent{
 docker {
 image 'python:3.7.3'
 }
 }
 stages{
 stage('Checkout'){
 steps{
 checkout scm
 }
 }
 stage('Unit Tests'){
 steps{
 script {
 sh 'python test_main.py'
 }
 }
 }
 }
}

If we try to execute this pipeline, the build will quickly fail because the pipeline
assumes that any configured machine/instance is capable of running Docker-based
pipelines. In this example, the build ran in the master machine. However, because
Docker is not installed in this machine, the pipeline failed:

To run the pipeline on Jenkins workers only, update the Pipeline Model Definition
settings from the Jenkins job configuration and set the workers label on the Docker
Label field, as shown in figure 9.41.

 When the pipeline executes, Jenkins will automatically start the specified con-
tainer and execute the steps defined within it. This pipeline executes the same stages
and the same steps.

Listing 9.19 Declarative pipeline with a Docker agent

305Managing pull requests with Jenkins
9.6 Managing pull requests with Jenkins
For now, we push directly to the develop branch; however, we should create feature
branches and then create pull requests to run tests and provide feedback to GitHub
and block submission approval if tests fail. Let’s see how to set up a review process with
Jenkins for pull requests.

 Create a new feature branch from the develop branch with the following command:

git checkout -b feature/featureA

Make some changes; in this example, I have updated the README.md file. Then,
commit the changes and push the new feature branch to the remote repository:

git add README.md
git commit -m "update readme"
git push feature/featureA

Head over to the GitHub repository, and create a new pull request to merge the fea-
ture branch to the develop branch, as shown in figure 9.42.

Figure 9.42 New pull request

Figure 9.41
Pipeline model
definition

306 CHAPTER 9 Building Docker images within a CI pipeline
On Jenkins, a new build will be triggered on the feature branch, as you can see in fig-
ure 9.43.

Figure 9.43 Build execution on the feature branch

Once the CI is finished, Jenkins will update the status on GitHub (figure 9.44). The
build indicator in GitHub will turn either red or green, based on the build status.

Figure 9.44 Jenkins post-build status on GitHub PR

NOTE You can also configure SonarQube to analyze pull requests so you can
ensure that the code is clean and approved for merging.

This process allows you to run a build and subsequent automated tests at every check-
in so only the best code gets merged. Catching bugs early and automatically reduces
the number of problems introduced into production, so your team can build better,
more efficient software. We can now merge the feature branch and delete it; see fig-
ure 9.45.

307Managing pull requests with Jenkins

Figure 9.45 Merge and delete the feature branch.

And that will trigger another build on the develop branch, which will trigger the CI
stages and push the image with the develop tag to the remote Docker registry.

 Once the build is completed, we can check the status of previous commits by click-
ing the Commits section from the GitHub repository. A green, yellow, or red check
mark should be displayed, depending on the state of the build; see figure 9.46.

Figure 9.46 Jenkins build status history

Finally, to disable developers from pushing directly to the develop branch and also
merging without a Jenkins build being passed, we will create a new rule to protect the
develop branch. On the GitHub repository settings, jump to the Branches section and
add a new protection rule that requires the Jenkins status check to be successful
before merging. Figure 9.47 shows the rule configuration.

308 CHAPTER 9 Building Docker images within a CI pipeline

Figure 9.47 GitHub branch protection

Apply the same rule for the preprod and master branches. Then, repeat the same pro-
cedure for the rest of the GitHub repositories of the project.

 With the Docker images safely stored in the private registry and the build status
posted to GitHub, we’ve completed the implementation of the CI pipeline of Docker-
ized microservices with Jenkins multibranch pipelines. The next two chapters cover
how to implement continuous deployment and delivery practices with Jenkins for two
of the most used container orchestration platforms for cloud-native applications:
Docker Swarm and Kubernetes.

Summary
 You can optimize Docker images for production with Docker caching layers, multi-

stage build features, and lightweight base images such as an Alpine base image.
 The commit ID and Jenkins build ID can be used to tag Docker images for ver-

sioning and rollback to a working version in case of application deployment
failure.

 Binary repository tools like Nexus and Artifactory can manage and store build
artifacts for later use.

 Anchore Engine is an open source tool that lets you scan Docker images for
security vulnerabilities during CI workflow.

 In a CI environment, the frequency of a build is too high, and each build gener-
ates a package. Since all the built packages are in one place, developers are at lib-
erty to choose what to promote and what not to promote in higher environments.

Cloud-native applications
on Docker Swarm
The previous chapter covered how to set up a continuous integration pipeline for a
containerized microservice application with Jenkins. This chapter covers how to
automate the deployment and manage multiple application environments. By the
end of this chapter, you will be familiar with continuous deployment and delivery
(figure 10.1) for containerized microservices running in a Docker Swarm cluster.

This chapter covers
 Deploying a self-healing Swarm cluster on AWS

and using an S3 bucket for node discovery

 Running SSH-based commands within Jenkins
pipelines and configuring SSH agents

 Automating deployment of Dockerized
applications to Swarm

 Integrating Slack to manage releases and build
notifications of CI/CD pipelines

 Continuous delivery to production and user
manual approvals within Jenkins
309

310 CHAPTER 10 Cloud-native applications on Docker Swarm
Figure 10.1 A complete CI/CD pipeline workflow

One of the basic solutions to run multiple containers across a set of machines is Swarm
(https://docs.docker.com/engine/swarm/), which comes bundled with Docker
Engine. By the end of this chapter, you should be able to build a CI/CD pipeline from
scratch for services running inside a Docker Swarm cluster, as shown in figure 10.2.

Figure 10.2 Target CI/CD pipeline

10.1 Running a distributed Docker Swarm cluster
Docker Swarm was originally released as a standalone product that ran master and
agent containers on a cluster of servers to orchestrate the deployment of containers.
This changed with the release of Docker 1.12 in 2016. Docker Swarm became officially
part of Docker Engine and was built right into every Docker installation.

NOTE This is just a brief overview of the capabilities of Docker Swarm in
Docker. For further reading, feel free to explore the Docker Swarm official
documentation (https://docs.docker.com/engine/swarm/).

To illustrate the deployment of containers into a Swarm cluster from a CI/CD pipe-
line defined in Jenkins, we need to deploy a Swarm cluster.

 The Swarm cluster will be deployed inside a VPC with two Auto Scaling groups:
one for Swarm managers and another for Swarm workers. Both ASGs will be deployed
within private subnets that spin up across multiple availability zones for resiliency.

CI/CD workflow

DeployCheckout Quality
tests

Unit
tests

Security
checks Build Push

https://shortener.manning.com/VBw5
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

311Running a distributed Docker Swarm cluster
 Once the ASGs are created, setting up the Swarm requires manual initialization of
the managers, and adding new nodes to the cluster requires additional information (a
cluster join token) provided by the first manager when the Swarm is created.

 This step can be automated with configuration management tools like Ansible or
Chef. However, it requires manual interaction. To address this, and to provide auto-
matic Swarm initialization, we will run a one-shot Docker container on instance launch;
the container uses an S3 bucket as a cluster discovery registry to find active managers
and join tokens.

 Figure 10.3 summarizes the architecture we will deploy. We will focus on AWS, but
the same architecture can be applied in other cloud providers or locally.

Figure 10.3 Swarm architecture in AWS

NOTE A distributed, consistent key-value store such as etcd (https://etcd.io/),
HashiCorp’s Consul (www.consul.io), or Apache ZooKeeper (https://zoo
keeper.apache.org/) can be used as service discovery to make the nodes auto-
join the Swarm cluster.

To deploy Swarm instances, we need to provide an AMI with Docker Engine prein-
stalled. By now, you should be familiar with Packer. We will create a template.json file
with the content in the following listing. (The full template can be downloaded from
chapter10/swarm/packer/docker-ce/template.json.)

https://etcd.io/
http://www.consul.io
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/

312 CHAPTER 10 Cloud-native applications on Docker Swarm

{
 "variables" : {},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "18.09.9-ce",
 "ami_description" : "Docker engine AMI",
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

The base image is Amazon Linux 2, which will be provisioned with a shell script that
installs the most recent Docker Community Edition package. Then it adds the ec2-
user username to the docker group, to be able to execute Docker commands with-
out using the sudo command; see the following listing.

#!/bin/bash
yum update -y
yum install docker -y
usermod -aG docker ec2-user
systemctl enable docker

Issue a packer build command to bake the Docker AMI. Once the provisioning
process is completed, the new baked AMI should be available on the Images section
on the AWS Management Console (figure 10.4).

Figure 10.4 Docker Community Edition AMI

Listing 10.1 Docker AMI’s Packer template

Listing 10.2 Docker Community Edition installation

313Running a distributed Docker Swarm cluster
Next, deploy the infrastructure with Terraform, and create a dedicated VPC called
sandbox with a 10.1.0.0/16 CIDR block to isolate the sandbox application and work-
load. Define the block in listing 10.3 in the vpc.tf file.

NOTE Deploying the cluster on a different VPC is not mandatory, but follow-
ing the best practices by isolating your workload environments for auditing
and security compliance is strongly recommended.

resource "aws_vpc" "sandbox" {
 cidr_block = var.cidr_block
 enable_dns_hostnames = true

 tags = {
 Name = var.vpc_name
 Author = var.author
 }
}

The Swarm manager needs a way of passing the worker token to the workers after it
has initialized. The best way to do that is to have the Swarm manager’s user data trig-
ger generating the token and putting it into an S3 bucket. Define a private S3 bucket
resource in s3.tf with the code in the following listing.

resource "aws_s3_bucket" "swarm_discovery_bucket" {
 bucket = var.swarm_discovery_bucket
 acl = "private"

 tags = {
 Author = var.author
 Environment = var.environment
 }
}

NOTE The AWS Systems Manager Parameter Store (http://mng.bz/r6GX)
can also be used as a shared encrypted store to store and retrieve the join
token for Swarm workers.

An IAM instance profile is necessary for EC2 instances to be able to interact with the
S3 bucket to store or fetch the Swarm token for an autojoin operation. Define an IAM
role policy within the iam.tf file, as shown in the next listing.

resource "aws_iam_role_policy" "discovery_bucket_access_policy" {
 name = "discovery-bucket-access-policy-${var.environment}"
 role = aws_iam_role.swarm_role.id

Listing 10.3 Sandbox VPC resource

Listing 10.4 Swarm discovery S3 bucket resource

Listing 10.5 Swarm nodes IAM policy

https://shortener.manning.com/r6GX

314 CHAPTER 10 Cloud-native applications on Docker Swarm
 policy = <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
EOF
}

Then, we create a launch configuration for Swarm managers that uses the Docker
AMI baked with Packer and run a startup script configured on user data. Use the fol-
lowing listing to define the code in swarm_managers.tf.

resource "aws_launch_configuration" "managers_launch_conf" {
 name = "managers_config_${var.environment}"
 image_id = data.aws_ami.docker.id
 instance_type = var.manager_instance_type
 key_name = var.key_name
 security_groups = [aws_security_group.swarm_sg.id]
 user_data = data.template_file.swarm_manager_user_data.rendered
 iam_instance_profile = aws_iam_instance_profile.swarm_profile.id

 root_block_device {
 volume_type = "gp2"
 volume_size = 20
 }

 lifecycle {
 create_before_destroy = true
 }
}

The startup script uses the name of the cluster discovery S3 bucket and the role of the
running instance (manager or worker), as shown in the next listing. Based on the
instance role, the docker swarm join command will use the right token (workers
token or managers token).

data "template_file" "swarm_manager_user_data" {
 template = "${file("scripts/join-swarm.tpl")}"
 vars = {
 swarm_discovery_bucket = "${var.swarm_discovery_bucket}"
 swarm_name = var.environment

Listing 10.6 Swarm managers launch configuration

Listing 10.7 Swarm managers user data

315Running a distributed Docker Swarm cluster
 swarm_role = "manager"
 }
}

The shell script joint-swarm.tpl, shown in the following listing, uses EC2 metadata to
fetch the instance private IP address. The script then executes a container that uses
the S3 bucket to store the state of the Swarm once it’s created or creates a new Swarm
if no state already exists in the bucket.

#!/bin/bash
NODE_IP=$(curl -fsS http://169.254.169.254/latest/meta-data/local-ipv4)
docker run -d --restart on-failure:5 \
 -e SWARM_DISCOVERY_BUCKET=${swarm_discovery_bucket} \
 -e ROLE=${swarm_role} \
 -e NODE_IP=$NODE_IP \
 -e SWARM_NAME=${swarm_name} \
 -v /var/run/docker.sock:/var/run/docker.sock \
 mlabouardy/swarm-discovery

NOTE The mlabouardy/swarm-discovery full Python script and Dockerfile is
given in the GitHub repository: pipeline-as-code-with-jenkins/tree/master/
chapter10/discovery.

From there, we will create an ASG of managers. By default, we will create one man-
ager for the cluster. But I recommend using an odd number when running Swarm in
production, as a majority vote is needed among managers to agree on proposed man-
agement tasks. An odd—rather than even—number is strongly recommended to have
a tie-breaking consensus. However, for a sandbox cluster, we will keep it simple and go
with one Swarm manager. In swarm_mangers.tf, define the ASG resource as shown in
the following listing.

resource "aws_autoscaling_group" "swarm_managers" {
 name = "managers_asg_${var.environment}"
 launch_configuration = aws_launch_configuration.managers_launch_conf.name
 vpc_zone_identifier = [for subnet in aws_subnet.private_subnets:

subnet.id]
 depends_on = [aws_s3_bucket.swarm_discovery_bucket]
 min_size = 1
 max_size = 3
 lifecycle {
 create_before_destroy = true
 }
}

NOTE You can define autoscaling policies with CloudWatch alarms to trigger
scale-out or scale-in events based on CPU utilization or custom metrics of the
Swarm nodes.

Listing 10.8 Swarm nodes startup script

Listing 10.9 Swarm managers Auto Scaling group

https://plugins.jenkins.io/credentials-binding/

316 CHAPTER 10 Cloud-native applications on Docker Swarm
Similarly, we will create an ASG for workers, and we will go with two Swarm workers.
Note the use of the depends_on keyword to create an implicit dependency on the
swarm_managers resource. Terraform uses this information to determine the correct
order for creating resources.

 In this example, Terraform will create Swarm managers first. That way, we guaran-
tee the Swarm initialization and the availability of a join token in the S3 bucket. Add
the resource in the following listing in the swarm_workers.tf file.

resource "aws_autoscaling_group" "swarm_workers" {
 name = "workers_asg_${var.environment}"
 launch_configuration = aws_launch_configuration.workers_launch_conf.name
 vpc_zone_identifier = [for subnet in aws_subnet.private_subnets:

subnet.id]
 min_size = 2
 max_size = 5
 depends_on = [aws_autoscaling_group.swarm_managers]
 lifecycle {
 create_before_destroy = true
 }
}

Finally, allow the firewall rules in table 10.1 on the security group assigned to the
Swarm cluster instances.

The following listing provides the security group definition.

resource "aws_security_group" "swarm_sg" {
 name = "swarm_sg_${var.environment}"
 description = "Allow inbound traffic for
swarm management and ssh from jenkins & bastion hosts"
 vpc_id = aws_vpc.sandbox.id

Listing 10.10 Swarm workers ASG

Table 10.1 Swarm cluster security group rules

Protocol Port Source Description

TCP 2377 Swarm Cluster management and raft sync communications

TCP 7946 Swarm Control-plane gossip discovery communication among
all nodes

UDP 7946 Swarm Container network discovery from other Swarm nodes

UDP 4789 Swarm Data-plane VXLAN overlay network traffic

TCP 22 Jenkins and
Bastion SGs

SSH traffic from Jenkins master and bastion security
groups

Listing 10.11 Swarm nodes security group

317Running a distributed Docker Swarm cluster
 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 security_groups = [var.bastion_sg_id, var.jenkins_sg_id]
 }
 ingress {
 from_port = "2377"
 to_port = "2377"
 protocol = "tcp"
 cidr_blocks = [var.cidr_block]
 }
 …
 egress {
 from_port = "0"
 to_port = "0"
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

NOTE I recommend using an S3 backend with encryption and versioning
enabled to remotely store the Terraform state files.

Define the required Terraform variables in variables.tfvars as listed in table 10.2.

Table 10.2 Swarm Terraform variables

Variable Type Value Description

region String None The name of the region, such as
eu-central-1, in which to deploy the
Swarm cluster

shared_credentials
_file

String ~/.aws/
credentials

The path to the shared credentials file. If
this is not set and a profile is specified,
~/.aws/credentials will be used.

aws_profile String profile The AWS profile name as set in the
shared credentials file

author String None Name of the owner of the Swarm cluster.
It’s optional, but recommended, to tag
your AWS resources to track the monthly
costs by owner or environment.

key_name String None SSH key pair

availability_zones List None Availability zone where you’ll spin up the
VPC subnet

bastion_sg_id String None The bastion host security group ID

jenkins_sg_id String None The Jenkins master security group ID

vpc_name String sandbox The name of the VPC

318 CHAPTER 10 Cloud-native applications on Docker Swarm
Then, use the terraform apply command to start the deployment process. Once
deployed, the ASGs will be created, the Swarm discovery container will be launched
on each instance, and the first manager to be run will execute the swarm init com-
mand and store the token on the S3 bucket (figure 10.5), which will be used by other
instances to join the cluster.

NOTE You can have as many or as few worker groups as you wish, running in
as many different configurations as you choose (CPU or memory-optimized
workers alongside general-purpose Swarm workers).

Figure 10.5 Swarm state stored in an S3 bucket

environment String sandbox The runtime environment name

cidr_block String 10.1.0.0/16 The VPC CIDR block

cluster_name String sandbox The Swarm cluster’s name

public_subnets_count Number 2 The number of public subnets to create

private_subnets_count Number 2 The number of private subnets to create

swarm_discovery_
bucket

String swarm-
discovery-
cluster

The S3 bucket where the Swarm tokens
will be stored

manager_instance_type String t2.small The EC2 instance type for Swarm
managers

worker_instance_type String t2.large The EC2 instance type for Swarm
workers

Table 10.2 Swarm Terraform variables (continued)

Variable Type Value Description

319Running a distributed Docker Swarm cluster
If you decide to create a dedicated VPC for the Swarm cluster, you need to set up VPC
peering between management and sandbox VPCs, as shown in figure 10.6. For a step-
by-step guide on how to set up peering with Terraform, refer to the official Terraform
documentation at http://mng.bz/VBw5.

Figure 10.6 VPC peering between management and sandbox VPCs

NOTE If you intend to use the VPC peering connection, make sure the VPCs
don’t have matching or overlapping IPv4 CIDR blocks. In our example, the man-
agement and sandbox CIDR blocks are 10.0.0.0/16 and 10.1.0.0/16, respectively.

From the VPC dashboard, navigate to Peering Connections and create a new one.
Configure the peering as shown in figure 10.7.

Figure 10.7 Configuring the peering of management and sandbox VPCs

320 CHAPTER 10 Cloud-native applications on Docker Swarm
After creating the peering connection, you’ll see Pending Acceptance in the status
bar. If you are using a different account or different region, go to the corresponding
VPC console, where you can see Pending Acceptance in the status bar of the peering
connection. From the Actions drop-down, choose Accept Request, as shown in figure
10.8. Then, in the Accept VPC Peering Connection Request prompt box, click Yes,
Accept.

Figure 10.8 Accepting VPC peering request

To send and receive traffic across this VPC peering connection, you must add a route
to the peered VPC in one or more of your VPC route tables. In the route tables associ-
ated with the subnets of the VPC, create a route with the CIDR block of the peer VPC
as a destination, and the ID of the VPC peering connection as a target.

 Repeat the same setups for all other VPC route tables. Once everything is set up,
your routing table will look like figure 10.9.

Figure 10.9 Sandbox VPC’s route table update

To view the Swarm state, set up an SSH tunnel by using the bastion host deployed in
chapter 5’s section 5.2.4:

ssh -N 3000:SWARM_MANAGER_IP:22 ec2-user@BASTION_IP
ssh ec2-user@localhost -p 3000

321Defining a continuous deployment process
Replace SWARM_MANAGER_IP with the Swarm manager private IP address. Once con-
nected, if you type the docker info command, the Swarm: active attribute should
confirm that Swarm has been properly configured:

Run docker node ls from the manager machine to view your Swarm’s connected
nodes. As you can see in figure 10.10, we now have one manager and two workers.

docker node ls

Figure 10.10 Swarm cluster nodes list

With our Swarm up and running, let’s deploy the Dockerized-based application with
Jenkins.

10.2 Defining a continuous deployment process
Create a new GitHub repository for deployment. Because deployment options are
often changed, we will store the deployment part on a different Git repo. Then, create
three main branches: develop, preprod, and master, as in figure 10.11.

 Docker Swarm mode now integrates directly with Docker Compose v3 and offi-
cially supports the deployment of stacks (groups of services) via docker-compose.yml
files. The same docker-compose.yml file you would use to test your application locally
can now be used to deploy your application to Swarm.

322 CHAPTER 10 Cloud-native applications on Docker Swarm

Figure 10.11 GitHub deployment repository

To do a Docker Swarm deployment from Jenkins, we need a docker-compose file that
contains the references to Docker images along with the configuration settings such
as port, network name, labels, and constraints. To run this file, we need to execute the
docker stack deployment command over SSH on a manager machine.

 On the develop branch, create a docker-compose.yml file by using your favorite
text editor or IDE, with the content in the following listing.

version: "3.3"
services:
 movies-loader:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:develop
 environment:
 - AWS_REGION=REGION
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_sandbox

 movies-parser:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:develop
 environment:
 - AWS_REGION=REGION
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_sandbox
 - MONGO_URI=mongodb://root:root@mongodb/watchlist
 - MONGO_DATABASE=watchlist
 depends_on:
 - mongodb

 movies-store:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-store:develop

Listing 10.12 Application Docker Compose

323Defining a continuous deployment process
 environment:
 - MONGO_URI=mongodb://root:root@mongodb/watchlist
 ports:
 - 3000:3000
 depends_on:
 - mongodb

 movies-marketplace:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-marketplace:develop
 ports:
 - 80:80

 mongodb:
 image: bitnami/mongodb:latest
 environment:
 - MONGODB_USERNAME=root
 - MONGODB_PASSWORD=root
 - MONGODB_DATABASE=watchlist

NOTE Substitute the ID, REGION, and USER with your own AWS Account ID,
AWS region, and ECR URI.

Each service uses the image we built in chapter 9 and references the develop tag.
This tag is dedicated to sandbox deployment and contains the codebase of the
develop branch. Also, we have defined a MongoDB service that will be used by both
the movies-store and movies-parser services.

 The MongoDB service credentials are in plaintext. However, you shouldn’t commit
sensitive information under any circumstances and opt for managed solutions like
HashiCorp Vault or AWS SSM Parameter Store to encrypt your credentials and access
tokens. You can also use an integrated feature of Docker called Secrets to create data-
base credentials:

openssl rand -base64 12 | docker secret create mongodb_password -

And update docker-compose.yml to use the secret instead of the plaintext password:

mongodb:
 image: bitnami/mongodb:latest
 environment:
 - MONGODB_USERNAME=root
 - MONGO_ROOT_PASSWORD_FILE: /run/secrets/mongodb_password
 - MONGODB_DATABASE=watchlist

NOTE If the MongoDB service crashes for unknown reasons or has been
removed, its data will be lost. To avoid this loss of data, you should mount a
persistent volume. Depending on the cloud provider used, Docker volumes
support use of external persistent storage such as Amazon EBS.

To decouple the crawling and parsing of HTML pages, we are using a distributed
queue between the movies-loader and movies-parser services. In addition to its high
availability, this will allow us to deploy additional movies-parser workers based on the

324 CHAPTER 10 Cloud-native applications on Docker Swarm
number of HTML pages to parse. Create an SQS for the sandbox environment called
movies_to_parse_sandbox with Terraform (chapter10/swarm/terraform/sqs.tf),
as shown in figure 10.12. This queue will be used by movies-loader to push movies
into, and then it will be consumed by movies-parser workers.

Figure 10.12 Sandbox queue settings

With Docker Compose out of the way, we can proceed and create a Jenkinsfile, shown
in listing 10.13, with these steps:

1 Clone the GitHub repository (chapter10/deployment/sandbox/Jenkinsfile)
and check out the develop branch.

2 Send the docker-compose.yml file over SSH to the manager node and execute
the command docker stack deploy.

NOTE We use the master label to constrain the pipeline to be executed on
the Jenkins master only. Workers’ machines might also be used for this job.

def swarmManager = 'manager.sandbox.domain.com'
def region = 'AWS REGION'
node('master'){
 stage('Checkout'){
 checkout scm
 }
 stage('Copy'){
 sh "scp -o StrictHostKeyChecking=no
docker-compose.yml ec2-user@${swarmManager}:/home/ec2-user"
 }
 stage('Deploy stack'){
 sh "ssh -oStrictHostKeyChecking=no ec2-user@${swarmManager}

'\$(\$(aws ecr get-login --no-include-email
--region ${region}))' || true"

Listing 10.13 Deployment Jenkinsfile

Replace with your own
AWS default region.

325Defining a continuous deployment process
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager} docker stack deploy
--compose-file docker-compose.yml
--with-registry-auth watchlist"
 }
}

This Jenkinsfile uses Amazon ECR as a private registry. If you’re using a private regis-
try that requires username and password authentication (such as Nexus, DockerHub,
Azure, or Cloud Container Registry), you can use the Credentials Binding plugin
https://plugins.jenkins.io/credentials-binding/), which is installed by default, to
allow registry credentials to be bounded to USERNAME and PASSWORD variables. Then,
pass those variables to the docker login command for authentication:

stage('Deploy'){
 withCredentials([[
$class: 'UsernamePasswordMultiBinding',
credentialsId: 'registry',
usernameVariable: 'USERNAME',
passwordVariable: 'PASSWORD']]) {
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker login --password $PASSWORD --username $USERNAME
${registry}"
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker stack deploy --compose-file docker-compose.yml
--with-registry-auth watchlist"
 }
}

Push the Jenkinsfile and docker-compose.yml files to the develop branch with the fol-
lowing commands:

git add .
git commit -m "deploy watchlist stack to sandbox"
git push origin develop

Head over to Jenkins, and create a new multibranch pipeline job called watchlist-
deployment.

NOTE For a step-by-step guide on how to create and configure multibranch
pipeline jobs on Jenkins, check out chapter 7.

Set the GitHub repository HTTPS clone URL and allow Jenkins to discover all
branches looking for a Jenkinsfile on the root repository, as shown in figure 10.13.

https://plugins.jenkins.io/credentials-binding/
https://plugins.jenkins.io/slack/
https://plugins.jenkins.io/slack/
https://plugins.jenkins.io/slack/

326 CHAPTER 10 Cloud-native applications on Docker Swarm

Figure 10.13 Branch sources configuration

For now, the job pipeline should discover the develop branch and execute the stages
defined in the Jenkinsfile, as shown in figure 10.14.

Figure 10.14 Deployment job on Jenkins

327Defining a continuous deployment process
The pipeline should fail and turn red at the Copy stage, as shown in figure 10.15. The
Jenkins master cannot SSH to the Swarm manager because the Jenkins master has the
wrong private SSH key.

Figure 10.15 SCP command logs

For Jenkins to continuously deploy to the Swarm, it needs access to the Swarm man-
ager. Create a new credential of type SSH Username with Private Key on Jenkins to
access the Swarm sandbox. On a private-key field, paste the content of the key pair
used while creating Swarm EC2 instances. Then, call it swarm-sandbox, as shown in
figure 10.16.

Figure 10.16 Jenkins credential with Swarm SSH key pair

NOTE Jenkins would need access to only the Swarm manager. The other
nodes are managed by the Swarm manager, so Jenkins does not need direct
access to them.

328 CHAPTER 10 Cloud-native applications on Docker Swarm
Update the Jenkinsfile to use the SSH agent plugin (Credentials Binding plugin) to
inject the credentials. The sshagent block should wrap all SSH- and SCP-based com-
mands, as shown in the following listing.

sshagent (credentials: ['swarm-sandbox']){
 stage('Copy'){
 sh "scp -o StrictHostKeyChecking=no
docker-compose.yml ec2-user@${swarmManager}:/home/ec2-user"
 }

 stage('Deploy stack'){
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
'\$(\$(aws ecr get-login --no-include-email --region ${region}))'
|| true"
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker stack deploy --compose-file docker-compose.yml
--with-registry-auth watchlist"
 }
}

Push the changes to the develop branch. A new build should be triggered on the
develop branch’s nested job of the watchlist-deployment item.

NOTE For continuous deployment, create a GitHub webhook on the GitHub
repository to notify Jenkins on push events.

This time, the pipeline should be successful and turns green (figure 10.17).

Figure 10.17 Continuous deployment pipeline

Listing 10.14 SSH agent configuration

329Defining a continuous deployment process
On the build logs side, Jenkins will run docker stack deploy over SSH on the
Swarm manager, and the services in figure 10.18 will be deployed based on the
develop tag image.

Figure 10.18 Output from docker stack deploy

NOTE If you plan to use Amazon ECR as a remote repository, you need to
assign an ECR IAM policy to the IAM instance profile assigned to Swarm
instances.

On Swarm, type the following command, and we should be able to view the status of
the stack and the services running within it:

docker service ls

The four microservices should be deployed alongside a MongoDB service, as shown in
figure 10.19.

Figure 10.19 Stack successfully deployed on Swarm sandbox

Next, we will deploy an open source tool called Visualizer to visualize Docker services
across a set of machines. Execute these commands on the Swarm manager machine:

docker service create --name=visualizer
--publish=8080:8080/tcp
--constraint=node.role==manager \
 --mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
 dockersamples/visualizer

330 CHAPTER 10 Cloud-native applications on Docker Swarm
Once the service is deployed, we will create a public load balancer to forward incom-
ing HTTP and HTTPS (optional) traffic to port 8080, which is the port the Visualizer
UI is exposed to. Declare the ELB resource in the following listing or download the
resources file from chapter8/services/loadbalancers.tf.

resource "aws_elb" "visualizer_elb" {
 subnets = var.public_subnets
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_visualizer_sg.id]
 listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
 }
 listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"

 }
 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:8080" resource "aws_autoscaling_attachment"

"cluster_attach_visualizer_elb" {
 autoscaling_group_name = var.swarm_managers_asg_id
 elb = aws_elb.visualizer_elb.id
}

 interval = 5
 }
}

Then, we attach the load balancer to the ASG of the Swarm managers. The load bal-
ancer can also be assigned to the Swarm workers. In fact, all of the nodes within the
Swarm cluster are aware of the location of every container within the cluster via the
gossip network. If an incoming request hits a node that is not currently running the
service for which that request was intended, the request will be routed to a node that
is running a container for that service.

 This is so nodes don’t have to be purpose-built for specific services. Any node can run
any service, and every node can be load balanced equally, reducing complexity and the
number of resources needed for an application. This feature is called mesh routing :

resource "aws_autoscaling_attachment" "cluster_attach_visualizer_elb" {
 autoscaling_group_name = var.swarm_managers_asg_id
 elb = aws_elb.visualizer_elb.id
}

Listing 10.15 Visualizer load balancer

331Defining a continuous deployment process
The following listing (chapter8/services/dns.tf) is not mandatory, but can be used to
create a friendly DNS record pointing to the Visualizer load balancer FQDN.

resource "aws_route53_record" "visualizer" {
 zone_id = var.hosted_zone_id
 name = "visualizer.${var.environment}.${var.domain_name}"
 type = "A"
 alias {
 name = aws_elb.visualizer_elb.dns_name
 zone_id = aws_elb.visualizer_elb.zone_id
 evaluate_target_health = true
 }
}

NOTE Update the security group of the Swarm cluster to allow incoming
inbound traffic on port 8080 from the load balancer security group. Add an
ingress rule for port 8080 and use terraform apply for changes to take
effect.

Once changes are issued, point the browser to the load balancer URL displayed in the
Outputs section in your terminal session. This handy tool, shown in figure 10.20,
helps you see which containers are running, and on which nodes.

NOTE This tool works only with Docker Swarm mode in Docker Engine
1.12.0 and later. It does not work with the separate Docker Swarm project.

Figure 10.20 Visualizer dashboard

Listing 10.16 Visualizer DNS configuration

332 CHAPTER 10 Cloud-native applications on Docker Swarm
NOTE Containers are deployed on the manager, too. If you want to restrict
deployment to workers, use Docker constraints with labels.

We have successfully deployed our application stack to Swarm. However, for now, the
deployment is triggered manually. Ultimately, we want the deployment job to be exe-
cuted at the end of each CI pipeline’s successful execution.

 To do so, update the Jenkinsfile (chapter10/pipelines/movies-loader/Jenkinsfile)
to trigger the external job with the build job keyword. For example, on the movies-
loader Jenkinsfile, add the following Deploy stage code block to the end of the pipeline:

stage('Deploy'){
 if(env.BRANCH_NAME == 'develop'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
}

Commit and push the changes to a feature branch. Then create a pull request (PR) to
merge to develop. A new build should be triggered on the feature branch, and once
it’s done, Jenkins will post the build status on the PR, as shown in figure 10.21.

Once the pull request is validated, we merge to the develop branch, and a new build
will be triggered on that branch, as shown in figure 10.22.

Figure 10.22 Jenkins CI/CD pipeline for the movies-loader project

Figure 10.21
Pull request
build status

333Defining a continuous deployment process
At the end of the CI pipeline, the deploy stage will be executed, and watchlist-deploy-
ment will be triggered on the develop branch, as shown in figure 10.23.

That will trigger the deployment job, which will deploy the stack and force the pull of
new Docker images with the develop tag. Repeat the same process for other GitHub
repositories. In the end, each repository will trigger a deployment to sandbox if the CI
is successfully executed, as shown in figure 10.24.

Figure 10.24 Marketplace CI/CD pipeline execution

NOTE In chapters 11 and 12, we will cover how to run automated health
checks and post-integration tests on the deployed application from Jenkins
within the CI/CD pipeline.

By now, our application is deployed to the Swarm sandbox environment. To access the
application, we need to create two public load balancers: one for the API (movies-
store) and another for the frontend (movies-marketplace). Use Terraform template
files available in the GitHub repository (under the /chapter8/services folder) to cre-
ate the AWS resources, and then issue terraform apply to provision the resources.
At the end of the deployment process, the marketplace and store API access URLs will
be displayed in the Outputs section, as shown in figure 10.25.

Figure 10.25 Terraform apply output

Figure 10.23 External
job triggering

334 CHAPTER 10 Cloud-native applications on Docker Swarm
NOTE Make sure to allow inbound traffic on ports 80 (frontend), 8080 (visu-
alizer), and 3000 (API) from the security group attached to the Swarm EC2
instances.

For the marketplace to be able to interact with the RESTful API to show a list of
crawled movies, we need to inject the API URL at the build time of the marketplace
Docker image. The source code of the marketplace contains multiple files based on
the target environment (figure 10.26).

Figure 10.26 Angular environment files

Each file contains the right API URL. For the sandbox environment, the environment
.sandbox.ts file will be used, as shown in the following listing.

export const environment = {
 production: false,
 apiURL: 'https://api.sandbox.slowcoder.com',
};

The marketplace Docker image will be built using the ng build -c sandbox flag,
which will replace the environment.ts file with environment.sandbox.ts values; see fig-
ure 10.27.

Figure 10.27 Docker image build execution

Listing 10.17 Marketplace sandbox environment variables

335Integrating Jenkins with Slack notifications
Once the new image is deployed to Swarm, point your browser to the marketplace URL.
It should display the top 100 IMDb best movies in history, as shown in figure 10.28.

Figure 10.28 Watchlist marketplace dashboard

That’s how to reach continuous deployment. However, we want to alert the develop-
ment and product teams of the deployment and CI/CD status of the project.

10.3 Integrating Jenkins with Slack notifications
At certain stages of the pipeline, you may decide you want to send out a Slack notifica-
tion to your team to inform them of the build status. To send Slack messages through
Jenkins, we need to provide a way for our job to authorize itself with Slack.

 Luckily for us, Slack has a prebuilt Jenkins integration that makes things pretty
easy. Install the plugin from http://mng.bz/xXOB. Replace WORKSPACE with your
Slack workspace name, as shown in figure 10.29.

Figure 10.29 Jenkins CI Slack integration

http://mng.bz/xXOB

336 CHAPTER 10 Cloud-native applications on Docker Swarm
Click the Add to Slack button. Then select the channel on which you want Jenkins to
send notifications, as shown in figure 10.30.

Figure 10.30 Slack channel configuration

After that, we need to set the configuration on the Jenkins Slack Notification plugin
(https://plugins.jenkins.io/slack/), which is already installed on the baked Jenkins
master machine image. Enter the team workspace name, integration token created on
your slack, and channel name, as shown in figure 10.31, and click the Apply and Save
buttons.

Figure 10.31 Jenkins Slack Notification plugin

Now that we have Slack properly configured in Jenkins, we can configure our CI/CD
pipeline to send a notification to broadcast the status of the build with the following
method:

slackSend (color: colorCode, message: summary)

Let’s add this instruction at the end of the CI/CD pipeline for the movies-loader ser-
vice as an example; see the following listing.

https://plugins.jenkins.io/slack/

337Integrating Jenkins with Slack notifications

node('workers'){
 stage('Checkout'){}

 stage('Unit Tests'){}

 stage('Build'){}

 stage('Push'){}

 stage('Deploy'){}

 slackSend (color: '#2e7d32',
message: "${env.JOB_NAME} has been successfully deployed")
}

NOTE For simplicity, I skipped steps that run unit tests, build the image, and
push the image to the registry. You’re advised to put them inside the work-
flow we are about to explore.

Push the changes to a feature branch, and then merge to develop. At the end of the
pipeline, a new Slack notification will be sent, as shown in figure 10.32.

Figure 10.32 Jenkins Slack notification

While this works, we also want to be notified when the pipeline fails. That’s where
try-catch blocks come into play to handle errors thrown by pipeline stages; see the
following listing.

node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }

 stage('Unit Tests'){}
 stage('Build'){}

Listing 10.18 Jenkins Slack plugin DSL

Listing 10.19 Slack notifications within Jenkins

338 CHAPTER 10 Cloud-native applications on Docker Swarm
 stage('Push'){}
 stage('Deploy'){}
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

This time, a notifySlack() method is used, which sends a notification with a differ-
ent color based on the pipeline build status, as shown in the following listing.

def notifySlack(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 def colorCode = '#FF0000'

 if (buildStatus == 'STARTED') {
 colorCode = '#546e7a'
 } else if (buildStatus == 'SUCCESSFUL') {
 colorCode = '#2e7d32'
 } else {
 colorCode = '#c62828c'
 }
 slackSend (color: colorCode,
message: "${env.JOB_NAME} build status: ${buildStatus}")
}

Based on your build result, the code sends Slack notifications as shown in figure 10.33.

Figure 10.33 Build status notification

Let’s simulate a build failure by throwing an error, by adding the following instruction
to the Build stage:

error "Build failed"

Listing 10.20 Custom Slack notification message color

Colors the border along the
left side of the message

Sends a Slack message with the job name by
using the env.JOB_NAME, and build status

by using the buildStatus variable

339Integrating Jenkins with Slack notifications
Push the changes to GitHub. The pipeline will fail at the Build stage (figure 10.34).

Figure 10.34 Throwing an error within the Jenkins pipeline

On the Slack channel, this time we will receive a notification with the build status set
to Failure, as you can see in figure 10.35.

Figure 10.35 Build failure Slack notification

In the following listing, we take this further. We’ll add more information to the notifi-
cation, such as the author of the push event, Git commit ID, and message.

def notifySlack(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 def colorCode = '#FF0000'
 def subject = "Name: '${env.JOB_NAME}'\n
Status: ${buildStatus}\nBuild ID: ${env.BUILD_NUMBER}"
 def summary = "${subject}\nMessage: ${commitMessage()}
\nAuthor: ${commitAuthor()}\nURL: ${env.BUILD_URL}"

 if (buildStatus == 'STARTED') {
 colorCode = '#546e7a'
 } else if (buildStatus == 'SUCCESSFUL') {
 colorCode = '#2e7d32'
 } else {
 colorCode = '#c62828c'
 }
 slackSend (color: colorCode, message: summary)
}

Listing 10.21 Custom Slack notification message attributes

Displays the job’s
name, its status,
and build number

Holds the subject’s
value and Git info
(author, commit
message) and build URL

340 CHAPTER 10 Cloud-native applications on Docker Swarm
The notifySlack() method will call commitAuthor() and commitMessage() to
get the appropriate information. The commitAuthor() method will return the name
of the commit author by executing the git show command, as shown in the follow-
ing listing.

def commitAuthor(){
 sh 'git show -s --pretty=%an > .git/commitAuthor'
 def commitAuthor = readFile('.git/commitAuthor').trim()
 sh 'rm .git/commitAuthor'
 commitAuthor
}

And the commitMessage() method will use the git log command alongside the
HEAD flag to fetch the commit message description; see the following listing.

def commitMessage() {
 sh 'git log --format=%B -n 1 HEAD > .git/commitMessage'
 def commitMessage = readFile('.git/commitMessage').trim()
 sh 'rm .git/commitMessage'
 commitMessage
}

If we push the changes, at the end of the CI/CD pipeline, the Slack notifications
should contain the name of Jenkins job, build ID and its status, author name, and
commit description, as shown in figure 10.36.

Figure 10.36 Slack notification with Git commit details

Listing 10.22 Git helper function to fetch the author

Listing 10.23 Git helper function to fetch the commit message

Displays the commit message’s author
with the git show command, saves the

output to the commitAuthor file

Reads the commitAuthor file
and trims extra spaces

Displays the last commit message
description and saves the output

in a commitMessage file

Reads the commitMessage
content and trims extra spaces

341Handling code promotion with Jenkins
Apply the same changes for the movies-store, movies-marketplace, and movies-parser
Jenkinsfiles.

NOTE Chapter 11 covers how to use the Jenkins Slack Notification plugin to
send a notification with a changelog as an attachment.

10.4 Handling code promotion with Jenkins
Maintaining multiple Swarm cluster environments makes sense to avoid breaking
things while promoting code to production. Also, having a production-like environ-
ment can help you keep a mirror of your application running in production and repro-
ducing issues in the staging environment without impacting your clients. But this
comes at a price.

NOTE You can reduce the costs of the sandbox and staging environments by
shutting down instances outside of regular business hours.

With that being said, create a new Swarm cluster for the staging environment in a ded-
icated staging VPC with a 10.2.0.0/16 CIDR block, or deploy it within the same man-
agement VPC where Jenkins is deployed, as shown in figure 10.37.

Figure 10.37 Deployment of sandbox and staging Swarm clusters and Jenkins within the same VPC

Create a preprod branch on the watchlist-deployment GitHub repository by running
this command:

git checkout -b preprod

Create a docker-compose.yml file that uses the preprod tag, and update the SQS
URL to use the staging queue, as shown in the following listing.

version: "3.3"
services:
 movies-loader:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:preprod

Listing 10.24 Docker Compose for staging deployment

342 CHAPTER 10 Cloud-native applications on Docker Swarm
 environment:
 - AWS_REGION=eu-west-3
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_staging
 movies-parser:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-parser:preprod

Create a Jenkins credential of type SSH Username with Private Key with the SSH key
pair used to deploy the Swarm staging cluster. Give it a name of swarm-staging, as
shown in figure 10.38.

Figure 10.38 Swarm staging cluster SSH credentials

Create a Jenkinsfile similar to the one in the develop branch, as shown in the follow-
ing listing. Update the swarmManager variable to reference the manager staging the
IP or DNS record instead. Also update the SSH agent credentials to use the Swarm
staging credential.

def swarmManager = 'manager.staging.domain.com'
def region = 'AWS REGION'

node('master'){
 stage('Checkout'){
 checkout scm
 }

 sshagent (credentials: ['swarm-staging']){
 stage('Copy'){
 sh "scp -o StrictHostKeyChecking=no
docker-compose.yml ec2-user@${swarmManager}:/home/ec2-user"
 }

 stage('Deploy stack'){
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}

Listing 10.25 Jenkinsfile for staging deployment

Swarm manager DNS alias
record or private IP address

AWS region where the ECR
repositories are created

Copies docker-compose.yml
to the Swarm manager

instance over SSH

343Handling code promotion with Jenkins

Ta
wit

G

'\$(\$(aws ecr get-login --no-include-email --region ${region}))'
|| true"
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker stack deploy --compose-file
docker-compose.yml --with-registry-auth watchlist"
 }
 }
}

Push the changes to the preprod branch. A new preprod nested job should be trig-
gered on the watchlist-deployment item on Jenkins upon the push event, as shown in
figure 10.39.

Figure 10.39 Stack deployment on staging

At the end of the pipeline, the application stack will be deployed to Swarm staging.
Similarly, to access the application, use Terraform to deploy a public load balancer for
the marketplace and the store API.

 Finally, to trigger autodeployment on preprod, we need to update the Jenkinsfile
for each project to trigger the watchlist-deployment on preprod—for example, for
movies-loader Jenkinsfile. We build and push a Docker image with the preprod tag,
as shown in the next listing.

stage('Push'){
 sh "\$(aws ecr get-login --no-include-email --region ${region}) || true"
 docker.withRegistry("https://${registry}") {
 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 if (env.BRANCH_NAME == 'preprod') {
 docker.image(imageName).push('preprod')
 }
 }
}

Listing 10.26 Tagging a Docker image based on the Git branch

Authenticates with ECR and
redeploys the application
stack over SSH

Authenticates with
ECR by using AWS CLIgs the image

h the current
it commit ID

and stores
it in ECR

Based on the current
Git branch name, the
Docker image is tagged
with a unique tag.

344 CHAPTER 10 Cloud-native applications on Docker Swarm
In the following listing, we update the Deploy stage’s if clause condition to trigger
the deployment of the external job if the branch name is preprod.

stage('Deploy'){
 if(env.BRANCH_NAME == 'develop' || env.BRANCH_NAME == 'preprod'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
}

Push the changes to the develop branch. Then create a pull request to merge develop
to the preprod branch after Jenkins posts the build status regarding develop changes
(figure 10.40).

Figure 10.40 Pull request build status

When the merge occurs, a new build should be triggered on the preprod branch, as
you can see in the Blue Ocean view in figure 10.41.

Figure 10.41 Build trigger on preprod branch

Listing 10.27 Triggering external deployment job

345Handling code promotion with Jenkins
Once the Push stage is executed, a new image with a preprod tag should be pushed
to the Docker registry (figure 10.42).

Figure 10.42 Docker image with preprod tag stored in ECR

Then, the deployment job on the preprod branch will be executed to deploy the
changes on the Docker Swarm staging environment (figure 10.43).

Figure 10.43 Staging deployment triggered automatically

Make the same changes for other microservices, except for movies-marketplace. For
movies-marketplace, we need to update the build stage, as shown in the following listing,
to inject the appropriate environment and point the frontend to the right API URL.

stage('Build'){
 switch(env.BRANCH_NAME){
 case 'develop':
 docker.build(imageName, '--build-arg ENVIRONMENT=sandbox .')
 break
 case 'preprod':
 docker.build(imageName, '--build-arg ENVIRONMENT=staging .')
 break
 default:

Listing 10.28 Injecting API URL during build

If the branch name is develop, we set
the environment to sandbox, so the

sandbox settings are loaded.

346 CHAPTER 10 Cloud-native applications on Docker Swarm
 docker.build(imageName)
 }
}

Push the changes to GitHub. This time, the Docker build process will be executed with
the ENVIRONMENT argument set to staging (when the current branch is preprod),
as shown in figure 10.44. This will replace the environment.ts file with environment
.staging.ts values.

Figure 10.44 Docker build with the environment as an argument

10.5 Implementing the Jenkins delivery pipeline
Finally, to deploy our application stack to production, you need to spin up a new
Swarm cluster for the production environment. Once again, I opted to isolate the pro-
duction workload in a dedicated production VPC with the 10.3.0.0/16 CIDR block
and to set up a VPC peering between the management VPC (where Jenkins is located)
and production VPC (where Swarm production is deployed). Figure 10.45 summa-
rizes the deployed architecture.

Figure 10.45 VPC peering with multiple Swarm cluster VPCs. The management VPC where the Jenkins
cluster is deployed has access to the sandbox, staging, and production VPCs.

If the branch name doesn’t match
develop or preprod, the sandbox
settings will be loaded by default.

347Implementing the Jenkins delivery pipeline
NOTE VPC peering doesn’t support transitive peering. The production, stag-
ing, and sandbox environments are fully isolated, and packets cannot be
routed directly from sandbox to production, for example, through the man-
agement VPC.

On the master branch of the watchlist-deployment repository, create a docker-compose
.yml file. This time, we use the latest tag for services running in production, as shown
in the next listing.

version: "3.3"
services:
 movies-loader:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:latest
 environment:
 - AWS_REGION=eu-west-3
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/

movies_to_parse_production
 movies-parser:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-parser:latest

Create a Jenkins credential with the SSH key used to deploy the Swarm cluster for the
production environment and call it swarm-production, as shown in figure 10.46.

Figure 10.46 Swarm production cluster SSH credentials

Then, create a Jenkinsfile, shown in the following listing, to remotely upload the
docker-compose.yml file to the manager machine. Execute the docker stack deploy
command to deploy the application.

def swarmManager = 'manager.production.domain.com'
def region = 'AWS REGION'
node('master'){
 stage('Checkout'){...}

Listing 10.29 Docker Compose for production deployment

Listing 10.30 Jenkinsfile for production deployment

Clones the GitHub repository—refer
to listing 10.25 for instructions.

348 CHAPTER 10 Cloud-native applications on Docker Swarm
 sshagent (credentials: ['swarm-production']){
 stage('Copy'){...}

 stage('Deploy stack'){...}
 }
}

Push the changes to the master branch. The GitHub repository should look like fig-
ure 10.47.

Figure 10.47 Deployment files stored in the GitHub repository

The Jenkins pipeline will be triggered on the master branch. Once the pipeline is fin-
ished, the application stack will be deployed to the production environment, as you
can see in figure 10.48.

Figure 10.48 Deployment triggered in the master branch

To trigger the deployment of production at the end of the CI pipeline, update the
GitHub repository to trigger the deployment job if the current branch is master. For
instance, update the movies-loader’s Jenkinsfile to build the image for production and
push the result to the Docker registry with the latest tag, as shown in the following
listing.

stage('Push'){
 sh "\$(aws ecr get-login --no-include-email --region ${region}) || true"
 docker.withRegistry("https://${registry}") {

Listing 10.31 Tagging the production image

Copies docker-compose.yml to the
Swarm manager over SSH—refer
to listing 10.25 for instructions

Redeploys the Docker Compose stack over
SSH—refer to listing 10.25 for instructions

349Implementing the Jenkins delivery pipeline
 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 if (env.BRANCH_NAME == 'preprod') {
 docker.image(imageName).push('preprod')
 }
 if (env.BRANCH_NAME == 'master') {
 docker.image(imageName).push('latest')
 }
 }
}

For the deployment part, we can simply update the if clause to support deployment
on the master branch too:

stage('Deploy'){
 if(env.BRANCH_NAME == 'develop'
|| env.BRANCH_NAME == 'preprod'
|| env.BRANCH_NAME == 'master'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
}

However, we want to require manual validation before deploying to production to
simulate the product/business validation (or QA team running tests before approving
for production) before deploying releases to production.

 To do so, you can use the Input Step plugin to pause the pipeline execution and
allow the user to interact and control the deployment process to production, as shown
in the following listing.

stage('Deploy'){
 if(env.BRANCH_NAME == 'develop' || env.BRANCH_NAME == 'preprod'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
 if(env.BRANCH_NAME == 'master'){
 timeout(time: 2, unit: "HOURS") {
 input message: "Approve Deploy?", ok: "Yes"
 }
 build job: "watchlist-deployment/master"
 }
}

Here, we set the time-out to be 2 hours to give developers enough time to validate the
release. When the 2-hour time-out is reached, the pipeline will be aborted.

NOTE To avoid having a Jenkins worker doing nothing for 2 hours, you can
move the Deploy stage outside a node block. You can also send a Slack
reminder when waiting for user input.

Listing 10.32 Requiring user approval before production deployment

350 CHAPTER 10 Cloud-native applications on Docker Swarm
Push the changes to a feature branch, and raise a pull request to merge changes to the
develop branch after the feature branch is successfully built and approved by Jenkins
(figure 10.49).

Figure 10.49 Merging the feature branch into develop

Merge the changes to the develop branch and delete the feature branch. A new build
should be triggered on the develop branch, which will deploy the image to the Swarm
sandbox cluster; see figure 10.50.

Figure 10.50 Deployment to sandbox triggered

Next, raise a pull request to merge develop into the preprod branch (figure 10.51).
 Once the PR is merged, a new build will be triggered on the preprod branch, at

the end of the CI/CD pipeline. The changes will be deployed into the Swarm staging
cluster, as shown in figure 10.52.

351Implementing the Jenkins delivery pipeline

Figure 10.51 Merging the develop branch into preprod

Figure 10.52 Deployment to staging cluster triggered

Finally, create a pull request to merge preprod into the master branch (figure 10.53).

Figure 10.53 Merging the preprod branch into master

352 CHAPTER 10 Cloud-native applications on Docker Swarm
When the merge occurs, Jenkins will trigger a build on the master branch of the
movies-loader service, as illustrated in figure 10.54. However, this time, once it reaches
the deploy stage, an input dialog will pop up for deployment confirmation.

Figure 10.54 CI/CD pipeline execution on the master branch

As you can see in figure 10.55, the interactive input will ask whether we approve the
deployment.

Figure 10.55 Deployment user input dialog

If we click Yes, the pipeline will be resumed, and the deployment job will be triggered
on the master, as shown in figure 10.56.

Figure 10.56 Production deployment approval

At the end of the deployment process, the new stack will be deployed to Swarm
production, and a Slack notification will be sent to the configured Slack channel
(figure 10.57).

353Implementing the Jenkins delivery pipeline

Figure 10.57 Production deployment success notification

With the production deployment covered, you have seen how to deploy containerized
microservice applications to multiple environments and how to handle code promo-
tion within a CI/CD pipeline. However, because we’re managing only three environ-
ments (sandbox, staging, and production), we will limit the discovering behavior of
the deployment job to the three main branches by defining a regular expression, as
shown in figure 10.58.

Figure 10.58 Jenkins discovery behavior based on a regular expression

354 CHAPTER 10 Cloud-native applications on Docker Swarm
As a result, Jenkins will discover and be triggered only if one of the three main
branches has changed; see figure 10.59.

Figure 10.59 Deployment multibranch job

So now if we make any change to our application, CI/CD pipelines will be triggered
and docker stack deploy will be executed, which will update any services that were
changed from the previous version.

NOTE If the deployment target is one single host, a swarm is not needed. The
same docker-compose.yml and procedure explained in this chapter should be
sufficient to continuously deploy your application on a single-host deploy-
ment environment.

Summary
 An S3 bucket or distributed consistent key-value store such as etcd, Consul, or

ZooKeeper can be used as service discovery to make the nodes autojoin a
Swarm cluster.

 Continuous deployment of containers on a Swarm cluster can be reached by
executing docker stack deploy over SSH on a Swarm manager.

 Adding Slack notifications within CI/CD pipelines makes the product delivery
faster. The sooner the team members are aware of a build, integration, or
deployment failure, the quicker they can act.

 To simulate business/product validation before deploying a production release,
the Jenkins Input Step plugin can prompt the user for manual validation before
deployment.

Dockerized
microservices on K8s
The preceding chapter covered how to set up a CI/CD pipeline from scratch for
containerized applications running in Docker Swarm (figure 11.1). This chapter
covers how to deploy the same application in Kubernetes (K8s) and automate the
deployment. In addition, you’ll learn how to use Jenkins X to simplify the workflow
of cloud-native applications running in Kubernetes.

This chapter covers
 Setting up a Kubernetes cluster on AWS with Terraform

 Automating application deployment on Kubernetes
with Jenkins pipelines

 Packaging and versioning Kubernetes Helm charts

 Converting Compose files to Kubernetes manifests
with Kompose

 Running post-deployment tests and health checks
within CI/CD pipelines

 Discovering Jenkins X and setting up serverless CI/CD
pipelines
355

356 CHAPTER 11 Dockerized microservices on K8s

Figure 11.1 Current CI/CD pipeline workflow

Docker Swarm might be a good solution for beginners and smaller workloads. How-
ever, for large deployment and at a certain scale, you might want to consider shifting
to Kubernetes.

 For those of you who are AWS power users, Amazon Elastic Kubernetes Service
(EKS) is a natural fit. Other cloud providers offer managed Kubernetes solutions,
including Azure Kubernetes Service (AKS) and Google Kubernetes Engine (GKE).

11.1 Setting up a Kubernetes cluster
As I’ve said, AWS offers the Amazon Elastic Kubernetes Service (https://aws.amazon
.com/eks). The EKS cluster will be deployed in a custom VPC within multiple private
subnets. EKS runs the Kubernetes control plane for you across multiple AWS availabil-
ity zones to eliminate a single point of failure, as shown in figure 11.2.

Figure 11.2 The AWS
EKS architecture consists
of node groups deployed in
private subnets.

https://aws.amazon.com/eks
https://aws.amazon.com/eks
https://aws.amazon.com/eks

357Setting up a Kubernetes cluster
A few tools (including AWS CloudFormation, eksctl, and kOps) allow you to get up
and running quickly on EKS. In this chapter, we picked Terraform because we were
already using it to manage our Jenkins cluster on AWS.

 To get started, provision a new VPC to host the sandbox environment and divide it
into two private subnets. Amazon EKS requires subnets in at least two availability zones.
The VPC is created to isolate the Kubernetes workload. For EKS to discover the VPC
subnets and manage network resources, we tag them with kubernetes.io/cluster/
<cluster-name>. The <cluster-name> value matches the EKS cluster’s name,
which is sandbox. Create a file called vpc.tf with the content in the following listing.

resource "aws_vpc" "sandbox" {
 cidr_block = var.cidr_block
 enable_dns_hostnames = true
 tags = {
 Name = var.vpc_name
 Author = var.author
 "kubernetes.io/cluster/${var.cluster_name}" = "shared"
 }
}

Then, define the subnets and set up the appropriate route tables. Refer to chapter11/
eks/vpc.tf for the full source code, or head back to chapter 10 for a step-by-step guide
on how to deploy a custom VPC on AWS.

 Next, we create a new eks_masters.tf file and define the sandbox EKS cluster,
which is a managed K8s control plane, as shown in the following listing.

resource "aws_eks_cluster" "sandbox" {
 name = var.cluster_name
 role_arn = aws_iam_role.cluster_role.arn
 vpc_config {
 security_group_ids = [aws_security_group.cluster_sg.id]
 subnet_ids = [for subnet in aws_subnet.private_subnets :

subnet.id]
 }
 depends_on = [
 aws_iam_role_policy_attachment.cluster_policy,
 aws_iam_role_policy_attachment.service_policy,
]
}

The managed control plane uses an IAM role with the AmazonEKSClusterPolicy and
AmazonEKServicePolicy policies. These attachments grant the cluster the permissions
it needs to take care of itself.

 Now it’s time to spin up some worker nodes. A node is a simple EC2 instance that
runs the Kubernetes objects (pods, deployments, services, and so forth). The master’s

Listing 11.1 Kubernetes custom VPC

Listing 11.2 EKS sandbox cluster

358 CHAPTER 11 Dockerized microservices on K8s
automatic scheduling takes into account the available resources on each node. Define
an EKS node group resource within eks_workers.tf as shown in the following listing.

resource "aws_eks_node_group" "workers_node_group" {
 cluster_name = aws_eks_cluster.sandbox.name
 node_group_name = "${var.cluster_name}-workers-node-group"
 node_role_arn = aws_iam_role.worker_role.arn
 subnet_ids = [for subnet in aws_subnet.private_subnets : subnet.id]
 scaling_config {
 desired_size = 2
 max_size = 5
 min_size = 2
 }
 depends_on = [
 aws_iam_role_policy_attachment.worker_node_policy,
 aws_iam_role_policy_attachment.cni_policy,
 aws_iam_role_policy_attachment.ecr_policy,
]
}

We also create an IAM role that the worker nodes are going to assume. We grant the
AmazonEKSWorkerNodePolicy, AmazonEKS_CNI_Policy, and AmazonEC2Container-
RegistryReadOnly policies. Refer to chapter11/eks/eks_workers.tf for the full source
code.

NOTE This section assumes that you are familiar with the usual Terraform
plan/apply workflow; if you’re new to Terraform, refer first to chapter 5.

Lastly, define the variables listed in table 11.1 in the variables.tf file.

Listing 11.3 Kubernetes node group resource

Table 11.1 EKS Terraform variables

Variable Type Value Description

region String None The name of the region, such as
eu-central-1, in which to deploy the EKS
cluster

shared_credentials
_file

String ~/.aws/
credentials

The path to the shared credentials file. If this
is not set and a profile is specified, ~/.aws/
credentials will be used.

aws_profile String profile The AWS profile name as set in the shared
credentials file

author String None Name of the owner of the EKS cluster. It’s
optional, but recommended, to tag your AWS
resources to track the monthly costs by owner
or environment.

availability_zones List None Availability zone for spinning up the VPC
subnets

359Setting up a Kubernetes cluster
Then, issue the terraform init command to initialize a working directory and
download the AWS provider plugin. In your initialized directory, run terraform
plan to review the planned actions. Your terminal output should indicate that the
plan is running and the resources that will be created. This should include the EKS
cluster, VPC, and IAM roles.

 If you’re comfortable with the execution plan, confirm the run with terraform
apply. This provisioning process should take a few minutes. Upon successful deploy-
ment, a new EKS cluster for the sandbox environment will be deployed and available
in the AWS EKS console, as shown in figure 11.3.

Figure 11.3 EKS sandbox cluster

Now that you’ve provisioned your EKS cluster, you need to configure kubectl. This is a
command-line utility for communicating with the cluster API server. At the time of
writing this book, I’m using version v1.18.3.

NOTE The kubectl tool is available in many operating system package manag-
ers; refer to the official documentation (https://kubernetes.io/docs/tasks/
tools/) for installation instructions.

To grant kubectl access to the K8s API, we need to generate a kubeconfig file (located
under .kube/config in your home directory). You can create or update a kubeconfig

vpc_name String sandbox The name of the VPC

cidr_block String 10.1.0.0/16 The VPC CIDR block

cluster_name String sandbox The EKS cluster’s name

public_subnets_count Number 2 The number of public subnets to create

private_subnets_
count

Number 2 The number of private subnets to create

Table 11.1 EKS Terraform variables (continued)

Variable Type Value Description

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

360 CHAPTER 11 Dockerized microservices on K8s
file with the AWS CLI update-kubeconfig command. Issue this command to get the
access credentials for your cluster:

aws eks update-kubeconfig --name sandbox --region AWS_REGION

To verify that your cluster is configured correctly and running, execute the following
command:

kubectl get nodes

The output will list all of the nodes in a cluster and the status of each node:

NOTE To optimize K8s costs, you can use EC2 Spot instances, as they cost
about 30–70% less than their on-demand counterparts. However, this
requires some special considerations, as they could be terminated with only a
2-minute warning.

At this point, you should be able to use Kubernetes. In the next section, we will auto-
mate the deployment of the Watchlist application described in chapter 7 into the K8s
cluster with Jenkins following the PaC approach.

11.2 Automating continuous deployment flow with Jenkins
To complete a Kubernetes deployment from Jenkins, all we need are K8s deployment
files, which will contain references to the Docker images, along with the configuration
settings (for example, port, network name, labels, and constraints). To run this file,
we will need to execute the kubectl apply command.

 On the develop branch of the watchlist-deployment GitHub repository, create a
deployments folder. Inside it, create a movies-loader-deploy.yaml file by using your
favorite text editor or IDE, with the content in the following listing. The deployment
instructs Kubernetes on how to create and update the movies-loader service.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: movies-loader
 namespace: watchlist
spec:
 selector:
 matchLabels:
 app: movies-loader
 template:
 metadata:
 labels:
 app: movies-loader

Listing 11.4 Movie loader deployment resource

361Automating continuous deployment flow with Jenkins
 spec:
 containers:
 - name: movies-loader
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:develop
 env:
 - name: AWS_REGION
 value: REGION
 - name: SQS_URL
 value: https:/./sqs.REGION.amazonaws.com/ID/movies_to_parse_sandbox

NOTE As a reminder, the movies-loader and movies-store services are using
Amazon SQS to load and consume movie items, respectively. To grant those
services permission to interact with SQS, you need to assign the AmazonSQS-
FullAccess policy to the EKS node group.

The movies-loader service can be deployed to Kubernetes through a deployment
resource. The deployment definition uses the develop tag of the movies-loader
Docker image and defines a set of environment variables, such as the SQS URL and
AWS region. The MongoDB resource can also be deployed with the mongodb-
deploy.yaml file in the following listing.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mongodb
 namespace: watchlist
spec:
 selector:
 matchLabels:
 app: mongodb
 template:
 metadata:
 labels:
 app: mongodb
 spec:
 containers:
 - name: mongodb
 image: bitnami/mongodb:latest
 env:
 - name: MONGODB_USERNAME
 valueFrom:
 secretKeyRef:
 name: mongodb-access
 key: username
 - name: MONGODB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mongodb-access
 key: password
 - name: MONGODB_DATABASE
 valueFrom:
 secretKeyRef:
 name: mongodb-access
 key: database

Listing 11.5 MongoDB deployment resource

362 CHAPTER 11 Dockerized microservices on K8s
The most interesting thing about this deployment definition is the environment vari-
ables part. Instead of hardcoding the MongoDB credentials, we are using K8s secrets.
We’re creating secret store authentication credentials so only Kubernetes can access
them.

 Before we create a Kubernetes secret, we need to maintain a space in the Kuber-
netes cluster where we can get a view on the list of pods, services, and deployments we
use to build and run the application. We will create a dedicated namespace to associ-
ate all of our Kubernetes objects with the following command:

kubectl create namespace watchlist

Then, invoke the following Kubernetes command on your local machine to create
MongoDB credentials secrets:

kubectl create secret generic mongodb-access --from-
literal=database='watchlist'

--from-literal=username='root'
--from-literal=password='PASSWORD' -n watchlist

Create deployment files for the rest of the services: movies-store, movies-parser, and
movies-marketplace. The deployments folder structure should look like this:

mongodb-deploy.yaml
movies-store-deploy.yaml
movies-loader-deploy.yaml
movies-parser-deploy.yaml
movies-marketplace-deploy.yaml

All the source code can be downloaded from the GitHub repository, under the
chapter11/deployment/kubectl/deployments folder.

 To deploy the application with Jenkins, create a Jenkinsfile.eks file at the top-level
directory of the watchlist-deployment project, as shown in the following listing. The
Jenkinsfile will configure kubectl with the aws eks update-kubeconfig command.
Then it issues a kubectl apply command to deploy the deployment resources. The
kubectl apply command takes as an argument the deployments folder.

def region = 'AWS REGION'
def accounts = [master:'production', preprod:'staging', develop:'sandbox']

node('master'){
 stage('Checkout'){
 checkout scm
 }

Listing 11.6 Jenkinsfile deployment stages

AWS region where the
EKS cluster is deployed

363Automating continuous deployment flow with Jenkins
 stage('Authentication'){
 sh "aws eks update-kubeconfig --name ${accounts[env.BRANCH_NAME]} --

region ${region}"
 }

 stage('Deploy'){
 sh 'kubectl apply -f deployments/'
 }
}

Before pushing the Jenkinsfile and deployment files to the Git remote repository, we
need to install the kubectl command line on the Jenkins master. Also, we need to pro-
vide access to EKS with IAM roles. To grant Jenkins master permissions to interact
with the K8s cluster, we must edit the aws-auth ConfigMap within Kubernetes. On
your local machine, run the following command:

kubectl edit -n kube-system configmap/aws-auth

A text editor will open; add the Jenkins instance’s IAM role to the mapRoles section.
Then, save the file and exit the text editor. Check whether the ConfigMap is properly
configured with the following command:

kubectl describe -n kube-system configmap/aws-auth

Once the ConfigMap is configured, install aws-iam-authenticator, which is a tool to
manage AWS IAM credentials for Kubernetes access. Refer to the AWS documentation
at http://mng.bz/AOWW for the installation guide. Then, generate a kubeconfig with
the AWS CLI update-kubeconfig command. The command should create a
/home/ec2-user/.kube/config file with no warning. Now we can issue the kubectl
get nodes command:

Configures kubectl so that you can
connect to an Amazon EKS cluster

Deploys the new
changes to EKS

http://mng.bz/AOWW

364 CHAPTER 11 Dockerized microservices on K8s
Now, we’re ready to push the Jenkinsfile and Kubernetes deployment files to the Git
repository under the develop branch:

git add .
git commit -m "k8s deployment files"
git push origin develop

The GitHub repository content should look similar to figure 11.4 after pushing K8s
deployment files.

Figure 11.4 Kubernetes deployment files in the Git repository

Once the changes are committed, the GitHub webhook we created in section 7.6 will
trigger a build on the watchlist-deployment multibranch job on the develop branch’s
nested job; see figure 11.5.

Figure 11.5 The kubectl apply command’s output

365Automating continuous deployment flow with Jenkins
At the Deploy stage, the kubectl apply command will be executed to deploy the
application deployment resources. On your local machine, run this command to list
deployments running in the sandbox K8s cluster:

kubectl get deployments --namespace=watchlist

The four components (loader, parser, store, and marketplace) of our application will
be deployed alongside a MongoDB server:

These deployment resources are referencing Docker images stored in Amazon ECR.
At the time of deploying the EKS cluster, we have granted permissions to the K8s clus-
ter to interact with ECR. However, if your Docker images are hosted on a remote
repository that requires username/password authentication, you need to create a
Docker Registry secret with the following command:

kubectl create secret docker-registry registry
--docker-username=USERNAME
--docker-password=PASSWORD
--namespace watchlist

Then, you need to reference this secret in your deployment file under the spec sec-
tion as follows:

spec:
 containers:
 - name: movies-loader
 image: REGISTRY_URL/USER/movies-loader:develop
 imagePullSecrets:
 - name: registry

Our application is deployed. To access it, we need to create a K8s service for both the
marketplace and store, as shown in the following listing. Create a services directory in
the root repository, and then create a service for movies-store called movies-
store.svc.yaml. The service creates a cloud network load balancer (for instance, AWS
Elastic Load Balancer). This provides an externally accessible IP address for accessing
the Movies Store API.

apiVersion: v1
kind: Service
metadata:
 name: movies-store

Listing 11.7 Movie store service resource

366 CHAPTER 11 Dockerized microservices on K8s
 namespace: watchlist
spec:
 ports:
 - port: 80
 targetPort: 3000
 selector:
 app: movies-store
 type: LoadBalancer

Additionally, we create another service to expose the Movies Marketplace (UI). Add
the content in the following listing to movies-marketplace.svc.yaml.

apiVersion: v1
kind: Service
metadata:
 name: movies-marketplace
 namespace: watchlist
spec:
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: movies-marketplace
 type: LoadBalancer

The movies-store and movies-parser services store the movie metadata in a MongoDB
service. Therefore, we need to expose the MongoDB deployment through a Kuber-
netes service to allow MongoDB to receive incoming operations. The service is exposed
to an internal IP in the cluster. The ClusterIP keyword makes the service reachable
from only within the cluster. The MongoDB pod targeted by the service is determined
by LabelSelector. Add the following YAML block to mongodb-svc.yaml.

apiVersion: v1
kind: Service
metadata:
 name: mongodb
 namespace: watchlist
spec:
 ports:
 - port: 27017
 selector:
 app: mongodb
 tier: mongodb
 clusterIP: None

Finally, we update the Jenkinsfile in listing 11.6 to deploy the Kubernetes services by
providing the services folder as a parameter to the kubectl apply command:

Listing 11.8 Movies Marketplace service resource

Listing 11.9 Movies Marketplace service resource

367Automating continuous deployment flow with Jenkins
stage('Deploy'){
 sh 'kubectl apply -f deployments/'
 sh 'kubectl apply -f services/'
}

Push the changes to the develop branch. A new build will be triggered, and the ser-
vices will be deployed, as shown in figure 11.6.

Figure 11.6 The kubectl apply output

Type the following command on your local machine:

kubectl get svc -n watchlist

It should show the load balancers for the three K8s services:

On AWS Management Console, two public-facing load balancers should be created in
the EC2 dashboard (http://mng.bz/Zx7Z), as shown in figure 11.7.

Figure 11.7 Movies Store and Marketplace ELBs

NOTE Make sure to set the load balancer FQDN in the environment.sandbox.tf
file of the movies-marketplace project. The API URL will be injected while build-
ing the marketplace Docker image. Refer to section 9.1.2 for more details.

http://mng.bz/Zx7Z

368 CHAPTER 11 Dockerized microservices on K8s
To secure access to the Store API, we can enable an HTTPS listener on the public load
balancer by updating the movies-store service with the changes detailed in the follow-
ing listing.

apiVersion: v1
kind: Service
metadata:
 name: movies-store
 namespace: watchlist
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http
 service.beta.kubernetes.io/aws-load-balancer-ssl-cert:

arn:aws:acm:{region}:{user id}:certificate/{id}
 service.beta.kubernetes.io/aws-load-balancer-ssl-ports: "https"
spec:
 ports:
 - name: http
 port: 80
 targetPort: 3000
 - name: https
 port: 443
 targetPort: 3000
 selector:
 app: movies-store
 type: LoadBalancer

Push the changes to the remote repository. Jenkins will deploy the changes and
update the load balancer listener configuration to accept incoming traffic on port 443
(HTTPS), as shown in figure 11.8.

Figure 11.8 Load balancer HTTP/HTTPS listeners

It’s optional, but you can create an A record in Amazon Route 53 pointing to the load
balancer FQDN and update environment.sandbox.ts to use the friendly domain name
instead of the load balancer FQDN; see the following listing.

export const environment = {
 production: false,
 apiURL: 'https:/./api.sandbox.domain.com',
};

Listing 11.10 HTTPS listener configuration

Listing 11.11 Marketplace Angular environment variables

Used on the service to specify the
protocol spoken by the backend

(pod) behind a listener

Exposes port 443 (HTTPS) and forwards requests
internally to port 3000 of the movies-store pod

https://helm.sh/
https://helm.sh/

369Automating continuous deployment flow with Jenkins
If you point your browser to the marketplace URL, it should call the Movies Store API
and list the movies crawled from IMDb pages, as shown in figure 11.9. It might take
several minutes for DNS to propagate and for the marketplace to show up.

Figure 11.9 Watchlist Marketplace application

Now, every time you change the source code of any of the four microservices, the
pipeline will be triggered, and the changes will be deployed to the sandbox Kuber-
netes cluster, as shown in figure 11.10.

Figure 11.10 Movies Marketplace CI/CD workflow

Finally, to visualize our application, we can deploy the Kubernetes dashboard by issu-
ing the following commands in a terminal session:

kubectl apply -f https:/./github.com/kubernetes-sigs/
metrics-server/releases/latest/download/components.yaml

370 CHAPTER 11 Dockerized microservices on K8s
kubectl apply -f https:/./raw.githubusercontent.com/kubernetes/
dashboard/v2.0.5/aio/deploy/recommended.yaml

These commands will deploy the metrics-server and K8s dashboard v2.0.5 under the
kube-system namespace. The metrics-server, which collects resource metrics from
Kubelet, has to be running in the cluster for the metrics and graphs to be available in
the Kubernetes dashboard.

 To grant access to cluster resources from the K8s dashboard, we need to create an
eks-admin service account and cluster role binding to securely connect to the dash-
board with admin-level permissions. Create an eks-admin.yaml file with the content in
the following listing (apiVersion of the ClusterRoleBinding resource may differ
between Kubernetes versions).

apiVersion: v1
kind: ServiceAccount
metadata:
 name: eks-admin
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: eks-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: eks-admin
 namespace: kube-system

Then, create a service account with the following command:

kubectl apply -f eks-admin.yaml

Now, create a proxy server that will allow you to navigate to the dashboard from the
browser on your local machine. This will continue running until you stop the process
by pressing Ctrl-C. Issue the kubectl proxy command, and the dashboard should be
accessible from http:/./localhost:8001/api/v1/namespaces/kubernetes-dashboard/
services/https:kubernetes-dashboard:/proxy/#/login.

 Opening this URL will take us to the account authentication page for the Kuber-
netes dashboard. To get access to the dashboard, we need to authenticate our
account. Retrieve an authentication token for the eks-admin service account with the
following command:

kubectl -n kube-system describe secret
$(kubectl -n kube-system get secret

Listing 11.12 Kubernetes dashboard service account

371Automating continuous deployment flow with Jenkins
| grep eks-admin
| awk '{print $1}')

Now copy the token and paste it into the Enter Token field on the login screen. Click
the Sign In button, and that’s it. You are now logged in as an admin.

 The Kubernetes dashboard, shown in figure 11.11, provides user-friendly features
to manage and troubleshoot the deployed application. Awesome! You have success-
fully built a CI/CD pipeline for a cloud-native application in K8s.

Figure 11.11 Kubernetes dashboard

11.2.1 Migrating Docker Compose to K8s manifests with Kompose

Another way of creating deployment files is by converting the docker-compose.yml file
defined in chapter 10’s listing 10.12 with an open source tool called Kompose. Refer to
the project’s official GitHub repository (https://github.com/kubernetes/kompose)
for an installation guide.

 Once Kompose is installed, run the following command against the docker-
compose.yml file provided in chapter 10 (chapter10/deployment/sandbox/docker-
compose.yml):

kompose convert -f docker-compose.yml

This should create the Kubernetes deployments and services based on the settings
and network topology specified in docker-compose.yml:

https://github.com/kubernetes/kompose

372 CHAPTER 11 Dockerized microservices on K8s
You can push those files to the remote Git repository, and Jenkins will issue the
kubectl apply -f command to deploy the services and deployments.

 However, writing and maintaining Kubernetes YAML manifests for all the required
Kubernetes objects can be a time-consuming and tedious task. For the simplest of
deployments, you would need at least three YAML manifests with duplicated and hard-
coded values. That’s where a tool like Helm (https://helm.sh/) comes into play to sim-
plify this process and create a single package that can be advertised to your cluster.

11.3 Walking through continuous delivery steps
Helm is a useful package manager for Kubernetes. It has two parts: the client (CLI)
and the server (which is called Tiller and was removed in Helm 3). The client lives on
your local machine, and the server lives on the Kubernetes cluster to execute what is
needed.

 To fully grasp Helm, you need to become familiar with these three concepts:

 Chart—A package of preconfigured Kubernetes resources
 Release—A specific instance of a chart that has been deployed to the cluster by

using Helm
 Repository—A group of published charts that can be made available to others

through a remote registry

Check out the getting started page for instructions on downloading and installing
Helm: https://helm.sh/docs/intro/install/.

NOTE Helm is assumed to be compatible with n-3 versions of Kubernetes.
Refer to the Helm Version Support Policy documentation to determine
which version of Helm is compatible with your K8s cluster.

At the time of writing this book, Helm v3.6.1 is being used. After installing Helm, cre-
ate a new chart for the application called watchlist in the top-level directory of the
watchlist-deployment project:

helm create watchlist

This should create a directory called watchlist with the following files and folders:

 Values.yaml—Defines all values we want to inject into Kubernetes templates
 Chart.yaml—Can be used to describe the version of the chart we’re packaging
 .helmignore—Similar to .gitignore and .dockerignore, contains a list of files and

folders to exclude while packaging the Helm chart
 templates/—Contains the actual manifest such as Deployments, Services, Config-

Maps, and Secrets

Next, define template files inside the templates folder for each microservice. The tem-
plate file describes how to deploy each service on Kubernetes:

https://helm.sh/docs/intro/install/
https://helm.sh/

373Walking through continuous delivery steps

For instance, the movies-loader template folder uses the same deployment files we
defined in listing 11.4, except it references variables defined in values.yaml.

 The deployment.yaml file is responsible for deploying a deployment object based
on the movies-loader Docker image. This definition pulls the built Docker image from
the Docker Registry and creates a new deployment with it in Kubernetes; see the fol-
lowing listing.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: movies-loader
 namespace: {{ .Values.namespace }}
 labels:
 app: movies-loader
 tier: backend
spec:
 selector:
 matchLabels:
 app: movies-loader
 template:
 metadata:
 name: movies-loader
 labels:
 app: movies-loader
 tier: backend
 annotations:
 jenkins/build: {{ .Values.metadata.jenkins.buildTag | quote }}
 git/commitId: {{ .Values.metadata.git.commitId | quote }}
 spec:
 containers:
 - name: movies-loader
 image: "{{ .Values.services.registry.uri }}/
mlabouardy/movies-loader:{{ .Values.deployment.tag }}"
 imagePullPolicy: Always

Listing 11.13 Movie loader deployment

374 CHAPTER 11 Dockerized microservices on K8s
 envFrom:
 - configMapRef:
 name: {{ .Values.namespace }}-movies-loader
 - secretRef:
 name: {{ .Values.namespace }}-secrets
 {{- if .Values.services.registry.secret }}
 imagePullSecrets:
 - name: {{ .Values.services.registry.secret }}
 {{- end }}

Helm charts use {{}} for templating, which means that whatever is inside will be
interpreted to provide an output value. We can also use a piping mechanism to com-
bine two or more commands for scripting and filtering.

 The movies-loader container reference environment variables like AWS_REGION
and SQS_URL are defined in configmap.yaml, as shown in the following listing.

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ .Values.namespace }}-movies-loader
 namespace: {{ .Values.namespace }}
 labels:
 app: {{ .Values.namespace }}-movies-loader
data:
 AWS_REGION: {{ .Values.services.aws.region }}
 SQS_URL: https://sqs.{{ .Values.services.aws.region }}
.amazonaws.com/{{ .Values.services.aws.account }}/
movies_to_parse_{{ .Values.environment }}

The deployment file also references sensitive information such as MongoDB creden-
tials. These credentials are stored securely in Kubernetes secrets, which are provided
in the following listing.

apiVersion: v1
kind: Secret
metadata:
 name: {{ .Values.namespace }}-secrets
 namespace: {{ .Values.namespace }}
data:
 MONGO_URI: {{ .Values.services.mongodb.uri | b64enc }}
 MONGO_DATABASE : {{ .Values.mongodb.mongodbDatabase | b64enc }}
 MONGODB_USERNAME : {{ .Values.mongodb.mongodbUsername | b64enc }}
 MONGODB_PASSWORD : {{ .Values.mongodb.mongodbPassword | b64enc }}

Helm charts make it easy to set overridable defaults in the values.yaml file, allowing us
to define a base setting. We can move as many variables as we want out of the template

Listing 11.14 Movie loader ConfigMap

Listing 11.15 Application secrets

375Walking through continuous delivery steps
and into the values.yaml file. This way, we can easily update and inject new values at
installation time:

namespace: 'watchlist'
services:
 registry:
 uri: ''
 secret: ''
deployment:
 tag: ''
 workers:
 replicas: 2

This allows us to create a portable package that can be customized during runtime by
overriding the values.

 Also, note the use of custom annotations or metadata in the deployment file. We will
inject the Jenkins build ID and Git commit ID during the build of the Helm chart. This
can be useful for debugging and troubleshooting running Kubernetes deployments:

annotations:
 jenkins/build: {{ .Values.metadata.jenkins.buildTag | quote }}
 git/commitId: {{ .Values.metadata.git.commitId | quote }}

MongoDB offers a stable and official Helm chart that can be used for straightforward
installation and configuration on Kubernetes. We define the MongoDB chart as a
dependency in Chart.yaml under the dependencies section:

dependencies:
 - name: mongodb
 version: 7.8.10
 repository: https:/./charts.bitnami.com/bitnami
 alias: mongodb

Now that our chart is defined, on your terminal session, issue the following command
to install the watchlist application via the Helm chart we just created:

helm install watchlist ./watchlist -f values.override.yaml

The command takes the values.override.yaml file, which contains the values to override
at runtime, such as the environment name and MongoDB username and password:

environment: 'sandbox'
mongodb:
 mongodbUsername: 'watchlist'
 mongodbPassword: 'watchlist'
deployment:
 tag: 'develop'
 workers:
 replicas: 2

Check installation progress by checking the status of deployments and pods. Type
kubectl get pods -n watchlist to show the running pods:

376 CHAPTER 11 Dockerized microservices on K8s

NOTE To check the generated manifests of a release without installing the
chart, use the --dry-run flag to return rendered templates.

We can now update the Jenkinsfile (chapter11/Jenkinsfile.eks) to use the Helm com-
mand line instead of kubectl. Since our application chart is already installed, we will
use the helm upgrade command to upgrade the chart. This command takes as a
parameter values to override, and sets the annotation values from the Jenkins environ-
ment variable BUILD_TAG and the commitID() method, as shown next.

stage('Deploy'){
 sh """
 helm upgrade --install watchlist
./watchlist -f values.override.yaml \
 --set metadata.jenkins.buildTag=${env.BUILD_TAG} \
 --set metadata.git.commitId=${commitID()}
 """
}

Helm tries to perform the least invasive upgrade. It will update only things that have
changed since the last release.

 Push the changes to the develop branch. The GitHub repository should look simi-
lar to figure 11.12.

Figure 11.12 Watchlist Helm chart

Listing 11.16 Helm upgrade within the Jenkins pipeline

377Walking through continuous delivery steps
On Jenkins, a new build will be triggered. At the end of the Deploy stage, the helm
upgrade command will be executed; the output is shown in figure 11.13.

Figure 11.13 Helm upgrade output

Now every change on the develop branch will build a new Helm chart and create a
new release on the sandbox cluster. If the Docker image has been changed, Kuber-
netes rolling updates provide the functionality to deploy changes with 0% downtime.

NOTE If something does not go as planned during a release, rolling back to a
previous release is easy by using the helm rollback command.

For code promotion to the staging environment, we just need to update the values
.override.yaml file to set the environment value to staging and use the preprod
image tag, as shown in the following listing.

environment: 'staging'
mongodb:
 mongodbUsername: 'watchlist'
 mongodbPassword: 'watchlist'
deployment:
 tag: 'preprod'
 workers:
 replicas: 2

If you push the changes to the preprod branch, the application will be deployed to
the Kubernetes staging cluster, as shown in figure 11.14.

Listing 11.17 Staging variables

Figure 11.14 CI/CD
workflow on preprod branch

378 CHAPTER 11 Dockerized microservices on K8s
We can verify that the preprod version has been deployed by typing the following
command:

kubectl describe deployment movies-marketplace -n watchlist

The movies-marketplace deployment has annotations with git/commitId equal to the
GitHub commit ID responsible for triggering the Jenkins job, and the jenkins/build
annotation’s value is the name of the Jenkins job that triggered the deployment (fig-
ure 11.15).

Figure 11.15 Movies Marketplace deployment description

For production deployment, update values.override.yaml with proper values, as shown
in the following listing. In this example, we set the image tag to latest, the environ-
ment to production, and we configure five replicas of the movies-parser service.

environment: production
mongodb:
 mongodbUsername: 'watchlist'
 mongodbPassword: 'watchlist'
deployment:
 tag: 'latest'
 workers:
 replicas: 5

Push the new files to the master branch. At the end of the pipeline, the stack will be
deployed to the K8s production cluster.

 Now if a push event occurs on the master branch on any of the four microservices,
the CI/CD pipeline will be triggered, and user approval will be requested, as shown in
figure 11.16.

Listing 11.18 Production variables

379Walking through continuous delivery steps

Figure 11.16 User approval for production deployment

If the deployment is approved, the watchlist-deployment job will be triggered, and the
master nested job will be executed. As a result, a new Helm release of the watchlist
application will be created in production, as shown in figure 11.17.

Figure 11.17 Application deployment in production

Upon the completion of the deployment process, a Slack notification will be sent to a
preconfigured Slack channel, as shown in figure 11.18.

Figure 11.18 Production deployment Slack notification

380 CHAPTER 11 Dockerized microservices on K8s
Run the kubectl get pods command. This should display five pods based on the
movies-parser Docker image:

To view the marketplace dashboard, locate the external IP of the load balancer in the
EXTERNAL-IP column of the kubectl get services -n watchlist output:

Navigate to that address in your browser, and the Movies Marketplace UI should be
displayed, as you can see in figure 11.19.

Figure 11.19 Marketplace production environment

381Packaging Kubernetes applications with Helm
Under a production environment, you would replace the load balancer FQDN with an
alias in Route 53. Refer to the official AWS documentation for instructions: http://
mng.bz/Rq8P.

11.4 Packaging Kubernetes applications with Helm
So far, you have seen how to create one single chart for the microservices-based appli-
cation and how to create a new release with Jenkins upon new Git commits. Another
way of packaging the application is to create separate charts for each microservice,
and then reference those charts as dependencies in the main chart (similar to a
MongoDB chart). Figure 11.20 illustrates how Helm charts are packaged within a
CI/CD pipeline.

Figure 11.20 CI/CD of containerized application with Helm

On a push event, a Jenkins build will be triggered to build the Docker image and
package the new release in a Helm chart. From there, the new chart is deployed to the
corresponding Kubernetes environment. Along the way, a Slack notification is sent to
notify the developers about the pipeline status.

 On the movies-marketplace project, create a new Helm chart in the top-level direc-
tory by typing the following command:

helm create chart

It should create a new folder called chart with the following structure:

As mentioned earlier, a Helm chart consists of metadata used to help describe the
application, define constraints on the minimum required Kubernetes and/or Helm

http://mng.bz/Rq8P
http://mng.bz/Rq8P

382 CHAPTER 11 Dockerized microservices on K8s
version, and manage the version of the chart. All of this metadata lives in the
Chart.yaml file (chapter11/microservices/movies-marketplace), shown in the follow-
ing listing.

apiVersion: v2
name: movies-marketplace
description: UI to browse top 100 IMDb movies
type: application
version: 1.0.0
appVersion: 1.0.0

To be able to reference this chart from the main watchlist chart, we need to store it
somewhere. Many open source solutions are available for storing Helm charts.
GitHub can be used as a remote registry for Helm charts. Create a new GitHub repos-
itory called watchlist-charts and create an empty index.yaml file. This file will contain
the metadata about available charts in the repository.

NOTE Nexus Repository OSS supports Helm charts as well. You can publish
charts to a Helm-hosted repository on Nexus.

Then, push this file to the master branch by issuing these commands:

git clone https:/./github.com/mlabouardy/watchlist-charts.git
cd watchlist-charts
touch index.yaml
git add index.yaml
git commit -m "add index.yaml"
git push origin master

The GitHub repository will look like figure 11.21.

Figure 11.21 Helm charts GitHub repository

The Helm repository is an HTTP server that has a file index.yaml and all your chart
files. To turn the GitHub repository into an HTTP server, we will enable GitHub
pages.

Listing 11.19 Movie loader chart

383Packaging Kubernetes applications with Helm
 Click the Settings tab. Scroll down to the GitHub Pages section and select the mas-
ter branch as a source, as shown in figure 11.22.

Figure 11.22 Enabling GitHub pages

With the private Helm repository ready to be used, let’s package and publish our first
Helm chart. On the movies-marketplace project, update the Build stage to use a par-
allel build to build the Docker image and the Helm chart. The Build stage should
look like the following listing. (The complete Jenkinsfile is available at chapter11/
pipeline/movies-marketplace/Jenkinsfile.)

stage('Build') {
 parallel(
 'Docker Image': {
 switch (env.BRANCH_NAME) {
 case 'develop':
 docker.build(imageName, '--build-arg ENVIRONMENT=sandbox .')
 break
 case 'preprod':
 docker.build(imageName, '--build-arg ENVIRONMENT=staging .')
 break
 ...
 }
 },
 'Helm Chart': {
 sh 'helm package chart'
 }
)
}

Listing 11.20 Building the Docker image and Helm chart

Builds the appropriate Docker
image by injecting the target

environment settings

Packages the application
in a Helm chart

384 CHAPTER 11 Dockerized microservices on K8s
The helm package command, as its name indicates, packages the chart directory
into a chart archive (movies-marketplace-1.0.0.tgz). Finally, update the Push stage to
use a parallel step as well, as shown in the following listing.

stage('Push') {
 parallel(
 'Docker Image': {
 sh "\$(aws ecr get-login --no-include-email --region ${region}) || true"
 docker.withRegistry("https://${registry}") {
 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 ...
 }
 },
 'Helm Chart': {
 ...
 }
)
}

The Helm Chart stage will clone the watchlist-charts GitHub repository with the git
clone command, and add the metadata of the new packaged Helm chart to
index.yaml with the helm repo index command. Then it pushes index.yaml and the
archive chart to the Git repository; see the following listing.

'Helm Chart': {
 sh 'helm repo index --url https://mlabouardy.github.io/watchlist-charts/ .'
 sshagent(['github-ssh']) {
 sh 'git clone git@github.com:mlabouardy/watchlist-charts.git'
 sh 'mv movies-marketplace-1.0.0.tgz watchlist-charts/'
 dir('watchlist-charts'){
 sh 'git add index.yaml movies-marketplace-1.0.0.tgz
&& git commit -m "movies-marketplace"
&& git push origin master'
 }
 }
 }

If you push the new Jenkinsfile to the Git remote repository, a new pipeline will be
triggered, as shown in figure 11.23. At the Build stage, the movies-marketplace
Docker image and Helm chart will be packaged. Next, the Push stage will be executed
to push the Docker image to the Docker private registry and the Helm chart to the
GitHub repository.

Listing 11.21 Storing the Docker image in a private registry

Listing 11.22 Publishing the Helm chart to GitHub

Authenticates with ECR in order to
push the Docker images afterward

Tags and stores
the image in ECR

Publishes the Helm chart to
GitHub—see listing 11.22 for
complete instructions.

Generates an index file, given a
directory containing packaged charts

Provides SSH
credentials to
builds via an
ssh-agent

Changes current
directory to

watchlist-charts
folderCommits and pushes the

archive and index file to GitHub

http://www.jenkins.io/doc/pipeline/steps/http_request/
http://www.jenkins.io/doc/pipeline/steps/http_request/

385Packaging Kubernetes applications with Helm

Figure 11.23 CI/CD workflow with Helm and Docker

Upon the completion of the CI/CD pipeline, a new archived chart will be available in
the GitHub repository, as shown in figure 11.24.

Figure 11.24 Packaging the Movies Marketplace chart

The index.yaml file will reference the newly built Helm chart under the entries sec-
tion, as you can see in figure 11.25.

Figure 11.25 Helm repository metadata

You can override the chart version set in Chart.yaml by providing the new version with
the --version flag at the time of packaging a Helm chart:

sh 'helm package chart --app-version ${appVersion} --version ${chartVersion}'

386 CHAPTER 11 Dockerized microservices on K8s
Repeat the same steps for other repositories to create a Helm chart per service. Once
done, the Helm charts repository should contain four archived files (figure 11.26).

Figure 11.26 Application charts stored in the GitHub repository

Next, we configure the GitHub repository as a Helm repository:

helm repo add watchlist https:/./mlabouardy.github.io/watchlist-charts

Finally, we can reference these charts in the watchlist Chart.yaml file under the
dependencies section, as shown in the following listing.

apiVersion: v2
name: watchlist
description: Top 100 iMDB best movies in history
type: application
version: 1.0.0
appVersion: 1.0.0
maintainers:
 - name: Mohamed Labouardy
 email: mohamed@labouardy.com
dependencies:
 - name: mongodb
 version: 7.8.10
 repository: https:/./charts.bitnami.com/bitnami
 alias: mongodb
 - name: movies-loader
 version: 1.0.0
 repository: https:/./mlabouardy.github.io/watchlist-charts
 - name: movies-parser
 version: 1.0.0
 repository: https:/./mlabouardy.github.io/watchlist-charts
 - name: movies-store
 version: 1.0.0

Listing 11.23 Watchlist application charts

387Running post-deployment smoke tests
 repository: https:/./mlabouardy.github.io/watchlist-charts
 - name: movies-marketplace
 version: 1.0.0
 repository: https:/./mlabouardy.github.io/watchlist-charts

Now that all pieces are running together and we checked the core functionality, let’s
validate that the solution is up for a typical GitFlow development process.

11.5 Running post-deployment smoke tests
The microservices are deployed. However, that doesn’t mean these services are prop-
erly configured and correctly performing all the jobs that they’re supposed to be
doing.

 You want to have a health check that indicates the current health operation of your
services. You can set up a simple one by implementing an HTTP request to a service
URL and check whether the response code is 200.

 For instance, let’s implement a health check for the movies-store service. Update
the Jenkinsfile of the movies-store project (chapter11/pipeline/movies-store/Jenkins-
file) to add the function shown in the following listing.

def getUrl(){
 switch(env.BRANCH_NAME){
 case 'preprod':
 return 'https:/./api.staging.domain.com'
 case 'master':
 return 'https:/./api.production.domain.com'
 default:
 return 'https:/./api.sandbox.domain.com'
 }
}

The function returns the service URL based on the current Git branch name. Finally,
we add a Healthcheck stage at the end of the pipeline to issue a cURL command on
the service URL:

stage('Healthcheck'){
 sh "curl -m 10 ${getUrl()}"
}

The -m flag is used to set a time-out of 10 seconds, to give Kubernetes enough time to
pull the latest built image and deploy the changes into the cluster before checking the
service health status.

 Once you push the changes to the Git remote repository, a new build will be trig-
gered. Upon the completion of the CI/CD pipeline, a cURL command will be exe-
cuted with a GET request on the service URL, as shown in figure 11.27.

Listing 11.24 Groovy function to return API URL

https://shortener.manning.com/20ZX

388 CHAPTER 11 Dockerized microservices on K8s

Figure 11.27 cURL command output

If the service responds before the expiration time-out, the cURL command will return
a successful exit code. Otherwise, an error will be thrown to make the pipeline fail.

 However, if the service is responding, that doesn’t mean it’s working correctly or a
new version of the service has been successfully deployed.

 To be able to issue advanced HTTP requests against the service URL, we will install
the Jenkins HTTP Request plugin (www.jenkins.io/doc/pipeline/steps/http_
request/) from the Jenkins Plugins page, as shown in figure 11.28.

Figure 11.28 Jenkins HTTP Request plugin

We can now update the movies-store’s Jenkinsfile. The plugin offers an httpRequest
DSL object that can be used to call a remote URL. In the following listing,
httpRequest returns a response object that exposes the response body through a
content attribute. Then, we use the JsonSlurper class to parse the response to a
JSON object. The updated Healthcheck stage is shown in the following listing.

stage('Healthcheck'){
 def response = httpRequest getUrl()

Listing 11.25 Movie store Healthcheck stage

www.jenkins.io/doc/pipeline/steps/http_request/
www.jenkins.io/doc/pipeline/steps/http_request/
www.jenkins.io/doc/pipeline/steps/http_request/

389Running post-deployment smoke tests
 def json = new JsonSlurper().parseText(response.content)
 def version = json.get('version')

 if version != '1.0.0' {
 error "Expected API version 1.0.0 but got ${version}"
 }
}

The service returns the version number deployed in Kubernetes. This value is fixed in
the service source code, but you can inject the Jenkins build ID as a version number
while building the Docker image of the service and check whether the returned ver-
sion is equal to the Jenkins build ID at the Healthcheck stage.

 Figure 11.29 shows the end result of the CI/CD pipeline of each microservice run-
ning in Kubernetes.

Figure 11.29 Complete CI/CD workflow for containerized microservices

When you opt for Jenkins to build cloud-native applications running in Kubernetes,
you’re required to create extensive configurations, as well as spending considerable
time learning and using all of the necessary plugins to make it happen. Fortunately,
Jenkins X comes into play to offer simplicity and ready-to-go templates.

390 CHAPTER 11 Dockerized microservices on K8s
11.6 Discovering Jenkins X
Jenkins X (https://jenkins-x.io/) is a CI/CD solution for modern cloud applications
on Kubernetes. It’s used to simplify the configurations and lets you harness the power
of Jenkins 2.0. It also lets you use open source tools like Helm, Artifact Hub, Chart-
Museum, Nexus, and Docker Registry to easily build cloud-native applications.

 Jenkins X adds what’s missing from Jenkins: comprehensive support for continuous
delivery and managing the promotion of projects to preview, staging, and production
environments running in Kubernetes. It uses GitOps to manage the configuration and
version of the Kubernetes resources that are deployed to each environment. So each
environment has its own Git repository that contains all the Helm charts, their versions,
and the configuration for the applications to be run in the environment.

 When following this methodology, Git is the single source of truth for both the
infrastructure as code and the application code. All changes to the desired state are
Git commits. So it’s easy to see who made changes when, and more importantly, it’s
then easy to revert changes that cause bad things to happen.

 With that being said, let’s get our hands dirty and cover how Jenkins X works. To
get started, install the Jenkins X CLI, and pick the most suitable instructions for your
operating system: http://mng.bz/20ZX. Run jx version --short to make sure
you’re on the latest stable version. I’m using version 2.1.71 at the time of writing this
book.

 Jenkins X runs on a Kubernetes cluster. If you’re running on one of the major
cloud providers (Amazon EKS, GKE, or AKS), Jenkins X provides multiple
approaches for creating this cluster:

jx create cluster eks --cluster-name=watchlist
Jx create cluster aks --cluster-name=watchlist
Jx create cluster gke --cluster-name=watchlist
Jx create cluster iks --cluster-name=watchlist

NOTE You can run Jenkins X on the existing EKS cluster by referring to the
official guide at https://jenkins-x.io/v3/admin/setup/operator/.

Install Jenkins X on a K8s cluster by issuing the following command from your termi-
nal session:

jx boot

You will be asked a series of questions that will configure the installation, as shown in
figure 11.30.

 When the installation is done, you will be presented with useful links and the
password for your Jenkins X–related services. Don’t forget to save it somewhere for
future use.

 Jenkins X also deploys a set of supporting services, including the Jenkins dash-
board, Docker Registry, ChartMuseum, and Artifact Hub to manage Helm charts, and
Nexus, which serves as a Maven and npm repository.

https://jenkins-x.io/
https://jenkins-x.io/v3/admin/setup/operator/
http://mng.bz/20ZX

391Discovering Jenkins X

Figure 11.30 Jenkins X installation output

The following is the output of the kubectl get svc command:

Point your browser to the Jenkins URL printed during the installation process and
sign in with the admin username and password displayed previously in figure 11.30.
The dashboard in figure 11.31 should be served.

Figure 11.31 Jenkins web dashboard

It is possible to run Jenkins in serverless mode while installing Jenkins X. Then,
instead of running the Jenkins web dashboard, which continuously consumes CPU
and memory resources, you can run Jenkins only when you need it.

392 CHAPTER 11 Dockerized microservices on K8s
 The Jenkins X installation also creates two Git repositories by default: one for your
staging environment and one for production, as shown in figure 11.32:

 Staging—Any merge performed on the project master branch will automatically
be deployed as a new version to staging (auto promote).

 Production—You will have to manually promote your staging application version
into production by using a jx promote command.

Jenkins X uses these repositories to manage deployments to each environment, and
promotions are done via Git pull requests. Each repository contains a Helm chart that
specifies the applications to be deployed to the corresponding environment. Each
repository also has a Jenkinsfile to handle promotions.

 Now that you have a working cluster with Jenkins X installed, we are going to cre-
ate an application that can be built and deployed with Jenkins X. For clarity, I have
created a RESTful API in Go that serves an HTTP endpoint with a list of the top 100
IMDb movies. We will import this project inside Jenkins with this command:

jx import

If you wish to import a project that is already in a remote Git repository, you can use
the --url argument:

jx import --url https:/./github.com/mlabouardy/jx-movies-store

The following is the output of the import command:

Figure 11.32
Application
deployment
environments

393Discovering Jenkins X
Jenkins X will go over the code and choose the right default build pack for the project
based on the programming language. Our project was developed in Go, so it will be a
Go build pack. Jenkins X will generate a Jenkinsfile, Dockerfile, and Helm chart based
on the project runtime environment. The import command will create a remote
repository on GitHub, register a webhook, and push the code to the remote reposi-
tory, shown in figure 11.33.

Figure 11.33 Application GitHub repository

Jenkins X will also automatically create a Jenkins multibranch pipeline job for the
project, and the pipeline will be triggered. You can check the progress of the pipeline
with this command:

jx get activity -f jx-movies-store -w

You can also track the progress of the pipeline from the Jenkins dashboard by clicking
the project job; figure 11.34 shows the result.

394 CHAPTER 11 Dockerized microservices on K8s

Figure 11.34 Application build pipeline

The pipeline stages are executed on a Kubernetes pod running in the Kubernetes
cluster we provisioned earlier, as you can see in figure 11.35.

Figure 11.35 Jenkins workers based on Kubernetes pods

The executed pipeline will clone the repository, build the Docker image, and push it
to a Docker registry, as shown in the following listing.

stage('Build Release') {
 when {
 branch 'master'
 }
 steps {

Listing 11.26 Build stage when an event occurs on master branch

395Discovering Jenkins X
 container('go') {
 dir('/home/jenkins/agent/go/src/
github.com/mlabouardy/jx-movies-store') {
 checkout scm
 sh "git checkout master"
 sh "git config --global credential.helper store"
 sh "jx step git credentials"
 sh "echo \$(jx-release-version) > VERSION"
 sh "jx step tag --version \$(cat VERSION)"
 sh "make build"
 sh "export VERSION=`cat VERSION`
&& skaffold build -f skaffold.yaml"
 sh "jx step post build --image $DOCKER_REGISTRY/$ORG/

$APP_NAME:\$(cat VERSION)"
 }
 }
 }
}

A Helm chart will be packaged and pushed to the ChartMuseum repository, and a new
release will be published on the project GitHub repository, as shown in figure 11.36.
Jenkins X uses semantic versioning for tagging.

Figure 11.36 Publishing the application release

The release will be pro-
moted automatically to the
staging environment, as
shown in figure 11.37.

 During the promotion
stage, a new PR will be cre-
ated by Jenkins X to
deploy the new release to staging. This PR will add our application and its version in
the env/requirements.yaml file inside the Git repository, as shown in figure 11.38.

Figure 11.37 Jenkins pipeline on the master branch

396 CHAPTER 11 Dockerized microservices on K8s
Figure 11.38 Promoting the application to staging

Now you can see that the multi-
branch jx-movies-store pipeline is
triggered for the pull request. It
will check out the PR, perform a
helm build, and execute tests on
the environment along with code

review and approval. When it’s successful, it will merge the PR with the master, see
figure 11.39.

 Once the application is deployed, we can type jx get applications to get the
access URL for the application, as shown in figure 11.40.

Figure 11.40 Application overall health status

Now we will update our application and see what will happen! Let’s create a new fea-
ture branch:

git checkout -b feature/readme
git add README.md
git commit -m "update readme"
git push origin feature/readme

Jenkins X creates a GitHub webhook during the import of our application. This
means we can just commit a change, and our application will be updated automati-
cally, as shown in figure 11.41.

Figure 11.39 Deploying an application to staging

397Discovering Jenkins X

Figure 11.41 Building GitHub pull request

Jenkins X automatically spins up preview environments for our pull request, so we can
get fast feedback before changes are merged to the master:

Jenkins X creates a preview environment in the PR for the application changes and
displays a link to evaluate the new feature, as shown in figure 11.42.

Figure 11.42 Pull request preview environment

398 CHAPTER 11 Dockerized microservices on K8s
The preview environment is created whenever a change is made to the repository,
allowing any relevant user to validate or evaluate features, bug fixes, or security hot-
fixes. If we click the preview environment URL, we should have access to the service
REST API, as shown in figure 11.43.

Figure 11.43 Movies Store API

Once the new changes are validated, we can confirm the code and functionality
changes with an /approve comment, as shown in figure 11.44. This simple comment
will merge the code changes back to the master branch and initiate a build on the
master branch.

Figure 11.44 ChatOps commands within Git PR

Jenkins X offers multiple commands that can be used while managing pull requests.
Each command triggers a specific action. Table 11.2 summarizes the most used
commands.

 Upon the completion of the build on the master branch, a new release will be pub-
lished, as shown in figure 11.45.

399Discovering Jenkins X
Figure 11.45 New application release

When you’re satisfied with your application, you can use the jx CLI to promote the
application to a different environment using a GitOps approach. For example, we can
promote our application to production with the following command:

jx promote --app jx-movies-store --version 0.0.3 --env production

A new PR will be created, but this time on our production repository, and the
environment-watchlist-production job is triggered, as shown in figure 11.46.

Figure 11.46 Promoting the application to production

Table 11.2 ChatOps commands

Command Description

/approve This PR can be merged. This command must be from someone in the repo
OWNERS file.

/retest Rerun any failed test pipeline contexts for this PR.

/assign USER Assign the PR to the given user.

/lgtm This PR looks good to me. This command can be from anyone with access to
the repo.

400 CHAPTER 11 Dockerized microservices on K8s
Once the pull request is validated, the production pipeline runs Helm, which deploys
the environment, pulling Helm charts from ChartMuseum, and Docker images from
the Docker Registry. Kubernetes creates the project’s resources, typically a pod, ser-
vice, and ingress.

 Jenkins X uses Git branch patterns to determine which branch names are automat-
ically set up for CI/CD. By default, the master branch, and any branch starting with
PR- or feature will be scanned. You can set up your own branch discovery mechanism
with the following command:

jx import --branches "develop|preprod|master|PR-.*"

NOTE If you are done with your Amazon EKS cluster, you should delete it
and its resources so that you do not incur additional charges. Issue a terra-
form destroy command to delete the AWS resources.

Summary
 Kubernetes manages containerized applications on clusters of nodes by helping

operators deploy, scale, update, and maintain their services, and providing
mechanisms for service discovery.

 The kubectl apply command can be used from Jenkins pipelines to perform
deployments on K8s clusters.

 A Helm chart encapsulates Kubernetes object definitions and provides a mech-
anism for configuration at deployment time.

 GitHub pages have built-in support for installing Helm charts from an HTTP
server.

 Jenkins X creates a Kubernetes pod for each agent started, defined by the
Docker image to run, and stops it after each build.

 Jenkins X preview environments are used to get early feedback on changes to
applications before the changes are merged into the master branch.

 Jenkins X does not aim to replace Jenkins but builds on it with best-of-breed
open source tools. It’s a great way to achieve CI/CD with batteries included,
without having to assemble things together.

Lambda-based
serverless functions
In the previous chapters, you learned how to write a CI/CD pipeline for a contain-
erized application running in both Docker Swarm and Kubernetes. In this chapter,
you will learn how to deploy the same application written in a different architecture.

 Serverless is the fastest-growing architectural movement right now. It allows devel-
opers to develop scalable applications faster by delegating the full responsibility of

This chapter covers
 Implementing a CI/CD pipeline for a serverless-

based application from scratch

 Setting up continuous deployment and delivery with
AWS Lambda

 Separating multiple Lambda deployment
environments

 Implementing API Gateway multistage deployments
with Lambda alias and stage variables

 Delivering email notifications with attachments
upon completion of CI/CD pipelines
401

402 CHAPTER 12 Lambda-based serverless functions
managing the underlying infrastructure to the cloud provider. That said, going server-
less carries several key challenges, one of which is CI/CD.

12.1 Deploying a Lambda-based application
Multiple serverless providers are out there, but to keep it simple, we’ll use AWS—and
specifically, AWS Lambda (https://aws.amazon.com/lambda/), which is the best
known and most mature solution in the serverless space today. AWS Lambda,
launched at AWS re:Invent 2014, was the first implementation of serverless comput-
ing. Users can upload their code to Lambda, which then performs operational and
scaling activities on behalf of the users.

 The service follows an event-driven architecture. This means the code deployed in
Lambda can be triggered in response to events like HTTP requests coming from ser-
vices like Amazon API Gateway (https://aws.amazon.com/api-gateway/).

 Before going into further detail about how to create a CI/CD pipeline for a server-
less application, we will look at the corresponding architecture. Figure 12.1 shows how
serverless services like Amazon API Gateway, Amazon DynamoDB, Amazon S3, and
AWS Lambda fit into the application architecture.

 AWS Lambda empowers microservice development. That being said, each end-
point triggers a different Lambda function. These functions are independent of one
another and can be written in different languages. Hence, this leads to scaling at the
function level, easier unit testing, and loose coupling. All requests from clients first go
through API Gateway. It then routes the incoming request to the right Lambda

Figure 12.1 Watchlist application based on serverless architecture. Each Lambda function is responsible for a
single API endpoint. The endpoints are managed through API Gateway and consumed by the Marketplace service
hosted on an S3 bucket.

https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/

403Deploying a Lambda-based application
function accordingly. The functions are stateless, so that’s where DynamoDB comes
into the scene, to manage data persistence across Lambda functions. The Amazon S3
bucket is used to serve the marketplace static web application. Finally, an Amazon
CloudFront distribution (optional) is used to deliver static assets such as Cascading
Style Sheets (CSS) or JavaScript files from edge cache locations around the globe.

 To deploy a Lambda function, we need to create an AWS Lambda resource and an
IAM execution role with a list of AWS resources that the Lambda function has access
to during runtime. For instance, the Lambda function MoviesStoreListMovies
issues a Scan operation on a DynamoDB table to fetch a list of movies. Therefore, the
Lambda execution role should grant access to the DynamoDB table.

 To avoid duplication of code and provide a lightweight abstraction for creating
Lambda functions, we will use Terraform modules. A module is a container for multi-
ple resources that are used together.

NOTE You can use Terraform Registry (https://registry.terraform.io/) to
download well-tested modules built by the community or publish your own
modules remotely.

The module responsible for creating an AWS Lambda resource is located under the
modules folder (chapter12/terraform/modules). Create a new lambda.tf file with a
module block for each Lambda function, as shown in the following listing. The module
resource references the custom module through the source argument and overrides
default variables such as the Lambda runtime environment and environment variables.

module "MoviesLoader" {
 source = "./modules/function"
 name = "MoviesLoader"
 handler = "index.handler"
 runtime = "python3.7"
 environment = {
 SQS_URL = aws_sqs_queue.queue.id
 }
}

module "MoviesParser" {
 source = "./modules/function"
 name = "MoviesParser"
 handler = "main"
 runtime = "go1.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.movies.id
 }
}

module "MoviesStoreListMovies" {
 source = "./modules/function"
 name = "MoviesStoreListMovies"

Listing 12.1 Creating Lambda functions with the Terraform module

https://registry.terraform.io/

404 CHAPTER 12 Lambda-based serverless functions
 handler = "src/movies/findAll/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.movies.id
 }
}

module "MoviesStoreSearchMovies" {
 source = "./modules/function"
 name = "MoviesStoreSearchMovies"
 handler = "src/movies/findOne/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.movies.id
 }
}

module "MoviesStoreViewFavorites" {
 source = "./modules/function"
 name = "MoviesStoreViewFavorites"
 handler = "src/favorites/findAll/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.favorites.id
 }
}

module "MoviesStoreAddToFavorites" {
 source = "./modules/function"
 name = "MoviesStoreAddToFavorites"
 handler = "src/favorites/insert/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.favorites.id
 }
}

This code will provision a MoviesLoader Lambda function based on the Python 3.7
runtime environment, a MoviesParser function based on the Go runtime, and a
MoviesStoreListMovies function based on the Node.js environment.

 Next, we will deploy a RESTful API with Amazon API Gateway and define HTTP
endpoints to trigger the Lambda functions upon incoming HTTP/HTTPS requests.
The Terraform code in listing 12.2 exposes a GET method on the /movies resource.
When a GET method is invoked on the /movies endpoint, the MoviesStoreList-
Movies Lambda function will be triggered to return a list of IMDb movies stored on
the DynamoDB table. Add the code shown in the following listing to apigateway.tf.

resource "aws_api_gateway_resource" "path_movies" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 parent_id = aws_api_gateway_rest_api.api.root_resource_id

Listing 12.2 GET /movies endpoint definition

405Deploying a Lambda-based application
 path_part = "movies"
}
module "GetMovies" {
 source = "./modules/method"
 api_id = aws_api_gateway_rest_api.api.id
 resource_id = aws_api_gateway_resource.path_movies.id
 method = "GET"
 lambda_arn = module.MoviesStoreListMovies.arn
 invoke_arn = module.MoviesStoreListMovies.invoke_arn
 api_execution_arn = aws_api_gateway_rest_api.api.execution_arn
}

NOTE In addition to providing a unified entry point for Lambda functions,
API Gateway comes with powerful features such as caching, cross-origin
resource sharing (CORS) configuration, security, and authentication.

Define the rest of the API endpoints, or download the complete apigateway.tf file
from chapter12/terraform/apigateway.tf.

 The Movies Marketplace content—including HTML, CSS, JavaScript, images, and
other files—will be hosted in an Amazon S3 bucket. The end users will then access the
application by using the public website URL exposed by Amazon S3. Hence, we don’t
need to run any web server such as NGINX or Apache to make the web application
available. The Terraform code in the following listing (s3.tf) creates an S3 bucket and
enables website hosting.

resource "aws_s3_bucket" "marketplace" {
 bucket = "marketplace.${var.domain_name}"
 acl = "public-read"
 website {
 index_document = "index.html"
 error_document = "index.html"
 }
}

The bucket access-control list (ACL) must be set to public-read. The website
block is where we define the index document for the application. Also, we grant
access to the static content by attaching a bucket policy. The bucket policy grants
s3:GetObject to all principals for any object in the bucket.

NOTE Unless you want to access the marketplace via the S3 bucket URL, you
can use CloudFront on top of S3 to serve the application content by using a
custom domain name over SSL.

Install the local modules with the terraform init command and run terraform
apply to provision the AWS resources. Creating the whole infrastructure should take
a few seconds. After the creation steps are complete, the API and marketplace URLs
will be displayed in the Outputs section, as you can see in figure 12.2.

Listing 12.3 S3 website hosting configuration

406 CHAPTER 12 Lambda-based serverless functions

Figure 12.2 API Gateway and S3 website URLs

The api variable holds the RESTful API URL powered by API Gateway, and the mar-
ketplace variable is the S3 website URL for the marketplace application. If you head
to AWS Lambda console (http://mng.bz/10Qg), the Lambda functions in figure 12.3
should be deployed.

Figure 12.3 Watchlist application’s Lambda functions

Point your favorite browser to the API Gateway URL, and navigate to the /movies end-
point. The HTTP request should trigger the MoviesStoreListMovies Lambda func-
tion responsible for listing movies. The error message in figure 12.4 will be displayed.

Figure 12.4 MoviesStoreListMovies HTTP response

Right now, no code is deployed to Lambda functions, so there would be nothing to
see. To list movies, we need to deploy the function’s code to the Lambda resource. In
the upcoming section, we will create a CI/CD pipeline in Jenkins to automate the
deployment of Lambda functions. Figure 12.5 illustrates the target CI/CD workflow.

http://mng.bz/10Qg

407Creating deployment packages

Figure 12.5 CI/CD workflow for a serverless application

A pipeline will be triggered whenever you make a change to your application’s source
code. The Jenkins master will schedule the build on one of the available Jenkins work-
ers. The worker will execute the stages described in the Jenkinsfile located in the root
directory of the application Git repository. The stages Checkout and Tests are given
in chapter 8. The Build stage will compile the source code, install needed dependen-
cies, and generate a deployment package (zip archive). Next, the Push stage will store
the zip file in a remote S3 bucket and finally, the Deploy stage will be executed to
update the Lambda function’s code with the newest changes.

12.2 Creating deployment packages
Before integrating the serverless application in Jenkins, we need to store the Lambda
functions’ source code in a centralized remote repository for versioning. When it
comes to serverless applications, two strategies are most used to organize functions
into repositories:

 Mono-repo—Everything is put into the same repository; cohesive functions that
work together to serve a business feature are grouped together under the same
repository.

 One repository per service—Each Lambda function gets its own Git repository, with
its own CI/CD pipeline.

This section doesn’t go into the details around which is better, but instead shows how
to build a CI/CD pipeline with the two approaches.

12.2.1 Mono-repo strategy

The MoviesLoader service, which consists of a single Lambda function written in
Python, is responsible for loading a list of movies into a message queue. Create a
GitHub repository, shown in figure 12.6, for the movies-loader Lambda function, and

408 CHAPTER 12 Lambda-based serverless functions
then push the source code available in the book’s repository (chapter12/functions) to
the develop branch.

 The Jenkinsfile (chapter12/functions/movies-loader/Jenkinsfile) is stored in the
root repository. It’s similar to the one provided in chapter 8’s listing 8.3. Upon a push
event, it will check out the function source code and run unit tests inside a Docker
container. Having proper unit tests in place safeguards against subsequent Lambda
code updates. This definition file, shown in the following listing, must be committed
to the Lambda function’s code repository.

def imageName = 'mlabouardy/movies-loader'
node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }
 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test", "-f

Dockerfile.test .")
 imageTest.inside{
 sh "python test_index.py"
 }
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

Listing 12.4 Running function unit tests inside a Docker container

Figure 12.6 MoviesLoader Lambda function GitHub repository

Sends a Slack notification when
the build starts, by using the
custom notifySlack method

When an error occurs, it’s cached here,
and the currentBuild.result variable is
set to FAILED so the right Slack
notification will be sent afterward.

When the pipeline is completed
(success or failure), a Slack
notification is sent to raise awareness
about the pipeline status.

409Creating deployment packages

2/
In listing 12.5, we create a deployment package, which is a zip file that includes both
the Python code and any dependencies that the code needs to run. The Build stage
generates a zip file and uses the Git commit ID as a name. Finally, we push the zip file
to an S3 bucket for versioning and delete the file to save space.

def functionName = 'MoviesLoader'
def imageName = 'mlabouardy/movies-loader'
def bucket = 'deployment-packages-watchlist'
def region = 'AWS REGION'

node('workers'){
 try {
 stage('Checkout'){...}

 stage('Unit Tests'){...}

 stage('Build'){
 sh "zip -r ${commitId}.zip index.py movies.json"
 }

 stage('Push'){
 sh "aws s3 cp ${commitId}.zip s3://${bucket}/${functionName}/"
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 sh "rm -rf ${commitId}.zip "
 }
}

NOTE We use the Git commit ID as a name for the deployment package to
give a meaningful and significant name for each release and be able to roll
back to a specific commit if things go wrong.

On Jenkins, create a new multibranch pipeline job for the MoviesLoader lambda
function (refer to chapter 7 for a step-by-step guide). Jenkins will discover the develop
branch, and a new build will start; see figure 12.7.

Figure 12.7 MoviesLoader Lambda function pipeline

Listing 12.5 Generating a deployment package

The name of the S3 bucket
where the deployment
packages (zip files) are stored

Clones the Git repository. The
instruction was omitted for brevity; see
chapter12/functions/movies-loader/
Jenkinsfile for the command.

Runs unit tests within a Docker container. See chapter1
functions/movies-loader/Jenkinsfile for instructions.

Creates an archive (zip file) with the
function entrypoint (index.py) and the

movies JSON array. The commitId function is
used to create a unique ID for the archive

based on the current Git commit ID.

Stores the
archive to

an S3 bucket

Deletes the archive at the
end of the pipeline to
save hard disk space

410 CHAPTER 12 Lambda-based serverless functions
You can drill down to see the steps on the UI that match our steps in the Jenkinsfile.
While Jenkins is executing each stage, you can see the activity. You can see the tests
running as part of the Unit Tests stage (figure 12.8). If tests are successful, a zip file
will be generated and stored in an S3 bucket.

Figure 12.8 Pipeline execution logs

Open the S3 console and click the bucket used by the pipeline for package storage. A
new deployment package should be available with a key name identical to the Git
commit ID, as shown in figure 12.9.

Figure 12.9 S3 bucket for deployment packages storage

Similarly for the movies-parser function, push the function source code to a dedicated
GitHub repository, shown in figure 12.10.

411Creating deployment packages

Figure 12.10 MoviesParser Lambda function GitHub repository

Create a Jenkinsfile (chapter12/functions/movies-parser/Jenkinsfile) with similar
stages to chapter 8’s listing 8.8 in the top-level directory of the Git repository; see the
following listing.

def imageName = 'mlabouardy/movies-parser'

node('workers'){
 try{
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test",
"-f Dockerfile.test .")
 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 imageTest.inside{
 sh 'golint'
 }
 },
 'Unit Tests': {
 imageTest.inside{
 sh 'go test'
 }
 },
 'Security Tests': {
 imageTest.inside('-u root:root'){
 sh 'nancy /go/src/github/mlabouardy/
movies-parser/Gopkg.lock'
 }
 }
)

Listing 12.6 Running function pre-integration tests in parallel

412 CHAPTER 12 Lambda-based serverless functions
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

The function is written in Go, so we need to build a binary with the Docker multistage
build feature, as explained in listing 9.2. Then, we copy the built binary from the
Docker container and generate a zip package. Finally, we push the deployment pack-
age to the S3 bucket, as shown in the following listing.

def functionName = 'MoviesParser'
def imageName = 'mlabouardy/movies-parser'
def region = 'eu-west-3'

node('workers'){
 try{
 stage('Checkout'){...}
 stage('Pre-integration Tests'){...}

 stage('Build'){
 sh """
 docker build -t ${imageName} .
 docker run --rm ${imageName}
 docker cp ${imageName}:/go/src/github.com/mlabouardy/
movies-parser/main main
 zip -r ${commitID()}.zip main
 """
 }

 stage('Push'){
 sh "aws s3 cp ${commitID()}.zip s3://${bucket}/${functionName}/"
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 sh "rm ${commitID()}.zip"
 }
}

Push the changes to the movies-parser Git repository, and create a new multibranch
pipeline job for movies-parser. The pipeline stages should be executed. Upon comple-
tion, the pipeline should look like figure 12.11 in the Blue Ocean view.

Listing 12.7 Building a Go-based Lambda deployment package

Refer to listing 12.6
for the instructions.

413Creating deployment packages

Figure 12.11 MoviesParser Lambda function workflow

Figure 12.12 shows the console output of the Push stage. The function deployment
package will be stored under the MoviesParser subfolder.

Figure 12.12 Publishing deployment package to S3

The obvious counterpart to the multi-repo pattern is the mono-repo approach. In this
pattern, a single repository holds a collection of Lambda functions grouped by busi-
ness capabilities.

12.2.2 Multi-repo strategy

The Movies Store API is split into multiple Lambda functions (MoviesStoreList-
Movies, MoviesStoreSearchMovie, MoviesStoreViewFavorites, Movies-

StoreAddToFavorites). The easiest way to share code among these functions is
by having them all together in a single repository. Create a new GitHub repository
(chapter12/functions/movies-store), shown in figure 12.13.

 The src/ folder at the root is made up of a collection of services. Each service deals
with a relatively small and self-contained function. For instance, the movies/findAll
folder is responsible for serving a list of movies from the DynamoDB table. The
package.json file is located at the root of the repo. However, it is fairly common to
have a separate package.json inside each service directory.

414 CHAPTER 12 Lambda-based serverless functions

Figure 12.13 Multiple Lambda functions stored in single repository

On the movies-store repository, create a Jenkinsfile (chapter12/functions/movies-
store/Jenkinsfile) by using your favorite text editor or IDE with the content in the
following listing. Refer to listing 8.14 for more details about the implemented stages.

def imageName = 'mlabouardy/movies-store'
node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }

 def imageTest= docker.build("${imageName}-test",
"-f Dockerfile.test .")

 stage('Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 },
 'Unit Tests': {
 sh "docker run --rm ${imageName}-test npm run test"
 },
 'Coverage Reports': {
 sh "docker run --rm
-v $PWD/coverage:/app/coverage ${imageName}-test
npm run coverage"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",

Listing 12.8 Running quality tests and generating code coverage reports

415Creating deployment packages
 reportName: "Coverage Report"
])
 }
)
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

Next, we run a Docker container from a Node.js base image to install external depen-
dencies by running the npm install command. Then, we copy the node_modules
folder from the running container to the current workspace and create a zip file, as
shown in the next listing. The deployment package size will impact the functions’ cold
start. To keep the deployment package size smaller, we install only the runtime depen-
dencies by passing --prod=only to the npm install command.

stage('Build'){
 sh """
 docker build -t ${imageName} .
 containerName=\$(docker run -d ${imageName})
 docker cp \$containerName:/app/node_modules node_modules
 docker rm -f \$containerName
 zip -r ${commitID()}.zip node_modules src
 """
}

NOTE One drawback of dynamic provisioning is a phenomenon called cold
start. Essentially, functions that haven’t been used for a while take longer to
start up and to handle the first request.

Then, in the following listing, we push the generated zip file to an S3 bucket, use a
loop to go through each function name, and save the zip in an S3 bucket under the
function folder. You can use the Serverless framework (www.serverless.com) to create
a zip file per function and exclude unused dependencies and files.

def functions = ['MoviesStoreListMovies',
'MoviesStoreSearchMovie',
'MoviesStoreSearchMovie',
'MoviesStoreAddToFavorites']
def bucket = 'deployment-packages-watchlist'

node('workers'){
 try {
 stage('Checkout'){...}
 stage('Tests'){...}

Listing 12.9 Building a Node.js-based Lambda deployment package

Listing 12.10 Publishing Node.js deployment packages to S3

http://www.serverless.com

416 CHAPTER 12 Lambda-based serverless functions
 stage('Build'){...}

 stage('Push'){
 functions.each { function ->
 sh "aws s3 cp ${commitID()}.zip s3://${bucket}/${function}/"
 }
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 sh "rm --rf ${commitID()}.zip"
 }
}

Head back to the Jenkins dashboard, create a new multibranch pipeline job for the
movies-store project, and commit the changes to the develop branch. In a few sec-
onds, a new build should be triggered on the movies-store job for the develop branch.
On the resultant page, you will see the Stage view for the develop branch pipeline,
shown in figure 12.14.

For common situations, the build and push stages can take a good amount of the CI/
CD execution time. Therefore, we can use the parallel key, as shown in the following
listing, to run the push stage in parallel, to keep the pipeline turnaround time short.

stage('Push'){
 def fileName = commitID()
 def parallelStagesMap = functions.collectEntries {
 ["${it}" : {
 stage("Lambda: ${it}") {
 sh "aws s3 cp ${fileName}.zip s3://${bucket}/${it}/"
 }
 }]
 }
 parallel parallelStagesMap
}

Listing 12.11 Parallel directive with a map structure

Figure 12.14 MoviesStore
Lambda functions CI workflow

Sets the archive’s name
to the Git commit ID

Parallel directive is expecting a map structure,
so we’re building one. We iterate over the functions

list and create the corresponding command to
store the archive file to the appropriate S3 folder.

Runs the stages in parallel

417Updating Lambda function code
The parallel directive takes a map of the string and closure. The string is the dis-
play name of the parallel execution (name of the function), and the closure is the
actual aws s3 cp instruction to copy the deployment package to the corresponding
function folder in S3. As a result, storing the deployment packages for each function
will be run in parallel, as shown in figure 12.15.

Figure 12.15 MoviesStore CI workflow

Once the pipeline execution is completed, in the S3 bucket, a deployment package
should be stored for each Lambda function, as shown in figure 12.16.

Figure 12.16 Lambda functions deployment packages

By now, the deployment packages are stored in an S3 bucket, so we can go ahead and
update the Lambda function source code with the built zip files.

12.3 Updating Lambda function code
For MoviesLoader and MoviesParser Lambda functions, add the following Deploy
stage to their Jenkinsfiles (chapter12/functions/movies-loader/Jenkinsfile and
chapter12/functions/movies-parser/Jenkinsfile). The stage uses the AWS Lambda CLI
to issue an update-function-code command to update the function code with the
zip file stored previously in the S3 bucket; see the following listing.

418 CHAPTER 12 Lambda-based serverless functions

stage('Deploy'){
 sh "aws lambda update-function-code --function-name ${functionName}
 --s3-bucket ${bucket} --s3-key ${functionName}/${commitID()}.zip
 --region ${region}"
}

The command takes as an argument the name of the S3 bucket where the zip file is
stored as well as the Amazon S3 key of the deployment package.

 Once you push the changes to the Git remote repository, Jenkins will update the
Lambda function’s code with the update-function-code command. The output in
figure 12.17 confirms that.

The CI/CD pipelines for the MoviesLoader and MoviesParser functions should
contain the stages shown in figure 12.18.

Listing 12.12 Updating the Lambda function’s code with AWS CLI

Figure 12.17
UpdateFunction-
Code operation logs

Figure 12.18 Python- and Go-based
Lambda function CI/CD pipelines

419Updating Lambda function code
NOTE The Serverless framework (https://serverless.com/) or AWS Serverless
Application Model (SAM) can also be used to write and deploy Lambda func-
tions within Jenkins pipelines.

Similarly, add the same stage to the MoviesStore Lambda functions—except this
time, we will wrap the update-function-code command with a for loop to update
each function versioning within the same GitHub repository; see the following listing.

stage('Deploy'){
 functions.each { function ->
 sh "aws lambda update-function-code
--function-name ${function}
--s3-bucket ${bucket}
--s3-key ${function}/${commitID()}.zip
--region ${region}"
 }
}

When the new stage is committed, the pipeline will be triggered upon a push event,
and the CI/CD stages in figure 12.19 will be executed.

Figure 12.19 MoviesStore CI/CD pipeline

Before we automate the deployment of the marketplace, we need to load some data
into the DynamoDB table. Trigger the MoviesLoader function from AWS Manage-
ment Console, or by issuing the following command from your terminal session:

aws lambda invoke --function-name MoviesLoader --payload '{}' response.json

NOTE Make sure to assign the AWSLambda_FullAccess policy to the IAM
user configured with your AWS CLI.

The preceding command will invoke the MoviesLoader function and save the func-
tion’s output in the response.json file. The function will load movies to SQS and trig-
ger the MoviesParser Lambda function, which will crawl the movie’s IMDb page
and store its information in the Movies DynamoDB table, shown in figure 12.20.

Listing 12.13 Updating multiple Lambda functions

https://serverless.com/

420 CHAPTER 12 Lambda-based serverless functions

Figure 12.20 Movies DynamoDB table

Each message in SQS will invoke the MoviesParser function; once the queue is
empty, the DynamoDB table should contain the top 100 IMDb movies.

12.4 Hosting a static website on S3
The Movie Marketplace is a single-page application (SPA), written in TypeScript,
using the Angular framework. The application serves static content (HTML, Java-
Script, and CSS files), which can be a good fit for S3 website-hosting features.

 Let’s automate the deployment of the marketplace to an S3 bucket, as shown in
the next listing. First, create a GitHub project to version the marketplace source code.
Then, write a Jenkinsfile to run quality, unit tests, and static code analysis with Sonar-
Qube. Refer to chapter 8 for more details.

def imageName = 'mlabouardy/movies-marketplace'
def region = 'AWS REGION'

node('workers'){
 try{
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }

 def imageTest= docker.build("${imageName}-test",
"-f Dockerfile.test .")
 stage('Quality Tests'){
 sh "docker run --rm ${imageName}-test npm run lint"
 }
 stage('Unit Tests'){
 sh "docker run --rm
-v $PWD/coverage:/app/coverage
${imageName}-test npm run test"

Listing 12.14 Integrating an Angular application with the Jenkinsfile

Builds a Docker image
based on Dockerfile.test
to run automated tests

Runs the
code linting
process

Runs unit tests
and generates a
coverage report

421Hosting a static website on S3
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage/marketplace",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])
 }
 stage('Static Code Analysis'){
 withSonarQubeEnv('sonarqube') {
 sh 'sonar-scanner'
 }
 }
 stage("Quality Gate"){
 timeout(time: 5, unit: 'MINUTES') {
 def qg = waitForQualityGate()
 if (qg.status != 'OK') {
 error "Pipeline aborted due to
quality gate failure: ${qg.status}"
 }
 }
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

Add a Build stage to create a Docker container to install the npm dependencies and
copy the dependencies folder as well as the generated static web application files to the
current workspace, as shown in the following listing. Note the use of the --build-arg
argument to inject the API Gateway URL at the build time.

stage('Build'){
 sh """
 docker build -t ${imageName} --build-arg ENVIRONMENT=sandbox .
 containerName=\$(docker run -d ${imageName})
 docker cp \$containerName:/app/dist dist
 docker rm -f \$containerName
 """
 }

Then, in the following listing, use the AWS CLI to push the generated static web appli-
cation to the S3 bucket where website hosting is enabled.

Listing 12.15 Building the Angular application

Consumes the coverage
report with the Jenkins
Publish HTML plugin

Runs code-quality
inspection with SonarQube

Interrupts SonarQube
inspection if it takes
more than 5 minutes

422 CHAPTER 12 Lambda-based serverless functions

stage('Push'){
 sh "aws s3 cp --recursive dist/ s3://${bucket}/"
}

Push the changes to the develop branch. A new pipeline should be triggered, and the
stages in figure 12.21 will be executed successfully.

Figure 12.21 Marketplace CI/CD workflow

You can verify that the files have been successfully stored from the Amazon S3 bucket
dashboard, or by running the aws s3 ls command in your terminal session. Figure
12.22 shows the content of the marketplace S3 bucket.

Figure 12.22 Marketplace S3 bucket content

If you head to the S3 website URL (http:/./BUCKET.s3-website-REGION.amazonaws
.com/), it should display the marketplace UI, shown in figure 12.23.

 That’s great! However, when you’re building your serverless application, you must
separate your deployment environments to test new changes without impacting your
production. Therefore, having multiple environments makes sense while building
serverless applications.

Listing 12.16 Storing the Angular static application to S3

Recursively copies
local files to S3

423Maintaining multiple Lambda environments

Figure 12.23 Marketplace dashboard running in the sandbox environment

12.5 Maintaining multiple Lambda environments
AWS Lambda allows you to publish a version, which represents the state of the func-
tion’s code and configuration in time. By default, each Lambda function has the
$LATEST version pointing to the latest changes deployed to the function.

 To publish a new version from the $LATEST version, update the Jenkinsfile
(chapter12/functions/movies-loader/Jenkinsfile) to add a new stage to publish a new
Lambda function’s version, as shown in the following listing.

stage('Deploy'){
 sh "aws lambda update-function-code --function-name ${functionName}
 --s3-bucket ${bucket} --s3-key ${functionName}/${commitID()}.zip
 --region ${region}"

 sh "aws lambda publish-version --function-name ${functionName}
 --description ${commitID()} --region ${region}"
}

When you publish a new version of your Lambda function, you should give it a mean-
ingful version name that allows you to track different changes made to your function
through its development cycle. In listing 12.17, we’re using the Git commit ID as a ver-
sion scheme. However, you can use an advanced version mechanism like semantic ver-
sioning (https://semver.org/).

Listing 12.17 Publishing a new Lambda version

https://semver.org/

424 CHAPTER 12 Lambda-based serverless functions
 When the pipeline is executed, at the Deploy stage the preceding commands will
be executed. Figure 12.24 shows their execution logs.

Figure 12.24 Update and Publish commands executed within the deploy stage

NOTE Versions are immutable: once they’re created, you cannot update
their code or settings (memory, execution time, VPC config, and so forth).

On the MoviesLoader Lambda dashboard, a new version will be published based on
the develop branch source code, as shown in figure 12.25.

Figure 12.25 MoviesLoader Lambda new published version

The publication of Lambda versions for the MoviesStore API will be done in parallel
to reduce the execution time of the pipeline; see figure 12.26.

 As a result, you can work with different variations of your Lambda function in your
development workflow.

425Maintaining multiple Lambda environments

Figure 12.26 Running the publish command in parallel

For now, API Gateway triggers the MoviesStore Lambda functions based on the
$LATEST version, so every time a new version is published, we need to update API
Gateway to point to the newest version (figure 12.27)—a tedious and not handy task.

Figure 12.27 GET /favorites integration request

Fortunately, there’s the concept of a Lambda alias. The alias, a pointer to a specific ver-
sion, allows you to promote a function from one environment to another (such as
staging to production). Aliases are mutable, unlike immutable versions. Now, instead
of directly assigning a Lambda function version in an API Gateway integration
request, you can assign Lambda alias, where the alias is a variable. The variable will be
resolved from a value during runtime.

426 CHAPTER 12 Lambda-based serverless functions
 That being said, create an alias for the sandbox, staging, and production environ-
ments that points to the latest version published by using the AWS command line:

aws lambda create-alias --function-name MoviesStoreViewFavorites --name
sandbox --version 1

Once created, the new aliases should be added to the list of Aliases under the Qualifi-
ers drop-down list (figure 12.28).

Figure 12.28 Using multiple aliases to reference different environments

We can update the Jenkinsfile to update the alias directly. Update the Deploy stage with
the code in the next listing. It updates the Lambda function code, publishes a new
version, and then points the alias corresponding to the current Git branch (master
branch = production alias, preprod branch = staging alias, develop branch = sandbox
alias) to the newly deployed version.

sh "aws lambda update-function-code --function-name ${it}
 --s3-bucket ${bucket} --s3-key ${it}/${fileName}.zip
 --region ${region}"

def version = sh(
 script: "aws lambda publish-version --function-name ${it}
 --description ${fileName}
--region ${region} | jq -r '.Version'",
 returnStdout: true
).trim()

if (env.BRANCH_NAME in ['master','preprod','develop']){
 sh "aws lambda update-alias --function-name ${it}
 --name ${environments[env.BRANCH_NAME]}
--function-version ${version}
 --region ${region}"
}

Listing 12.18 Updating the Lambda alias to point to the newest version

427Maintaining multiple Lambda environments
The publish-version operation returns JSON output with the deployed version
number as an attribute. The jq command is used to parse the Version attribute and
store its value in a version variable. Then, based on the current Git branch, the cor-
responding alias will point to the published version number.

 Push the changes to the develop branch. The function code will be updated, a new
version will be created, and the sandbox alias will point to the newest published ver-
sion, as you can see in figure 12.29.

Figure 12.29 Updating the Lambda alias to the deployed version

On the MoviesStoreListMovies Lambda, for instance, the sandbox alias should
point to the version with the develop branch source code, as shown in figure 12.30.

Figure 12.30 Sandbox alias pointing to the new Lambda version

Now that you have seen how to create aliases and switch their values within a Jenkins
pipeline, let’s configure the API Gateway to use these aliases with stage variables.

 Stage variables are environment variables that can be used to change the behavior at
runtime of the API Gateway methods for each deployment stage.

428 CHAPTER 12 Lambda-based serverless functions
 On the API Gateway Console, navigate to the Movies API, click the GET method
for the instance, and update the target Lambda function to use a stage variable
instead of a hardcoded Lambda function version, as shown in figure 12.31.

Figure 12.31 Using a stage variable while configuring the API integration request

In the Lambda Function field, the ${stageVariables.environment} tells API
Gateway to read the value for this field from a stage variable at runtime.

 When you save the configuration, a new prompt will ask you to grant the permis-
sions to API Gateway to call your Lambda function aliases. At this point, we need to
deploy our API to make it publicly available.

 From the Actions drop-down, select Deploy API. Choose the New Deployment Stage
option, enter sandbox as a stage name, and deploy it. Or use the Terraform code in list-
ing 12.19. The sandbox stage will set the environment stage variable to sandbox. As a
result, if a user invokes an HTTP request on any endpoint of the sandbox deployment,
the corresponding Lambda function with the sandbox alias will be triggered.

resource "aws_api_gateway_deployment" "sandbox" {
 depends_on = [
 module.GetMovies,
 module.GetOneMovie,
 module.GetFavorites,
 module.PostFavorites
]

 variables = {
 "environment" = "sandbox"
 }

Listing 12.19 API Deployment with an alias stage variable

429Maintaining multiple Lambda environments
 rest_api_id = aws_api_gateway_rest_api.api.id
 stage_name = "sandbox"
}

Create additional deployment stages for staging and production environments. On
completion of the terraform apply command, the three deployment stage URLs
will be displayed, as shown in figure 12.32.

Figure 12.32 API Gateway deployment URLs

If you open the API at https:/./id.execute-api.region.amazonaws.com/sandbox/movies,
you will get the response from Lambda MoviesStoreListMovies with the alias
sandbox.

 To deploy the serverless application to the staging environment, create a pull
request to merge the develop branch to the preprod branch. Jenkins will post the build
status of the develop job on the PR (figure 12.33). Then, merge develop to preprod.

Figure 12.33 Jenkins post build status on GitHub PR

Once the PR is merged, a new build will be triggered on the preprod branch. At the
end of the CI/CD pipeline, the staging alias will point to the newly deployed version,
as you can see in figure 12.34.

430 CHAPTER 12 Lambda-based serverless functions

Now, to deploy the marketplace on multiple environments, we will inject the environ-
ment name based on the current branch name; see the following listing.

stage('Build'){
 sh """
 docker build -t ${imageName}
--build-arg ENVIRONMENT=${environments[env.BRANCH_NAME]} .
 containerName=\$(docker run -d ${imageName})
 docker cp \$containerName:/app/dist dist
 docker rm -f \$containerName
 """
}

Then, in listing 12.21, we update the aws s3 cp instruction to push the static files to
a folder named as the environment name under the S3 bucket. You can also create an
S3 bucket per environment, but for simplicity, we use a single S3 to store different
environments of the marketplace.

if (env.BRANCH_NAME in ['master','preprod','develop']){
 stage('Push'){
 sh "aws s3 cp --recursive dist/ s3://${bucket}/

${environments[env.BRANCH_NAME]}/"
 }
}

Push these changes to a feature branch. Then raise a pull request to merge to the develop
branch. When the merge occurs, the new pipeline in figure 12.35 will be executed.

Figure 12.35 Marketplace new CI/CD pipeline

Listing 12.20 Injecting the environment name during the build

Listing 12.21 Pushing static files to an S3 bucket

Figure 12.34
Deploying
Lambda
functions to
staging

431Maintaining multiple Lambda environments
Merge the changes to preprod to deploy the application to staging. Then, merge from
preprod to master branch for production deployment. As a result, the S3 bucket
should contain three folders. Each folder holds a different runtime environment of
the marketplace, as you can see in figure 12.36.

Figure 12.36 S3 bucket with multiple environments

If you point to the S3 bucket website URL and add the /staging endpoint, it should
serve the staging environment of the marketplace, as shown in figure 12.37.

Figure 12.37 Marketplace staging environment

432 CHAPTER 12 Lambda-based serverless functions
Now, to deploy the Lambda functions to production, merge the preprod branch to
the master branch by raising a pull request, as shown in figure 12.38.

Figure 12.38 Merging the movies-store Lambda functions’ preprod branch to master

When the merge occurs, the pipeline will be triggered on the master branch; see fig-
ure 12.39.

Figure 12.39 Deploying Lambda functions to production

The movies-store functions will be updated, a new version will be created, and the pro-
duction alias will point to the newly deployed version.

 You can take this further and ask for developer authorization before actual
deployment to production by using the Jenkins Input Step plugin; see the following
listing. When the Deploy stage is reached, an input dialog will pop up for deployment
confirmation.

433Maintaining multiple Lambda environments

if (env.BRANCH_NAME == 'preprod' || env.BRANCH_NAME == 'develop'){
 sh "aws lambda update-alias --function-name ${it}
 --name ${environments[env.BRANCH_NAME]}
--function-version ${version}
 --region ${region}"
}

if(env.BRANCH_NAME == 'master'){
 timeout(time: 2, unit: "HOURS") {
 input message: "Deploy to production?", ok: "Yes"
 }
 sh "aws lambda update-alias --function-name ${it}
 --name ${environments[env.BRANCH_NAME]}
--function-version ${version}
 --region ${region}"
}

The interactive input will ask whether we approve the deployment. If we click Yes, the
pipeline will be resumed, and the production alias will point to the newly deployed
version, as shown in figure 12.40.

Figure 12.40 Production deployment confirmation within the Jenkins pipeline

So now if we make any change to our serverless application, CI/CD pipelines will be
triggered, and the newly published Lambda function code will be promoted to pro-
duction. A Slack notification will also be sent with the deployment job status, as shown
in figure 12.41.

Listing 12.22 Asking for user approval before production deployment

434 CHAPTER 12 Lambda-based serverless functions

Sending notifications on pipeline triggering and progress helps to communicate the
work among team members. So far, we have used it to send start, completed, and fail-
ure notifications. but Slack can also be used to take actions or execute commands
from the chat window to confirm the production deployment, for instance, or trigger
the build of a Jenkins job.

 Another way of raising awareness of job build status and reporting testing results is
through email notifications.

12.6 Configuring email notification in Jenkins
Email notification within Jenkins can be done with the help of an Email Extension
plugin (https://plugins.jenkins.io/email-ext/). This plugin comes with a list of essen-
tials plugins installed on Jenkins.

 To enable email notification, you need to configure an SMTP server. Go to Man-
age Jenkins, then Configure System. Scroll down to the Extended E-mail Notification
section. Enter your SMTP credentials, if you’re using Gmail, and then type
smtp.gmail.com for the SMTP server and enter your Gmail username and pass-
word. Select the use of SSL and enter the port number as 465.

 To be able to send an email, you need to configure a list of recipient addresses.
Next, click the Apply and Save buttons, as shown in figure 12.42.

Figure 12.42 Extended email notification configuration

Figure 12.41
Production
deployment Slack
notification

https://plugins.jenkins.io/email-ext/

435Configuring email notification in Jenkins
You can test configurations by entering the recipient email address and clicking Test
Configuration. If all is good, you will see the message Email sent successfully.

 Now that the plugin is configured, type the following listing in your Jenkinsfile to
define a function responsible for sending an email with customizable attributes based
on the job build status.

def sendEmail(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 emailext body: "More info at: ${env.BUILD_URL}",
 subject: "Name: '${env.JOB_NAME}' Status: ${buildStatus}",
 to: '$DEFAULT_RECIPIENTS'
}

Finally, you can invoke the function upon the completion of the CI/CD pipeline by
calling the sendEmail() method on the finally block. In the following listing, an
email notification is sent only if a build is running on the master branch to avoid
spamming developers.

node('workers'){
 try {
 stage('Checkout'){...}
 stage('Tests'){...}
 stage('Build'){...}
 stage('Push'){...}
 stage('Deploy'){...}
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)

 if (env.BRANCH_NAME == 'master'){
 sendEmail(currentBuild.result)
 }
 }
}

Push the new Jenkinsfile to GitHub. When a build is occurring on the master branch,
an email will be sent. Once the pipeline is finished, you should be able to see an email
like the one in figure 12.43.

Listing 12.23 Sending email to report job build status

Listing 12.24 Sending email when a production deployment is happening

436 CHAPTER 12 Lambda-based serverless functions

Figure 12.43 Email notification reporting job build status

The email’s subject contains the name of the Jenkins job as well as its build status. The
email’s body has a link to the job output.

 The declarative approach of writing Jenkinsfiles provides a post section, which
can be used to place post-execution scripts. You can invoke the sendEmail() method
by placing it in the post build section, as shown in the following listing.

pipeline {
 agent{
 label 'workers'
 }
 stages {
 stage('Checkout'){...}
 stage('Unit Tests'){...}
 stage('Build'){...}
 stage('Push'){...}
 }
 post {
 always {
 if (env.BRANCH_NAME == 'master'){
 sendEmail(currentBuild.currentResult)
 }
 }
 }
}

You can also attach the job build logs by enabling the attachLog attribute with the
following listing.

def sendEmail(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 emailext body: "More info at: ${env.BUILD_URL}",
 subject: "Name: '${env.JOB_NAME}' Status: ${buildStatus}",
 to: '$DEFAULT_RECIPIENTS',
 attachLog: true
}

Listing 12.25 Post steps in Jenkins declarative pipeline

Listing 12.26 Attaching log files in a notification mail

437Summary
As a result, email sent by Jenkins will now contain the job status as well the full console
output as an attachment, as shown in figure 12.44.

Figure 12.44 Sending job logs as an email notification attachment

Summary
 Terraform modules allow you to better organize your infrastructure configura-

tion code and make the resources reusable.
 When building a serverless application as a collection of Lambda functions, you

need to decide whether you’re going to push each function individually to its
own Git repository, or bundle them all together as a single repo.

 AWS Lambda supports aliases, which are named pointers to a particular ver-
sion. This makes it easy to use a single Lambda function for sandbox, staging,
and production environments.

 The API Gateway stage variable feature enables you to dynamically access differ-
ent Lambda function environments.

 The Email Extension plugin allows you to configure every aspect of email notifi-
cations. You can customize when an email is sent, who should receive it, and
what the email says.

438 CHAPTER 12 Lambda-based serverless functions

Part 4

Managing, scaling,
and monitoring Jenkins

This final part is about combining and coalescing everything you’ve learned
and moving even further. You’ll learn how to monitor and troubleshoot a run-
ning Jenkins cluster. We’ll start by exposing Jenkins metrics with Prometheus
and build an interactive dashboard with Grafana. Next, I will demonstrate how
to stream Jenkins logs to a centralized logging platform based on the Elastic-
Search, Logstash, and Kibana (ELK) stack. Finally, I will share tips and best prac-
tices to secure and maintain Jenkins.

440 CHAPTER

Collecting continuous
delivery metrics
In the previous chapters, you learned to design, build, and deploy a Jenkins cluster
from scratch by using automation tools; you also learned to set up a fully working
CI/CD pipeline for several cloud-native applications. In this chapter, we will dive
into advanced Jenkins topics: monitoring a running Jenkins server and detecting
anomalies and resource starvation. Along the way, we will cover how to build a cen-
tralized logging platform for Jenkins logs.

This chapter covers
 Monitoring Jenkins and its jobs effectively

 Forwarding Jenkins build logs to a centralized
logging platform

 Parsing Jenkins logs into something structured
and queryable

 Exposing Jenkins internal metrics with
Prometheus

 Building interactive dashboards with Grafana

 Creating metric-based alerts for Jenkins
441

442 CHAPTER 13 Collecting continuous delivery metrics
13.1 Monitoring Jenkins cluster health
The cluster we built in chapter 5 consists of a Jenkins master and workers, with each node
running inside an EC2 instance. Figure 13.1 shows a typical Jenkins node configuration.

Figure 13.1 Jenkins distributed build architecture

So far, the Jenkins cluster is working as expected. However, you should never take your
IT infrastructure for granted. Your Jenkins master or workers one day will break and
will need to be replaced. So, how do you know if your Jenkins cluster is working effec-
tively if you aren’t monitoring it?

 Monitoring Jenkins should become a crucial part of your IT management. Moni-
toring helps you look for abnormalities and spot issues on instances running the clus-
ter, saves you money as it minimizes the network downtime, and enhances efficiency.

 In AWS, you can monitor Jenkins instances by using Amazon CloudWatch (https://
aws.amazon.com/cloudwatch). The platform consumes data coming from all AWS ser-
vices and allows the user to visualize, query, and take action on the data. By default,
Amazon EC2 sends metrics data to CloudWatch.

NOTE You can use Azure Monitor (http://mng.bz/wQYQ) or Google
Cloud’s operations (https://cloud.google.com/monitoring/quickstart-lamp)
if you want to monitor the overall health and performance of Jenkins
instances running in Azure or GCP environments.

Navigate to the Amazon CloudWatch console and jump to the All Metrics tab. Then,
under EC2, look for instances running the cluster by typing their instance ID on the
search bar, as shown in figure 13.2.

Figure 13.2 Key metrics for EC2 monitoring

https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/cloudwatch
https://shortener.manning.com/wQYQ
https://cloud.google.com/monitoring/quickstart-lamp

443Monitoring Jenkins cluster health
You will see a pretty long list of reported metrics for your Jenkins EC2 instances. You
can scroll and select one or more metrics to display (for example, EC2 instance CPU
utilization) and create a graph widget to display them, as shown in figure 13.3.

Figure 13.3 The percentage of allocated EC2 compute units currently in use on the Jenkins instances

By default, EC2 reports metrics to CloudWatch in 5-minute intervals. However, if your
Jenkins cluster is being extensively used (for example, hosting multiple jobs and sched-
uling many CI/CD pipelines), you can enable the enhanced monitoring feature (http://
mng.bz/GOZR) on each instance to get metrics in 1-minute intervals (though an addi-
tional cost applies).

 CloudWatch also offers dashboards, which provide a quick view of how your instances
are performing as well as tremendous flexibility in terms of data visualization—for
example, zooming in or rescaling.

 You can customize the dashboard and add additional graphs showing, for example,
the number of bytes received and sent out on all network interfaces, or disk usage (bytes
written and read from all instance store volumes), as demonstrated in figure 13.4.

 Now you know how to monitor Jenkins instances using CloudWatch. However, it
can be error-prone and tedious to set up CloudWatch monitoring for all your Jenkins
instances (and remembering to do it for Jenkins workers created for scaling events).
Additionally, some metrics are unavailable through CloudWatch (such as memory
usage). Hence, we will use an advanced monitoring stack.

Figure 13.4 Building the CloudWatch dashboard to monitor Jenkins instances

http://mng.bz/GOZR
http://mng.bz/GOZR

444 CHAPTER 13 Collecting continuous delivery metrics
NOTE The Amazon CloudWatch agent can be installed on EC2 instances to
report additional and useful metrics. This feature is seldom used, but it is
good to know it exists. Refer to the official guide at http://mng.bz/q5J2 for
instructions.

Many tools, from open source to a commercial level, can help you monitor your infra-
structure and notify you of any failure. (Section 13.3 covers how to set up alerts that
will notify you in near real-time.) The good thing is that a powerful open source mon-
itoring solution is available, thanks to the open source community that maintains it.
Figure 13.5 summarizes the open source solution we’re going to implement.

Figure 13.5 Telegraf will collect metrics, store them in InfluxDB, and from there we can
visualize them in Grafana.

 This monitoring solution can be split into three parts:

 Telegraf—A metric collector agent, installed on each Jenkins instance. It collects
the internal metrics and ships them to a time-series database.

 InfluxDB—An open source time-series database (TSDB), optimized for fast,
high-availability storage. It consumes the telemetry coming from Telegraf agents.

 Grafana—An open source visualization platform, used to build dynamic and
interactive dashboards based on data stored in InfluxDB.

Now that the architecture is clear, we need to deploy an InfluxDB server on an EC2
instance. Check out the InfluxDB official documentation at http://mng.bz/7lJy for a
step-by-step guide on how to install and configure InfluxDB.

https://shortener.manning.com/q5J2
https://shortener.manning.com/7lJy

445Monitoring Jenkins cluster health
 Once the instance is up and running, SSH to the InfluxDB instance and type the
influx command on the terminal. The influx CLI, which is included in all
InfluxDB packages, is a lightweight and simple way to interact with the database. We
need to create two databases:

 instances—To store metrics about resource usage, such as CPU utilization, mem-
ory, network traffic, disk usage, and so forth.

 containers—To store metrics about containers running in the Jenkins workers.
The containers are basically build jobs scheduled for Jenkins workers.

Create the databases by using the CREATE DATABASE Influx Query Language
(InfluxQL) statement:

CREATE DATABASE containers;
CREATE DATABASE instances;

The databases can also be created by making raw HTTP requests to an InfluxDB API
over port 8086 (see http://mng.bz/m1z2).

 Now that we have databases, InfluxDB is ready to accept queries and writes. To col-
lect Jenkins instance metrics, we need to install a Telegraf agent on each server. One
way to do this is to install Telegraf on the existing instances, but this solution won’t
scale, as we need to install and configure a Telegraf agent each time a new Jenkins
worker is deployed. Therefore, the best way is to ship Telegraf within the Jenkins AMI.
Once again, we will use Packer to bake the Jenkins master and worker AMIs with a pre-
installed and configured Telegraf agent.

 Add the code in the next listing to the setup.sh (chapter13/telegraf/setup.sh)
script provided in chapter 4, listings 4.4 and 4.5. This code will install the latest stable
version of Telegraf (at the time of writing this book, version 1.19.0 is available).

wget https://dl.influxdata.com/telegraf/releases/telegraf-1.19.0-1.x86_64.rpm
yum localinstall telegraf-1.19.0-1.x86_64.rpm
systemctl enable telegraf
systemctl restart telegraf

Next, we tell Telegraf what metrics to collect, by creating a configuration file at /etc/
telegraf/telegraf.conf. The config file consists of inputs (where the metrics come
from) and outputs (where the metrics go). The following listing specifies three inputs
(CPU memory usage, and Docker), and specifies InfluxDB as the output. The Docker
input reads metrics about the Docker daemon and then outputs this data to InfluxDB.

[global_tags]
hostname="Jenkins"

[[inputs.cpu]]
 percpu = false

Listing 13.1 Installing the Telegraf agent with the Yum utility

Listing 13.2 Telegraf configuration file with various inputs

Overrides default hostname;
if empty, use os.Hostname()

Gathers metrics on
the system CPUs

https://shortener.manning.com/m1z2

446 CHAPTER 13 Collecting continuous delivery metrics
 totalcpu = true
 fieldpass = ["usage*"]
 name_suffix = "_vm"

[[inputs.disk]]
 fielddrop = ["inodes*"]
 Mount_points = ["/"]
 name_suffix = "_vm"

[[inputs.mem]]
 name_suffix = "_vm"

[[inputs.swap]]
 name_suffix = "_vm"

[[inputs.system]]
 name_suffix = "_vm"

[[inputs.docker]]
 endpoint = "unix:///var/run/docker.sock"
 container_names = []
 name_suffix = "_docker"

[[outputs.influxdb]]
 database = "instances"
 urls = ["http://INFLUXDB_IP:8086"]
 namepass = ["*_vm"]

[[outputs.influxdb]]
 database = "containers"
 urls = ["http://INFLUXDB_IP:8086"]
 namepass = ["*_docker"]

Make sure to replace the INFLUXDB_IP variable with the IP address of the instance
where the InfluxDB server is running.

 Bake a new Jenkins AMI and redeploy a Jenkins cluster with the newly built image
by following steps described in section 5.3. Once the new Jenkins cluster is up and
running, Telegraf will start collecting metrics and streaming them to InfluxDB for
storage and indexing.

 To explore the metrics, we will use Grafana. You can install Grafana from a Yum
repository or by running a Docker image. (Check out the Grafana official documenta-
tion at http://mng.bz/5ZY1 for more details.) Once Grafana is installed, head your
browser to HOST_IP:3000. On the login page, enter admin for the username and
password.

 Before we create a dashboard to monitor the overall health of the Jenkins
instances, we need to link the InfluxDB databases to Grafana. To do so, we need to
create a data source for each InfluxDB database.

 In the side panel, click the cog icon and then click Configuration > Data Sources.
Click the Add Data Source button, shown in figure 13.6. Then fill the settings page
with the following values:

 Name—The data source name. (This is how you’ll refer to the data source in
queries.)

Gathers metrics about disk usage. By
default, stats are gathered for all mount
points, and setting Mount_points will
restrict the stats to the root volume.

Collects system
memory metrics

Collects system
swap metrics

Gathers general stats on system load,
uptime, and number of users logged in. It
is similar to the Unix uptime command.

Uses the Docker Engine API to
gather metrics on running
Docker containers

Writes system metrics to the
InfluxDB instance database

Writes Docker metrics to the
InfluxDB container database

https://shortener.manning.com/5ZY1

447Monitoring Jenkins cluster health
Figure 13.6 Configuring InfluxDB-based data sources in Grafana

 URL—The HTTP, IP address, and port of your InfluxDB API. (By default, the
InfluxDB API port is 8086.)

 Database—Name of the InfluxDB database (instances or containers database).

With your InfluxDB connection configured, use Grafana and InfluxQL to query and
visualize time-series data stored in InfluxDB. From the left panel, click Dashboards.
From the top menu, click Home to get a list of dashboards. Click the Create New but-
ton at the bottom to create a new dashboard. To add a graph, just click the graph but-
ton in the panel filter. In the Query section, type the following InfluxQL statement:

SELECT mean("used_percent") FROM "mem_vm"
WHERE $timeFilter
GROUP BY time($__interval), "host" fill(null)

This query selects the memory usage from the mem_vm measurement and groups the
results by Jenkins node. The query results in the graph in figure 13.7.

Figure 13.7 Building a memory utilization gauge chart

448 CHAPTER 13 Collecting continuous delivery metrics
To monitor the Jenkins jobs build time, you can use the following statement:

SELECT mean("uptime_ns") FROM "docker_container_status_docker"
WHERE ("hostname" = 'Jenkins') AND $timeFilter
GROUP BY time($__interval), "container_name" fill(null)

This selects the uptime value (the amount of time the container is online and opera-
tional) from the docker_container_status_docker measurement and groups
the results by the container name (figure 13.8).

Figure 13.8 Monitoring containers built within CI/CD pipelines

Back to Grafana, you can create multiple graphs to monitor various metrics of the Jen-
kins cluster:

 CPU usage of Jenkins nodes (master and worker instances)
 Network traffic (in and out bytes)
 Memory utilization of each Jenkins node
 Number of running build jobs
 Overall health and number of workers

Figure 13.9 shows host-level details for the Jenkins cluster. The complete dashboard
can be imported from the JSON file (chapter13/grafana/dashboard/influxdb.json).
Refer to http://mng.bz/6mGD for instructions.

 As mentioned earlier, monitoring the state of your instances is imperative to keep-
ing your Jenkins cluster healthy, and by using the preceding metrics (and the many
others) provided by Telegraf, you can achieve this with relative ease.

 So far, you have seen how to monitor the Jenkins instances (server side). Let’s
explore monitoring the Jenkins server itself (application side). As you may have
already guessed, a monitoring plugin for Jenkins can provide a lot of data about
what’s going on within Jenkins and about the tasks being performed by Jenkins. For
example, the Metrics plugin (https://plugins.jenkins.io/metrics/) provides health

https://plugins.jenkins.io/metrics/

449Monitoring Jenkins cluster health
checks by exposing an API on the Jenkins server at the $JENKINS_URL/metrics end-
point. The API provides information on the following:

 HTTP sessions and current HTTP requests
 Detailed statistics of the build times and the build steps by period
 Threads, process list of OS, and heap dumps

For instance, the API call in figure 13.10 returns statistics about the number of execu-
tors available to Jenkins.

To create a dashboard based on those metrics, we can write a custom script to save those
values regularly to InfluxDB, or use a Prometheus metric plugin (https://plugins
.jenkins.io/prometheus/) to expose an endpoint (the default is /prometheus) with
metrics that a Prometheus server can scrape.

Figure 13.9 Jenkins host metrics

Figure 13.10 Metrics
API with health-check
endpoints

https://plugins.jenkins.io/prometheus/
https://plugins.jenkins.io/prometheus/
https://plugins.jenkins.io/prometheus/

450 CHAPTER 13 Collecting continuous delivery metrics
 Prometheus (https://prometheus.io/) is an open source monitoring system with a
dimensional data model, flexible query language, efficient time-series database, and
modern alerting approach.

NOTE The Packer template file and Terraform HCL files for baking and deploy-
ing a Prometheus server are available in the chapter13/prometheus folder.

First, install the Prometheus Metrics plugin (https://plugins.jenkins.io/prometheus/)
from the Manage Plugins section. Once it’s installed, you can see the plugin’s output
through JENKINS _URL/prometheus (figure 13.11).

Figure 13.11 Prometheus endpoint serves a list of metrics

Then, you need to configure a Prometheus server to scrape metrics from Jenkins. Edit
the configuration file at /etc/prometheus/prometheus.yml (listing 13.3). In the
scrape_configs section, add a job for the Jenkins server. The format for writing this
config file can be found at http://mng.bz/o8Vr.

global:
 scrape_interval: 10s

scrape_configs:
 - job_name: 'prometheus_master'
 scrape_interval: 5s
 static_configs:
 - targets: ['localhost:9090']
 - job_name: 'jenkins'
 metrics_path: '/prometheus/'
 scheme: https
 static_configs:
 - targets: ['JENKINS_URL']

On the Prometheus dashboard (the default port is 9090), you can explore the metrics
collected from Jenkins. You will be greeted will the screen in figure 13.12.

 Collected metrics are not very useful unless they are visualized. Connect Pro-
metheus with Grafana by creating a new data source. To create a Prometheus data
source in Grafana, follow these steps:

1 Click the cogwheel icon in the side panel to open the Configuration menu.
2 Click Data Sources.

Listing 13.3 Configuring Prometheus to scrape metrics from Jenkins

https://plugins.jenkins.io/prometheus/
https://prometheus.io/
https://shortener.manning.com/o8Vr

451Monitoring Jenkins cluster health
Figure 13.12 Exploring Jenkins metrics from the Prometheus dashboard

3 Click Add Data Source.
4 Select Prometheus as the type.
5 Set the appropriate Prometheus server URL to http:/./prometheus:9090.
6 Click Save & Test to save the new data source.

Then, create a dashboard based on the available metrics. The dashboard features
application-level metrics (which track the total number of jobs in a queue, how many
are pending, and how many are stuck or otherwise delayed), followed by internal
operation metrics (JVM), and finally system-level metrics (disk I/O, network, memory,
and so forth). Figure 13.13 shows a part of the dashboard.

Figure 13.13 Comprehensive Jenkins monitoring summary of jobs and builds

452 CHAPTER 13 Collecting continuous delivery metrics
The complete dashboard can be imported from the following JSON file: chapter13/
grafana/dashboard/prometheus.json.

 Another popular solution for monitoring Jenkins is the Monitoring plugin (previ-
ously called JavaMelody). This plugin produces comprehensive HTML reports about
the state of Jenkins, including CPU and system load, average response time, and mem-
ory usage; see https://plugins.jenkins.io/monitoring/ for more details. Moreover, the
reports are served from the Jenkins dashboard, as shown in figure 13.14.

Figure 13.14 Statistics of JavaMelody monitoring

Great! You should now be able to monitor a Jenkins cluster running in production. To
provide even further visibility into your Jenkins environment, you can collect and ana-
lyze Jenkins logs of real-time system and security events and correlate them with per-
formance and server metrics to identify and resolve issues.

13.2 Centralized logging for Jenkins logs with ELK
By default, Jenkins logs are located at /var/log/jenkins/jenkins.log. To view those
logs, SSH to the Jenkins master instance with the bastion host, and then issue the fol-
lowing command:

tail -f -n 100 /var/log/jenkins/jenkins.log

Figure 13.15 shows the command output.

Figure 13.15 Viewing Jenkins logs at /var/log/jenkins/jenkins.log

https://plugins.jenkins.io/monitoring/

453Centralized logging for Jenkins logs with ELK
You can also view those logs from the web dashboard (figure 13.16). Head to the Jen-
kins dashboard and select System Log from the Manage Jenkins page.

Figure 13.16 Viewing Jenkins logs from the Jenkins dashboard

By default, Jenkins records every INFO log to stdout, but you can configure Jenkins to
record logs of a specific Jenkins plugin by creating a custom log recorder. From the
System Log page, click the Add New Log Recorder button and choose a name that
makes sense to you. The example in figure 13.17 creates a log recorder for the Slack
plugin (the Java package is located at jenkins.plugins.slack).

Figure 13.17 Capturing the Slack plugin’s login with a custom log recorder

Now, if any Slack notification is sent from a Jenkins pipeline, a log should be captured
as shown in figure 13.18.

Figure 13.18 Display of Slack plugin’s logs

454 CHAPTER 13 Collecting continuous delivery metrics
You can also view the build logs for a particular job by navigating to the job item from
the dashboard and clicking Console Output, or by viewing the content of the logfile at
$JENKINS_HOME/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log.

 Depending on a log rotation configuration, the logs could be saved for X number
of builds (or days, and so forth), meaning the old job logs might be lost. That’s why
you need to persist the logs in a centralized logging platform for auditing and poten-
tial troubleshooting.

NOTE You can enable the Discard Old Build plugin (https://plugins.jenkins
.io/discard-old-build/) in each project or job configuration page to configure
the interval to keep old builds (for example, once a month, once in 10 builds,
and so forth).

Additionally, analyzing Jenkins logs can provide a lot of information that helps with
troubleshooting the root cause of pipeline job failure. Build logs contain a full set of
records such as build name, number, execution time, and other things. However, to
analyze those logs, you need to ship them to an external logging platform. That’s
where a platform like the ELK stack (Elasticsearch, Logstash, and Kibana) comes into
play.

13.2.1 Streaming logs with Filebeat

Filebeat (www.elastic.co/beats/filebeat), a lightweight agent that will be installed on
the Jenkins master instance, will ship the logs to Logstash (www.elastic.co/logstash)
for processing and aggregation. From there, the logs will be stored in Elasticsearch
(www.elastic.co/elasticsearch) and visualized in Kibana (www.elastic.co/kibana)
through interactive dashboards. Figure 13.19 summarizes the entire workflow.

Figure 13.19 Shipping Jenkins logs to the ELK platform with Filebeat

To deploy this architecture, we need to create a machine image for each component.
You can use Packer to bake the AMIs (figure 13.20). The Packer templates are avail-
able in the GitHub repository at chapter13/COMPONENT_NAME/packer/template
.json.

 Once the AMIs are created, you can use Terraform to deploy the ELK stack. The
template resources are available in the GitHub repository at chapter13/
COMPONENT_NAME/terraform/*.tf.

https://plugins.jenkins.io/discard-old-build/
https://plugins.jenkins.io/discard-old-build/
https://plugins.jenkins.io/discard-old-build/
http://www.elastic.co/beats/filebeat
http://www.elastic.co/logstash
http://www.elastic.co/elasticsearch
http://www.elastic.co/kibana

455Centralized logging for Jenkins logs with ELK

Figure 13.20 Logstash, Kibana, and Elasticsearch AMIs built with Packer

By the end of the provisioning process, three EC2 instances should be created, as
shown in figure 13.21.

Figure 13.21 Deployed ELK stack on AWS

With the logging platform ready to consume incoming Jenkins logs, we need to install
Filebeat on the Jenkins master instance. SSH to the Jenkins server, and run the com-
mands in the following listing to install the latest stable version of Filebeat (at the time
of writing this book, version 7.13.2 is available).

curl -L -O https://artifacts.elastic.co/downloads/beats/
filebeat/filebeat-7.13.2-x86_64.rpm
sudo rpm -vi filebeat-7.13.2-x86_64.rpm

Next, we need to set the path of the log files that we want to forward to ELK. Here we
want to forward logs to /var/log/jenkins/jenkins.log. Go to the configuration direc-
tory of Filebeat under the location /etc/filebeat, and update filebeat.yml with the fol-
lowing listing.

Listing 13.4 Installing the Filebeat agent on the Jenkins server

456 CHAPTER 13 Collecting continuous delivery metrics

filebeat.inputs:
- type: log
 enabled: true
 paths:
 - /var/log/jenkins/jenkins.log
 fields:
 type: jenkins
 multiline.pattern: '[0-9]{4}-[0-9]{2}-[0-9]{2}'
 multiline.negate: true
 multiline.match: after
output.logstash:
 hosts: ["LOGSTASH_HOST"]

processors:
 - add_host_metadata: ~
 - add_cloud_metadata: ~
 - add_docker_metadata: ~
 - add_kubernetes_metadata: ~

Multiline messages are common in Jenkins logs, especially for log messages contain-
ing Java stack traces. Here’s an example of a Java stack trace:

2020-10-22 20:06:58.217+0000[id=124635] FATAL: Ping failed.
 java.util.concurrent.TimeoutException:
 at

hudson.remoting.PingThread.ping(PingThread.java:134)
 at hudson.remoting.PingThread.run(PingThread.java:90)

To correctly handle these multiline messages, we use the multiline settings to spec-
ify which lines are part of a single log message.

 Replace the LOGSTASH_HOST variable, with the IP address of the Logstash server.
Then restart the Filebeat agent with the following command:

systemctl restart filebeat

Head to the Kibana dashboard (at KIBANA_IP:5601), jump to the Management tab,
and to Index Patterns. We have to create a new index pattern. Creating an index pat-
tern means mapping Kibana with an Elasticsearch index. Since Logstash stores incom-
ing Jenkins logs to a series of indices in the format jenkins-YYYY.MM.DD, we will create
an index pattern jenkins-* to explore all the logs, as shown in figure 13.22.

 Click the Next Step option. From the Time Filter Field Name drop-down, select
@timestamp. Then click the Create Index Pattern button.

 Now, to view logs, go to the Discover page. You can see your index data coming in
(figure 13.23).

Listing 13.5 Filebeat input configuration

Harvests lines from the
/var/log/jenkins/jenkins.log file

Adds a field called type to the output, so we
can easily identify logs coming from Jenkins

Configures Filebeat to
handle a multiline message

Sends logs directly to Logstash

Annotates each log event
with relevant metadata
from the host machine

457Centralized logging for Jenkins logs with ELK

Figure 13.22 Connecting an Elasticsearch index to Kibana

Figure 13.23 Visualizing Jenkins logs from Kibana

Now you have a working pipeline that reads Jenkins logs. However, you’ll notice that the
format of the log messages is not ideal. You want to parse the log messages to create spe-
cific, named fields from the logs. Let’s take, as an example, the following Jenkins log:

2020-06-02 15:21:56.990+0000 INFO o.j.p.workflow.job.WorkflowRun#finish:
movies-loader/develop #7 completed: SUCCESS

The timestamp at the beginning of the line is easy to define as the level of the log
(INFO, WARNING, DEBUG, etc.). To parse the line, we can write a Grok expression.

458 CHAPTER 13 Collecting continuous delivery metrics
 Grok works by parsing text patterns, using regular expressions, and assigning them
to an identifier. The syntax is %{PATTERN:IDENTIFIER}. We can write a sequence of
Grok patterns and assign various pieces of the preceding log message to various iden-
tifiers, as you can see in the following listing.

%{TIMESTAMP_ISO8601:createdAt}
%{LOGLEVEL:level}%{SPACE}%{JAVACLASS:class}%{DATA:state}:%{SPACE}%{JOBNA
ME:project} #%{NUMBER:buildNumber} %{DATA:execution}: %{WORD:status}

Grok comes with its own dictionary of patterns that you can use out of the box. But
you can always define your own custom pattern, as shown in the following listing.

JAVACLASS (?:[a-zA-Z0-9-]+\.)+[A-Za-z0-9$]+
JOBNAME [a-zA-Z0-9\-\/]+

You can use the Kibana Grok Debugger console to debug the expression. This feature,
which is automatically enabled in Kibana, is located on the DevTools tab.

 Enter the log message in the Sample Data field, and the Grok expression in the
Grok Pattern field. Then click Simulate. You will see the simulated event that results
from applying the Grok pattern (figure 13.24).

 Note that the Grok pattern references the JAVACLASS and JOBNAME custom pat-
terns. They are defined in the Custom Patterns section. Each pattern definition is
specified on its own line.

NOTE If an error occurs, you can continue iterating over the custom pattern
until the output matches the event that you expect.

Figure 13.24 Simulating Grok parsing with Grok Debugger tool

Listing 13.6 Grok expression to parse Jenkins log message

Listing 13.7 Grok custom patterns definition

459Centralized logging for Jenkins logs with ELK
The Grok expression is working, but we want the parsing mechanism to be done
before storing logs to Elasticsearch. That’s why we will update the Logstash config
(chapter13/logstash/packer/jenkins.conf) to parse incoming logs from Filebeat. The
filter section will attempt to match messages coming from Jenkins with the Grok
expression defined earlier, as shown in the following listing.

filter {
 if [type] == "jenkins" {
 grok {
 patterns_dir => ["/etc/logstash/patterns"]
 match => {
 "message" =>

"%{TIMESTAMP_ISO8601:createdAt}%{SPACE}\[id=%{INT:buildId}\]
%{SPACE}%{LOGLEVEL:level}%{SPACE}%{JAVACLASS:class}
%{DATA:state}:%{SPACE}%{JOBNAME:project}
#%{NUMBER:buildNumber} %{DATA:execution}: %{WORD:status}"
 }
 }
 }
}

This code takes the Jenkins logs collected by Filebeat, parses them into fields, and
sends the fields to Elasticsearch. The pattern_dir setting tells Logstash where your
custom patterns directory is. You can customize the parsing mechanism by adding
more processing, such as dropping unused fields or renaming fields. See the Mutate
Filter plugin at http://mng.bz/J6Av for more information.

 Restart Logstash to reload the configuration. Your Jenkins logs will be gathered
and structured into fields (figure 13.25). Right now, not much is in there because you
are gathering only Jenkins logs. Here, you can search and browse through your logs.

Figure 13.25 Structuring Jenkins logs into separated queryable fields

Listing 13.8 Parsing Jenkins logs at the Logstash level

https://shortener.manning.com/J6Av

460 CHAPTER 13 Collecting continuous delivery metrics
Each log message coming from Jenkins will match and result in the fields listed in
table 13.1.

You can create a stacked bar chart showing the number of failed versus successful
builds based on the status field over a period of time; see figure 13.26.

Figure 13.26 Building interactive widgets based on Jenkins structured fields

You can save the bar chart as a widget and import it to a dashboard. With a dashboard,
you can combine multiple visualizations onto a single page, and then filter them by pro-
viding a search query or by selecting filters by clicking elements in the visualization.

Table 13.1 Jenkins index fields in Elasticsearch

Field Description

time The data and time of the message in UTC format

level The log message level (INFO, WARNING, DEBUG, FATAL, ERROR)

project The Jenkins job’s build name

buildNumber The build number of the job, which identifies how many times Jenkins runs this
build process

status The status of the build (FAILURE or SUCCESS)

execution The current state of the build (running, pending, terminated, or completed)

461Centralized logging for Jenkins logs with ELK
Dashboards are useful when you want to get an overview of your Jenkins logs and make
correlations among various visualizations and logs; see figure 13.27.

Figure 13.27 Analyzing Jenkins logs from a Kibana dashboard

The complete dashboard can be imported from the following JSON file: chapter13/
kibana/dashboard/jenkins.json.

 That’s it! You’ve successfully created a pipeline that uses Filebeat to take Jenkins
logs as input, forwards those logs to Logstash for parsing, and writes the parsed data to
an Elasticsearch server.

13.2.2 Streaming logs with the Logstash plugin

You can skip the Filebeat and Logstash configurations by shipping Jenkins logs
directly to an Elasticsearch instance via the Logstash plugin (https://plugins.jenkins
.io/logstash/) on Jenkins. This solution is ideal if you’re not already using external
Logstash agents to stream your infrastructure or application logs to Elasticsearch, and
if you don’t need to enrich the parsing mechanism of logs with custom Grok expres-
sions. Plus, the Logstash plugin can stream the log data from a Jenkins instance to any
indexer solution (including Redis, RabbitMQ, and Elasticsearch). In the current sce-
nario, we will use Elasticsearch.

 After successfully installing the Logstash plugin in the global configuration of the
Jenkins dashboard, we need to configure the plugin with the target indexer. Config-
ure the URI, where the Elasticsearch server is running, as shown in figure 13.28.

https://plugins.jenkins.io/logstash/
https://plugins.jenkins.io/logstash/
https://plugins.jenkins.io/logstash/

462 CHAPTER 13 Collecting continuous delivery metrics

Figure 13.28 Configuring the Logstash plugin to stream logs to the Elasticsearch server

After configuring the Elasticsearch endpoint in the Logstash configuration, you can
add the following block to your pipelines. That way, all the logs produced within the
logstash step will be streamed into Elasticsearch:

logstash {
 echo "Job:${env.JOB_NAME}"
}

You can view the streamed logs by accessing the Kibana dashboard, shown in fig-
ure 13.29.

Figure 13.29 Example of a log message sent to Elasticsearch

Now we are able to stream the log data from the Jenkins instance to Elasticsearch and
finally to Kibana.

13.3 Creating alerts based on metrics
We can take the logging and monitoring solutions further and set up alerts. One of
the most common use cases is DevOps teams getting notifications of events, such as
when the failure build rate is significantly higher than usual. Needless to say, this issue

463Creating alerts based on metrics
can have a significant impact on the release of new features, hence having an impact
on business and user experience.

 You can use Kibana to define a meaningful alert on a specified condition; see fig-
ure 13.30. For instance, you can define an alert to periodically check the failure build
rate. For the notification channel, you can use Slack, OpsGenie, or a simple email
notification.

Figure 13.30 Configuring an alert on Kibana

You can also create alerts based on metrics collected by Prometheus or Telegraf, by
using the Grafana alerting feature.

NOTE While it’s easy to set up and use Grafana alerting, it’s more limited in
terms of the alert rules you can apply to your metrics queries. If you’re look-
ing for an advanced solution, go with Prometheus Alertmanager (https://
prometheus.io/docs/alerting/latest/alertmanager/).

Before creating monitoring alerts, we need to add the notification channel through
which we will be notified. Here, we will be adding Slack as the notification channel.

 To set up Slack, you need to configure an incoming Slack webhook URL. Create a
Slack application by going to https://api.slack.com/apps/new. After creating the appli-
cation, you’ll be redirected to the Settings page of the new app (figure 13.31). From
there, enable the Incoming Webhook feature by switching the radio button to On.

https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://api.slack.com/apps/new

464 CHAPTER 13 Collecting continuous delivery metrics

Figure 13.31 Enabling the incoming webhook on a Slack application

Now that incoming webhooks are enabled, the Settings page should refresh, and
some extra options will appear. One of those options will be a really helpful button
marked Add New Webhook to Workspace, and you should click it.

 Go ahead and pick a Slack channel that Grafana will post to, and then click Autho-
rize Your App. You’ll be sent back to your app settings, where you should now see a
new entry under the webhook URLs for the Your Workspace section, with a webhook
URL. Copy it.

 After creating the webhook URL, you need to create a notification channel in
Grafana. In the Grafana sidebar, hover your cursor over the Alerting icon and then
click Notification Channels, as shown in figure 13.32. Create a Slack notification chan-
nel as follows:

1 Input the name of the channel.
2 Change Type to Slack and input a webhook URL that you have created.

Figure 13.32
Configuring a new
Slack notification
channel

465Creating alerts based on metrics
You can test the setup by clicking the Send Test button at the bottom. After setting up
all the fields, just click the Save button.

 Now let’s create the alert. Select the panel where you want to create an alert. For
instance, we can create an alert on the memory usage metric. Click the Alert tab and
then click Create Alert. This will open a form for configuring the alert, where you can
set the following options:

 Evaluate Every—The time interval on which you want the alert rule to be evalu-
ated. For this example, we can set the option to Evaluate Every 1m for 1m. It
means that Grafana will evaluate the rule every minute. If the metrics violate
the rule, Grafana will wait for 1 minute. If, after 1 minute, the metrics are not
recovered, Grafana will trigger an alert.

 Conditions—We can use the avg() function as we want to validate our rule
against the average memory utilization.

This alert will be triggered when the average memory utilization is above 90%, as
shown in figure 13.33.

Figure 13.33 Defining an alert rule for memory usage

Additionally, we need to add the notification channel where the alert needs to be sent,
as well as the alert message. If the alert is triggered, you will see the message in figure
13.34 on your Slack channel.

466 CHAPTER 13 Collecting continuous delivery metrics

Figure 13.34 Slack notification upon memory threshold exceeded

Creating an alert to a messaging application like Slack is very beneficial. This ensures
that you and your teammates get notifications immediately if something wrong hap-
pens. You can mention your team Slack group or use @here or @channel to make
sure your team gets the message.

Summary
 You can build a monitoring stack with Telegraf, InfluxDB, and Grafana to col-

lect, store, and visualize Jenkins instance metrics.
 You can collect and parse Jenkins logs into structured fields by writing Grok

expressions.
 The Prometheus plugin can be used to expose internal and client-side metrics

in Jenkins.
 The Logstash plugin is an easy way to integrate Jenkins logs with the ELK stack.
 Filebeat can be installed as an agent on your Jenkins master instance to ship

logs to Logstash for parsing. From there, logs will be stored in Elasticsearch and
analyzed from Kibana within an interactive dashboard.

Jenkins administration
and best practices
Chapter 13 covered how to monitor a Jenkins cluster, and how to configure alerts
and correlate Jenkins logs and metrics to identify issues and avoid downtime. In
this chapter, you will learn how to enforce security on Jenkins by setting up granu-
lar access with role-based access control (RBAC) for logged-in users and how to add
an extra security layer by using the GitHub authentication mechanism.

 We also will discuss a few tips and tricks that you might find useful when main-
taining a Jenkins instance. We will look at things like how to back up, restore, and
archive build jobs or migrate them from one server to another.

This chapter covers
 Sharing common code and steps across CI/CD

pipelines

 Granting job permissions for a user

 Using GitHub for authentication information to
secure a Jenkins instance

 Backing up and restoring Jenkins plugins and jobs

 Using Jenkins as a scheduler for cron jobs

 Migrating build jobs to a new Jenkins instance
467

468 CHAPTER 14 Jenkins administration and best practices
14.1 Exploring Jenkins security and RBAC authorization
The current configuration of Jenkins allows not-logged users to have read access, and
logged users to access almost everything. To override this default behavior, head to
the Configure Global Security section from Manage Jenkins (figure 14.1).

Figure 14.1 Enabling security in Jenkins

Disable Allow Anonymous Read Access and enable Allow Users to Sign Up, and you
will be redirected to the sign-in page. This option allows users to create accounts by
themselves via the Create an Account link, shown in figure 14.2.

Figure 14.2 Jenkins sign-in page

469Exploring Jenkins security and RBAC authorization
Click the Create an Account link. You will be prompted to add a new user. In figure
14.3, we are setting up a developer account.

Figure 14.3 Setting up a developer account

Once the new account is created, sign in. You’ll notice that it has full control of Jen-
kins. Letting signed-in users do anything is certainly flexible, and maybe all you need
for a small team. For larger or multiple teams, or when Jenkins is being used outside
the development environment, a more secure approach is generally required.

NOTE By default, Jenkins does not use CAPTCHA verification if the user cre-
ates an account. If you’d like to enable CAPTCHA verification, install a sup-
port plugin such as the Jenkins JCaptcha plugin (https://plugins.jenkins.io/
jcaptcha-plugin/).

14.1.1 Matrix authorization strategy

To set up granular access for logged-in users, we can use the Jenkins Matrix Authoriza-
tion Strategy plugin (https://plugins.jenkins.io/matrix-auth/). This plugin allows you
to control job permission on each project with specific users who can do something
on that job.

 Once the Matrix Authorization Strategy plugin is installed, head to Configure
Global Security. In the Authorization section, enable Project-Based Matrix Authoriza-
tion Strategy. Jenkins will display a table containing authorized users, and check

https://plugins.jenkins.io/matrix-auth/
https://plugins.jenkins.io/jcaptcha-plugin/
https://plugins.jenkins.io/jcaptcha-plugin/

470 CHAPTER 14 Jenkins administration and best practices
boxes corresponding to the various permissions that you can assign to these users (fig-
ure 14.4).

Figure 14.4 Matrix-based security configuration

 The permissions are organized into several groups, such as these:

 Overall—Covers basic system-wide permissions.
 Credentials—Covers managing Jenkins credentials.
 Agent—Covers permissions about build nodes or workers (adding or removing

Jenkins nodes).
 Job—Covers job-related permissions (creating a new build job, updating or

deleting an existing build job).
 Run—Covers rights related to particular builds in the build history.
 View—Covers managing views. Views in Jenkins allow us to organize jobs and

content into tabbed categories.
 SCM—Covers permissions related to a version-control system (such as Git or

SVN).

The matrix controls what users can do (read jobs, execute builds, install plugins, and
so forth). We have a couple of built-in authorizations to consider:

 Anonymous—Anyone who has not logged in
 Authenticated—Anyone who has logged in

You can configure permissions for a specific user by clicking Add User or Group. Add
two users: one administrator (say, mlabouardy/admin) and a regular user (say,
developer).

 All the check boxes next to users are for setting global permissions. Select all check
boxes to give admin full permissions. For Developer (aka John Doe), we are selecting
read permissions under Job. With this, Developer would now have read permission to
view all jobs that we created in the previous chapters; see figure 14.5.

 Click Save, and the login page opens if you log in using developer credentials. In
this mode, the developer account has only read permissions, as shown in figure 14.6
(for example, the developer can’t trigger a build or configure job settings).

471Exploring Jenkins security and RBAC authorization

Figure 14.5 Fine-tuning user permissions

Figure 14.6 Jenkins read-only access

So far, you have seen how to create and manage Jenkins users as well as how to give
granular access to these users. However, in a large organization, assigning granular
permissions to multiple users can be tedious. Luckily, you can create different roles
with the appropriate permissions and assign them to different users in Jenkins.

14.1.2 Role-based authorization strategy

To manage different roles, install the Role-Based Authorization Strategy plugin
(https://plugins.jenkins.io/role-strategy/) from the Plugin Manager page. Then acti-
vate the Role-Based Strategy option from the Manage Global Security page, as shown
in figure 14.7.

Figure 14.7 Enabling the Role-Based Authorization Strategy plugin

https://plugins.jenkins.io/role-strategy/

472 CHAPTER 14 Jenkins administration and best practices
Then you can define global roles on the Manage Jenkins page by selecting the Man-
age and Assign Roles option (figure 14.8). Note that Manage and Assign Roles will be
visible only if you have installed the plugin correctly.

Figure 14.8 Defining custom roles

Click the Manage Roles option to add new roles. Create three custom roles with the
appropriate permissions:

 Admin—Will be assigned to Jenkins administrators for full access to Jenkins
 Developer—Will be assigned to developers for permissions to build jobs and view

their logs and status
 QA—Will be assigned to software quality assurance engineer for permissions to

view jobs status/health

Then, assign these roles to specific users from
the Assign Roles screen (figure 14.9). In these
settings, we assign the admin’s role to the
administrator account, the developer’s role to
a member of the development team, and QA’s
role to a software QA.
 If you’re using Jenkins within an organiza-
tion, creating and managing users’ access
might be a tedious task. You can use GitHub
as an authentication mechanism.

NOTE You can configure many OAuth2 authentication services with Jenkins,
including GitLab, Google, and OpenID.

14.2 Configuring GitHub OAuth for Jenkins
Jenkins supports several authentication plugins, in addition to built-in username and
password authentication. If you’re using GitHub as your version-control system within
your organization, you can also use the GitHub OAuth service for user authentication
and privileges management.

 On Jenkins, install the GitHub Authentication plugin (https://plugins.jenkins.io/
github-oauth/) from Manage Plugins. Once it’s installed, head to your GitHub
account and create a new application (https://github.com/settings/applications/
new) called Jenkins with the settings in figure 14.10.

Figure 14.9 Managing and assigning roles

https://plugins.jenkins.io/github-oauth/
https://plugins.jenkins.io/github-oauth/
https://github.com/settings/applications/new
https://github.com/settings/applications/new

473Configuring GitHub OAuth for Jenkins

Figure 14.10 Configuring the GitHub OAuth application

The authorization callback URL must be JENKINS_URL/securityRealm/finishLogin.
Click the Register Application button. A Client ID and secret will be generated, as
shown in figure 14.11. Keep the page open to the application registration, so this
information can be copied into your Jenkins configuration.

Figure 14.11 Application client ID and client secret

474 CHAPTER 14 Jenkins administration and best practices
Head back to Jenkins, and in the Global Security configuration, set the Security Realm
option to GitHub Authentication Plugin. Then set the Client ID, Client Secret, and
OAuth scopes as shown in figure 14.12.

Figure 14.12 Configuring the Jenkins client settings for OAuth

Click the Save and Apply buttons to reload the configuration. You can now sign in
with your GitHub account, as shown in figure 14.13.

Figure 14.13 Authorizing Jenkins to access your GitHub account

Similar to classic username and password authentication, you can use a project-based
matrix authorization strategy to determine Jenkins permissions for each GitHub
account.

475Keeping track of Jenkins users’ actions
 Another option is to use the GitHub Committer Authorization strategy. If you
check this option, you can use GitHub repository permissions to determine permis-
sions for each Jenkins project. If the GitHub repository of the project is public, all
authenticated users will have read-only access, while project collaborators can build,
edit, configure, cancel, or delete the Jenkins job. However, if the GitHub repository of
the project is private, only collaborators can manage the Jenkins job.

 To determine Jenkins access based on GitHub access, head to the Configure
Global Security section from Manage Jenkins (figure 14.14).

Figure 14.14 Configuring GitHub Authorization settings

NOTE We have authorized the use of the /github-webhook callback URL to
receive post-commit hooks from GitHub.

14.3 Keeping track of Jenkins users’ actions
In addition to configuring user accounts and access rights, keeping track of individual
user actions can also be useful: in other words, who did what to your Jenkins configu-
ration. This sort of audit trail facility is even required in many organizations for secu-
rity compliance.

 The Audit Trail plugin (https://plugins.jenkins.io/audit-trail/) keeps track of the
main user actions in a set of rolling log files. To set this up, go to the Plugin Manager
page and select the Audit Trail plugin in the list of available plugins. Then, as usual,
click Install and Restart Jenkins after the plugin has been downloaded.

 To enable audit logging, configure the plugin from the main Jenkins configura-
tion page. Select Logfile as a Logger; that way, the plugin will produce a system-style
log file. Then, set the log location (the directory in which the log files are to be writ-
ten), as shown in figure 14.15. Of course, you need to ensure that the user running
your Jenkins instance is allowed to write to this directory.

https://plugins.jenkins.io/audit-trail/

476 CHAPTER 14 Jenkins administration and best practices

Figure 14.15 Configuring the Audit Trail plugin

By default, the details recorded in the audit logs are fairly sparse—they effectively
record key actions performed, such as creating, modifying, or deleting job configura-
tions or views, and the user who performed the actions. The log also shows how indi-
vidual build jobs started. Figure 14.16 shows an extract of the default log.

Figure 14.16 Viewing audit logs for the authorized user activity

You can also configure the number of log files to be maintained and the maximum
size of each file. In the previous configuration, we have the Log File Count set to 10; in
this case, Jenkins will write to log files with names like jenkins-audit.log.0, jenkins-
audit.log.1 . . . jenkins-audit.log.9. Now, you can access the configuration history for
the whole server, including system configuration updates, as well as the changes made
to the configuration of each project.

NOTE You can take the preceding configuration further and stream those
log files to a centralized ELK platform and set up alerts on unauthorized user
activities. For a step-by-step guide, head back to chapter 13.

14.4 Extending Jenkins with shared libraries
Throughout this book, you have learned how to write a CI/CD pipeline for multiple
applications, and while implementing those pipeline steps, we have invoked multiple

477Extending Jenkins with shared libraries
custom functions. Those functions, shown in the following listing, were duplicated in
multiple Jenkinsfiles.

def commitAuthor(){
 sh 'git show -s --pretty=%an > .git/commitAuthor'
 def commitAuthor = readFile('.git/commitAuthor').trim()
 sh 'rm .git/commitAuthor'
 commitAuthor
}

def commitID() {}
def commitMessage() {}
def notifySlack(String buildStatus){}

Therefore, we had some common code across different pipelines. To avoid copying
and pasting the same code into different pipelines, and to reduce redundancies, we
can centralize the common code in a shared library within Jenkins. That way, we can
reference the same code in all of the pipelines.

 A shared library is a collection of independent Groovy scripts stored in a Git reposi-
tory. This means you can version, tag, and do all the stuff you’re used to with Git.
Before writing our first shared library in Jenkins, we need to create a GitHub reposi-
tory where Groovy scripts will be stored.

 Inside the repository, create a vars folder and write a Groovy script per function.
For example, create a file named commitAuthor.groovy and define a function called
call. The body of the function is what will be executed when the commitAuthor
instruction is invoked, as shown in the following listing.

#!/usr/bin/env groovy

def call() {
 sh 'git show -s --pretty=%an > .git/commitAuthor'
 def commitAuthor = readFile('.git/commitAuthor').trim()
 sh 'rm .git/commitAuthor'
 commitAuthor
}

Notice that the Groovy script must implement the call method. Write your custom
code within the braces {}. You can also add parameters to your method. Do the same
for other functions and push the changes to the remote repository. Eventually, your
repository should look like figure 14.17.

Listing 14.1 Helper functions for Git and Slack

Listing 14.2 Defining a global variable in the shared library

Searches your path
looking for Groovy to
execute the script Allows the global variable

to be invoked in a
manner similar to a step

Prints the Git
commit author

478 CHAPTER 14 Jenkins administration and best practices

Figure 14.17 Shared library custom global variables

Now that you’ve created your library with custom steps, you need to tell Jenkins about
it. To add a shared library, head to a job configuration. Under Pipeline Libraries, add
a library with the following settings:

 Name—A short identifier that will be used in pipeline scripts
 Default version—Could be anything understood by Git—for example, branches,

tags, or commit ID hashes

Next, load the library from the GitHub repository at the master branch, as shown in
figure 14.18.

NOTE You can also define a shared library globally, from Manage Jenkins >
Configure System > Global Pipeline Libraries. That way, all pipelines can use
functionality implemented in this library.

To load the shared library in a pipeline, you need to import it with the @Library
annotation at the top of your pipeline definition. Then call the target function by its
name, as shown in the following listing.

Figure 14.18
Loading a shared
library from GitHub

479Extending Jenkins with shared libraries

@Library('utils')_

node('workers'){
 stage('Checkout'){
 checkout scm
 notifySlack 'STARTED'
 }
}

The underscore is not a typo or mistake; you need this if the line immediately after
the @Library annotation is not an import statement. You can override the default
version defined for the library with the @Library('id@version') annotation.

 If you’re using a declarative pipeline, you need to wrap the library name inside a
libraries section, as shown in the following listing.

libraries {
 lib('utils')
 }
 pipeline {
 // Your pipeline would go here....
 }

When using a library, you may also specify a version with the following format:

 libraries {
 lib('utils@VERSION')
 }

Run the previous pipeline, and the output should look something like figure 14.19.

Figure 14.19 Loading the shared library from Git within a pipeline

Listing 14.3 Importing the shared library in the scripted pipeline

Listing 14.4 Importing shared library in the declarative pipeline

The underscore is required if the line
immediately after the @Library
annotation is not an import statement.

480 CHAPTER 14 Jenkins administration and best practices
Another way to write a library is to define the functions within a Groovy class. Create
the Git.groovy class in src/com/labouardy/utils, as shown in the following listing.

#!/usr/bin/env groovy
package com.labouardy.utils

class Git {
 Git(){}

 def commitAuthor() {
 sh 'git show -s --pretty=%an > .git/commitAuthor'
 def commitAuthor = readFile('.git/commitAuthor').trim()
 sh 'rm .git/commitAuthor'
 commitAuthor
 }

 def commitID() {
 sh 'git rev-parse HEAD > .git/commitID'
 def commitID = readFile('.git/commitID').trim()
 sh 'rm .git/commitID'
 commitID
 }

 def commitMessage() {
 sh 'git log --format=%B -n 1 HEAD > .git/commitMessage'
 def commitMessage = readFile('.git/commitMessage').trim()
 sh 'rm .git/commitMessage'
 commitMessage
 }
}

You can load classes defined in the library by selecting their fully qualified name:

@Library('utils') import com.labouardy.utils.Git
this.commitAuthor()

Or you can create an object constructor function and then call the method from the
object:

def gitUtils = new Git(this)
gitUtils.commitAuthor

NOTE It is possible to use third-party Java libraries, typically found in Maven
Central (https://search.maven.org/), from trusted library code by using the
@Grab annotation. Refer to the Grape documentation for details (http://
mng.bz/nrxg).

14.5 Backing up and restoring Jenkins
Backing up your data is a universally recommended practice, and your Jenkins server
should be no exception. Fortunately, backing up Jenkins is relatively easy. In this sec-
tion, we will look at a few ways to do this.

Listing 14.5 Writing a shared library

https://search.maven.org/
http://mng.bz/nrxg
http://mng.bz/nrxg

481Backing up and restoring Jenkins
 In Jenkins, all the settings, build logs, and archives of the artifacts are stored under
the $JENKINS_HOME directory. You can back up the directory manually, or by using
a plugin like ThinBackup (https://plugins.jenkins.io/thinBackup/). The plugin pro-
vides a simple user interface that you can use to back up and restore your Jenkins con-
figurations and data.

 Once you install the plugin, you need to configure the backup directory, as shown
in figure 14.20. Specify the backup directory to be /var/lib/backups. Be sure Jenkins
has write rights!

Figure 14.20 Configuring the ThinBackup plugin

Now, you can test whether the backup is working by clicking the Backup Now option.
It will create a backup of Jenkins data in the backup directory you specified in the
settings:

To restore a previous configuration, just go to the Restore page and choose the date
of the configuration you wish to reinstate, as shown in figure 14.21. Once the

https://plugins.jenkins.io/thinBackup/

482 CHAPTER 14 Jenkins administration and best practices
configuration has been restored to the previous state, you need to reload the Jenkins
configuration from disk or restart Jenkins.

Figure 14.21 Restoring a previous configuration

As a result of the backup, you can restore Jenkins from an earlier point in time in case
of data corruption or a human-caused event.

NOTE The ThinBackup plugin stores the backup locally for production
usage. It’s highly recommended to store your backups on a remote server or
mount an external data storage.

If you’re not a fan of plugins, you can set up a cron job (see the next section for more
details) on Jenkins to schedule regular backups. It will back up everything located at
/var/lib/jenkins to a remote repository such as S3 bucket, as shown in the following
listing.

cd $JENKINS_HOME
BACKUP_TIME=$(date +'%m.%d.%Y')
zip -r backup-${BACKUP_TIME} .
aws s3 cp backup-${BACKUP_TIME} s3://BUCKET/

Sometimes you need to move or copy Jenkins build jobs from one Jenkins instance to
another, without copying the entire Jenkins configuration. For example, you might be
migrating your build jobs to a Jenkins server on a brand-new instance.

 You can copy or move build jobs between instances of projects simply by copying
or moving the build job directories to the new Jenkins instance. I have built an open
source CLI called Butler (https://github.com/mlabouardy/butler) to import/export
Jenkins jobs and plugins easily.

 To get started, find the appropriate package for your system and download it.
Here’s the command for Linux:

wget https://s3.us-east-1.amazonaws.com/butlercli/1.0.0/linux/butler
chmod +x butler
cp butler /usr/local/bin/

Listing 14.6 Backing up the $JENKINS_HOME folder to an S3 bucket

https://github.com/mlabouardy/butler

483Backing up and restoring Jenkins
Verify that the installation worked by opening a new terminal session and checking
whether Butler is available. To export Jenkins plugins, you need to provide the Jenkins
URL:

butler jobs export --server JENKINS_URL --username USERNAME --password
PASSWORD

A new jobs/ directory will be created with every job in Jenkins. Each job will have its
own configuration file, config.xml.

 To import the plugins, issue the butler plugins export command. Butler will
dump a list of plugins installed to stdout, and a new file, plugins.txt, will be generated,
with a list of installed Jenkins plugins with name and version pairs, as shown in fig-
ure 14.22.

Figure 14.22 Listing of installed Jenkins plugins

You can import exported jobs and plugins with the butler plugins/jobs import
commands. Butler will use the exported files to issue API calls to the target Jenkins
instance to import plugins and jobs.

 So, all in all, migrating build jobs between Jenkins instances isn’t all that hard—
you just need to know a couple of tricks for the corner cases, and if you know where to
look, Jenkins provides some nice tools to make the process smoother.

 If you want $JENKINS_HOME content to be persisted on disk even if the Jenkins
master instance has been restarted or shut down, you can mount a remote filesystem
on the $JENKINS_HOME folder.

 If you’re running Jenkins on AWS, you can use an AWS service called Amazon Elas-
tic File System, or EFS (https://aws.amazon.com/efs/). Create a filesystem on EFS by
clicking the Create File System button (figure 14.23).

https://aws.amazon.com/efs/

484 CHAPTER 14 Jenkins administration and best practices

Figure 14.23 Creating an Amazon EFS filesystem

Once the filesystem is created and its state is Available, mount the EFS filesystem in
the /var/lib/jenkins directory, so all the configuration will be saved in EFS:

sudo mount -t nfs4
-o nfsvers=4.1,rsize=1048576,wsize=1048576,
hard,timeo=600,retrans=2,noresvport
EFS_ID.efs.REGION.amazonaws.com:/ /var/lib/jenkins/

If you want to test it, terminate your EC2 instance and a new one will be launched
automatically with the same configuration (make sure to add the mount commands to
the Packer template while baking the Jenkins master AMI).

14.6 Setting up cron jobs with Jenkins
Jenkins provides a cron-like feature to periodically build a project. This feature is pri-
marily used to run scheduled builds, like nightly/weekly builds or running tests. For
example, you might want to run performance tests or integration tests for Android or
iOS releases at night, when users do not access the backend under test.

 To configure a scheduled nightly build that runs at a certain day and time, head
over to Jenkins dashboard. Create a new job and select Freestyle Project. Configure
the job accordingly by adding the job details shown in figure 14.24.

Figure 14.24 Creating a Freestyle project

485Setting up cron jobs with Jenkins
Schedule your build from the Build Triggers tab by writing the cron syntax shown in
figure 14.25, and then select the Build Periodically option. Fill in a cron-like value for
the time you wish to trigger the pipeline execution.

Figure 14.25 Defining a cron job expression

Jenkins uses a cron expression, with fields as follows:

 MINUTES—Minutes in one hour (0–59)
 HOURS—Hours in one day (0–23)
 DAYMONTH—A day in a month (1–31)
 MONTH—Month in a year (1–12)
 DAYWEEK—Day of the week (0–7), where 0 and 7 are Sunday

For example (figure 14.26), to trigger a build at midnight on Sunday, the cron value
H 12 * * 7 will do the job.

NOTE You should be aware that the time zone is relative to the location
where your Jenkins virtual machine is running. This example uses Coordi-
nated Universal Time (UTC).

Figure 14.26 Shell script to back up the $JENKINS_HOME folder

486 CHAPTER 14 Jenkins administration and best practices
Build your job to test that everything is working as you’ve expected. Your build results
should look like figure 14.27.

Figure 14.27 Triggering a cron job manually

Next time, your job will automatically execute at 12:00 A.M. since you have scheduled
it to run at this time using cron syntax.

 Jenkins jobs could be run programmatically, using API calls or the Jenkins CLI.
That opens up the opportunity to implement complex schedule builds by integrating
an external service like AWS Lambda to invoke a Jenkins build job based on different
events; see figure 14.28.

Figure 14.28 Triggering a Jenkins job from a Lambda function

This diagram covers how to trigger a Jenkins build job from a Lambda function through
the Jenkins RESTful API. The Lambda function is invoked on the upcoming Cloud-
Watch event rule (cloud-managed cron job) or HTTPS requests from API Gateway.

487Running Jenkins locally as a Docker container

14.7 Running Jenkins locally as a Docker container
If you need to debug Jenkins or test a new plugin, you can deploy Jenkins locally on
your machine and run it as a Docker container. That way, you can easily create and
destroy a Jenkins server.

 You can use the official Jenkins Docker image from the DockerHub repository
(https://hub.docker.com/_/jenkins). The image contains the current LTS release of
Jenkins (v2.60.3 at the time of this writing).

 To get started, on your terminal, create a bridge network in Docker with the fol-
lowing command:

docker network create jenkins

We will need the Docker daemon to be able to provision Jenkins workers dynamically.
That’s why we will deploy a Docker container based on the Docker image:

docker run -d --name docker --privileged
--network jenkins --network-alias docker
--env DOCKER_TLS_CERTDIR=/certs
--volume jenkins-docker-certs:/certs/client
--volume jenkins-data:/var/jenkins_home
--publish 2376:2376 docker:dind

To avoid exposing the Docker daemon (/var/run.docker.sock) running in the host
machine, we will run a Docker container providing a self-service and ephemeral
Docker Engine, which Jenkins will use instead of the worker machine’s Docker
engine. This pattern is referred to as Docker in Docker, or nested containerization.

 We will override the Jenkins official image to install the Docker CLI and needed
plugins for Jenkins. Create a Dockerfile with the content in the following listing.

FROM jenkins/jenkins:lts
MAINTAINER mlabouardy <mohamed@labouardy.com>

USER root
RUN apt-get update && apt-get install -y apt-transport-https \
 ca-certificates curl gnupg2 \
 software-properties-common
RUN curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add -
RUN apt-key fingerprint 0EBFCD88
RUN add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/debian \
 $(lsb_release -cs) stable"
RUN apt-get update && apt-get install -y docker-ce-cli
USER jenkins
RUN jenkins-plugin-cli
--plugins blueocean:1.24.3 workflow-aggregator:2.6
github:1.32.0 docker-plugin:1.2.1

Listing 14.7 Dockerfile to build custom Jenkins image

Installs Docker
community
edition (CE)
client

Switches to Jenkins user to
avoid running the container by
default in privileged mode

Installs the
Jenkins plugins

https://hub.docker.com/_/jenkins

488 CHAPTER 14 Jenkins administration and best practices
This Dockerfile does the following:

 Installs the Docker Community Edition CLI
 Installs Jenkins plugins, including the following:

– Blue Ocean—Sophisticated visualizations of CD pipelines for fast and intuitive
comprehension of software pipeline status

– Workflow—A suite of plugins that lets you write pipelines as code (Jenkins-
files)

– GitHub—GitHub API integration and support of Git operations
 Docker—Lets you provision Jenkins workers on Docker containers

Build a new Docker image from this Dockerfile and assign the image a meaningful
name:

docker build -t jenkins-custom:lts .

Then, deploy a container based on the built image with the following docker run
command:

docker run -d --name jenkins --network jenkins
--env DOCKER_HOST=tcp://docker:2376
--env DOCKER_CERT_PATH=/certs/client
--env DOCKER_TLS_VERIFY=1
--publish 8080:8080 --publish 50000:50000
--volume jenkins-data:/var/jenkins_home
--volume jenkins-docker-certs:/certs/client:ro
jenkins-custom:lts

This command will map a Docker volume to the /var/jenkins_home folder. In case
you need to restart or recover your Jenkins instance, all of the state is stored inside the
Docker volume.

 You can also build and deploy all the services by writing a docker-compose.yml file,
as shown in the following listing.

version: "3.8"

services:
 docker:
 image: docker:dind
 ports:
 - "2376:2376"
 networks:
 jenkins:
 aliases:
 - docker
 environment:
 - DOCKER_TLS_CERTDIR=/certs
 volumes:
 - jenkins-docker-certs:/certs/client

Listing 14.8 Grok custom patterns definition

489Running Jenkins locally as a Docker container
 - jenkins-data:/var/jenkins_home
 privileged: true

 jenkins:
 build: .
 ports:
 - "8080:8080"
 - "50000:50000"
 networks:
 - jenkins
 environment:
 - DOCKER_HOST=tcp://docker:2376
 - DOCKER_CERT_PATH=/certs/client
 - DOCKER_TLS_VERIFY=1
 volumes:
 - jenkins-data:/var/jenkins_home
 - jenkins-docker-certs:/certs/client:ro

volumes:
 jenkins-docker-certs: {}
 jenkins-data: {}

networks:
 jenkins:

Run docker-compose up, and Docker Compose starts and runs Jenkins.
 Visit localhost:8080; you should see the login page. As a part of the Jenkins setup,

we need to view the password inside the container instance; use the container ID (or
the name) and run the docker exec command:

docker container exec ID sh -c "cat /var/jenkins_home/secrets/
initialAdminPassword"

After running the command, you should see the code. Copy and paste it on the dash-
board to unlock Jenkins; see figure 14.29.

Figure 14.29 Jenkins server running inside a Docker container

490 CHAPTER 14 Jenkins administration and best practices
To set up workers, choose Manage Jenkins and System Configuration. Then click the
Configure tab in the Cloud section. The Docker option will be available. Set the
Docker URI to tcp://docker:2376, as shown in figure 14.30. Click the Test button
to check the connection.

Figure 14.30 Configuring Docker remote API on Jenkins

The Docker API should return an error: server gave HTTP response to HTTPS
client. You need to configure the client TLS certificates to connect with the Docker
daemon. The certificates can be found at the /certs/client folder within the Jenkins
container.

 Create a new Jenkins credential of type Certificate with the following settings:

 Client Key—/certs/client/key.pem content
 Client Certificate—/certs/client/cert.pem content
 Server CA Certificate—/certs/client/ca.pem content

The credential settings should look similar to those in figure 14.31.

Figure 14.31 Jenkins server deployed locally inside a Docker container

Then, we need to define an agent template, as shown in figure 14.32; this template is
the blueprint used to spin up Jenkins workers. You need a Docker image that can be

491Running Jenkins locally as a Docker container
used to run the Jenkins agent runtime. You can use the jenkins/ssh-agent (https://
hub.docker.com/r/jenkins/ssh-agent) as a base for Jenkins workers. The image has
SSHD installed (this listens for an incoming connection when you attempt to connect
via SSH).

Figure 14.32 Configuring a new Docker agent template

You can also build a custom Docker agent image with all dependencies and packages
needed to build your projects. To test it out, create a new Jenkins pipeline with the
content shown in figure 14.33.

Figure 14.33 New inline pipeline

Trigger the pipeline by clicking the Build Now link from the left navigation menu; the
job will launch a container and execute the pipeline (figure 14.34).

The agents are provisioned dynamically and stopped after each build.

Figure 14.34 Spinning up the Jenkins
agent based on a Docker container

https://hub.docker.com/r/jenkins/ssh-agent
https://hub.docker.com/r/jenkins/ssh-agent

492 CHAPTER 14 Jenkins administration and best practices
Summary
 You can share common code and steps across multiple pipelines by writing a

Jenkins shared library.
 You can define fine-grained control over user/group permissions per project

with the Matrix Authorization Strategy plugin.
 You can also create a custom role with a list of permissions and assign the role

to users instead of assigning appropriate permissions to each user with the Role
Strategy plugin.

 Use GitHub’s own authentication scheme for implementing authentication in
your Jenkins instance.

 The Docker plugin will run dynamic Jenkins agents inside Docker containers.

Wrapping up
We’re at the end of our journey in this book. You learned about Jenkins and the pipe-
line-as-code approach. You discovered several CI/CD implementations for cloud-native
applications, such as containerized applications in Kubernetes and serverless applica-
tions. You designed and deployed a Jenkins cluster on the cloud for scale and mastered
monitoring and troubleshooting Jenkins.

 Technology changes quickly, so it’s great to have a few resources to go to for recent
news and information. The weekly newsletter DevOps Bulletin (https://devopsbulletin
.com) features a great collection of posts regarding PaC and the latest wonders in the
DevOps space. I also recommend keeping an eye on DevOps World (www.devopsworld
.com), where you can be inspired by experts and your peers and gain the tools you need
to shape the future of software delivery at your organization and at large.

 I hope you’ve enjoyed the book and learned something from it. PaC is still new,
but awareness is growing rapidly. Over the next few years, you’ll see many organiza-
tions, small and large, embrace PaC to release faster and reduce the feedback loop.

https://devopsbulletin.com
https://devopsbulletin.com
https://devopsbulletin.com
http://www.devopsworld.com
http://www.devopsworld.com
http://www.devopsworld.com

index
Symbols

_repositories_push scope 288
--build-arg argument 421
--dry-run flag 376
--no-sandbox flag 257
--prod 415
--region command-line option 69
--url argument 392
--version flag 385
-auth option 219
-cover flag 241
-i flag 220
-set_exit_status 239
.helmignore 372
*testing.T 240
/* tslint:disable */ instruction 256
/approve comment 398
%{PATTERN:IDENTIFIER} syntax 458
${stageVariables.environment} 428
$JENKINS_HOME directory 64, 124
$JENKINS_HOME/init.groovy.d directory 85
$LATEST version 423, 425

A

Acceptance tests stage 24
ACCOUNT_ID variable 287, 294
ACLs (access-control lists) 57, 405
ACM (AWS Certificate Manager) 63, 124
AD (Azure Active Directory) 163
admin 263, 446
agent directive 51

Agent permission 470
agent section 33, 302, 304
AKS (Azure Kubernetes Service) 356
alerts 462–466
allowMissing parameter 252
always directive 34
always post condition block 34
Amazon ECR (Elastic Container Registry)

286–287
Amazon Elastic File System (EFS) 124
Amazon Elastic Kubernetes Service (EKS) 356
Amazon Resource Name (ARN) 125
Amazon S3 420–422
Amazon Simple Queue Service (SQS) 200
amazon-ebs builder 78
AMIs (Amazon Machine Images) 55

master, baking 85–96
configuring Jenkins upon startup 85–88
Jenkins plugins 88–96

worker, baking 96–99
Anchore Engine 296
Anonymous 470
api variable 406
API_TOKEN variable 218
apiVersion 370
applications, microservices-based 199–203
ARG instruction 278
ARN (Amazon Resource Name) 125
AS NAME 276
ASG (Auto Scaling group) 57, 131–133
assertEqual() function 234
Authenticated authorization 470
Auto Scaling groups 128
493

INDEX494
automated tests 231–270
code analysis 246–248
code coverage reports 240–242
code linter integration 238–240
HTML coverage reports 250–254
mocked database tests 248–250
parallel tests 244–246
security in CI pipeline 242–244
SonarQube Scanner 260–270
UI testing with Headless Chrome 254–260
unit tests inside Docker containers 233–238

autoscaling 9
autoscaling workers 128–139

Auto Scaling group 131–133
CPU utilization load 136–139
launch configuration 128–131
scaling policies 133–135

avg() function 465
AWS (Amazon Web Services) 141

architecting Jenkins for scale in 55–69
configuring CLI (command-line

interface) 65–66
creating and managing IAM (Identity and

Access Management) user 66–69
preparing environment 64–65

provisioning VPC (virtual private cloud)
103–117

overview 104–108
VPC bastion host 114–117
VPC route tables 111–114
VPC subnets 108–111

AWS Certificate Manager (ACM) 63, 124
AWS CLI update-kubeconfig command 360, 363
aws configure command 69
aws ec2 describe-availability-zones command

109
aws ecr command 294
aws eks update-kubeconfig command 362
aws provider 104
aws s3 cp instruction 417, 430
aws s3 ls command 422
AWS_ACCESS_KEY_ID variable 104
aws_ami data source 114
aws_autoscaling_group resource 131
AWS_DEFAULT_REGION environment

variable 69
aws_instance resource 117
aws_key_pair resource 115
aws_launch_configuration resource 128
AWS_PROFILE environment variable 104
aws_profile variable 107
AWS_REGION 374
AWS_SECRET_ACCESS_KEY variable 104

aws-auth ConfigMap 363
awsauto 299
AWSLambda_FullAccess 419
Azure 162–183

applying autoscaling to Jenkins workers
178–183

building Jenkins VM images in 162–166
deploying Jenkins master virtual machine

171–177
deploying private virtual network 166–170

Azure Active Directory (AD) 163
Azure Bastion offering Remote Desktop Protocol

(RDP) managed service 169
Azure Container Registry 288–290
Azure Instance Metadata Service (IMDS) 179
azure-arm builder 163
AzureBastionSubnet 167, 170
azurerm 167
azurerm_public_ip resource 170

B

backing up 480–484
baking machine images 70–99

immutable infrastructure 71–72
master AMI 85–96

configuring Jenkins upon startup 85–88
Jenkins plugins 88–96

with Packer 72–85
baking machine image 75–85
installation and configuration 74–75
process 73–74

worker AMI 96–99
BasicSSHUserPrivateKey constructor 87
bastion host 61, 114–117
BDD (behavior-driven development) 24
before keyword 247
Blue Ocean plugin 26–29, 488
BRANCH_NAME 294
build arguments, Docker 277–279
build job keyword 332
Build stage 24, 31, 274, 276, 302, 338–339,

383–384, 407, 409, 421
BUILD_TAG environment variable 376
build() method 274, 278
builders 74, 145
butler plugins export command 483
butler plugins/jobs import commands 483

C

CA (certificate authority) 124
CD (continuous delivery)

defined 14

INDEX 495
metrics 441–466
centralized logging for Jenkins logs with

ELK 452–462
creating alerts based on 462–466
monitoring Jenkins cluster health 442–452

on K8s (Kubernetes) 372–381
CD (continuous deployment)

automating flow with Jenkins 360–372
defined 13–14
on Docker Swarm 321–335

CE (Docker Community Edition) 296
centralized logging 452–462

streaming logs with Filebeat 454–461
streaming logs with Logstash plugin 461–462

certificate authority (CA) 124
chaos engineering 10
Chart.yaml 372
Checkout stage 24, 31, 209, 222, 302
chkconfig command 79
CI (continuous integration) pipeline 197

Docker images within 271–308
building 273–279
deploying Docker private registry 279–291
managing pull requests with Jenkins

305–308
scanning for vulnerabilities 296–301
tagging 291–296
writing Jenkins declarative pipeline 301–304

security in 242–244
CI/CD (continuous integration/continuous

deployment) 3–20
cloud native approaches 4–12

cloud native 8–10
microservices 5–8
monolithic 4–5
serverless 10–12

embracing practices 15–16
tools for 16–20

choosing 17–18
Jenkins 18–20

CIDR (Classless Inter-Domain Routing) 60
cidrsubnet(prefix, newbits, netnum) method 109
CLI (command-line interface) 53, 64–66, 372
Client Certificate 490
Client Key 490
client_certificate_password 169
client_certificate_path 169
cloud native 3–20

approaches for going 4–12
cloud native 8–10
microservices 5–8
monolithic 4–5
serverless 10–12

CI/CD (continuous integration/continuous
deployment)
CD (continuous delivery), defined 14
CD (continuous deployment), defined

13–14
CI (continuous integration), defined 12–13
embracing practices 15–16
tools for 16–20

Docker Swarm, applications on 309–354
defining continuous deployment

process 321–335
handling code promotion with Jenkins

341–346
implementing Jenkins delivery

pipeline 346–354
integrating Jenkins with Slack

notifications 335–341
running distributed Docker Swarm

cluster 310–321
cloud providers 140–193

DigitalOcean 183–192
building Jenkins worker Droplets 190–192
creating Jenkins DigitalOcean

Snapshots 183–185
deploying Jenkins master Droplet 186–189

Google Cloud Platform (GCP) 141–161
building Jenkins VM images 141–147
configuring with Terraform 147–153
deploying Jenkins on Google Compute

Engine 153–157
launching automanaged workers on

157–161
Microsoft Azure 162–183

applying autoscaling to Jenkins
workers 178–183

building Jenkins VM images in 162–166
deploying Jenkins master virtual

machine 171–177
deploying private virtual network 166–170

cloud-native architecture 4
ClusterIP keyword 366
ClusterRoleBinding resource 370
clusters

monitoring health of 442–452
running distributed Docker Swarm 310–321
setting up Kubernetes 356–360

code
analysis 246–248
linter integration 238–240
promotion 341–346

cold start 415
command-line interface (CLI) 53, 64–66
command-line pipeline linter 41–43

INDEX496
commitAuthor instruction 477
commitAuthor() method 340
commitID() function 293
commitID() method 376
commitMessage() method 340
communication 6
complexity 8
Conditions option 465
consistency 22
containers, Docker

running Jenkins locally as 487–491
unit tests inside 233–238

continuous everything 7
continuous integration. See CI (continuous inte-

gration) pipeline
CORS (cross-origin resource sharing) 405
cost optimization 11
cost-effectiveness 5
count variable 191
coverage reports

code 240–242
HTML 250–254

CPU utilization load 136–139
CREATE DATABASE InfluxQL (Influx Query

Language) statement 445
create_before_destroy life cycle setting 132
Credentials 470
credentials file 66
credentials() helper method 34
cron jobs 484–486
cross-origin resource sharing (CORS) 405
CSRF (cross-site request forgery) 41
CSS (Cascading Style Sheets) 403
currentBuild.result variable 34

D

database tests, mocked 248–250
DEBUG 457
declarative pipeline 31–35, 301–304
declarative-lint option 43
Default version 478
delivery pipeline 346–354
dependencies section 375, 386
depends_on keyword 316
deploy machine learning (ML) models 141
Deploy stage 24, 332, 344, 349, 365, 377, 407,

417, 424, 426, 432
deployment 6
deployment packages 407–417

mono-repo strategy 407–413
multi-repo strategy 413–417

describe keyword 247

Develop 294
develop branch 38–39
develop tag 307, 323, 329, 333, 361
Developer permission 472
development speed 10
development velocity 4, 7, 10
DevOps 4
DigitalOcean 183–192

building Jenkins worker Droplets 190–192
creating Jenkins DigitalOcean Snapshots

183–185
deploying Jenkins master Droplet 186–189

digitalocean builder 183, 185
digitalocean Packer builder 183
digitalocean_droplet type 186
Docker 488
docker build command 235–236
Docker Community Edition (CE) 296
Docker containers

running Jenkins locally as 487–491
unit tests inside 233–238

docker cp command 237
Docker DSL 273–277
docker exec command 489
docker group 312
Docker images 271–308

building 273–279
Docker build arguments 277–279
using Docker DSL 273–277

deploying Docker private registry 279–291
Amazon Elastic Container Registry

(ECR) 286–287
Azure Container Registry 288–290
Google Container Registry (GCR) 290–291
Nexus Repository OSS 279–286

managing pull requests with Jenkins 305–308
scanning for vulnerabilities 296–301
tagging Docker images right way 291–296
writing Jenkins declarative pipeline 301–304

Docker in Docker 487
docker info command 321
docker login command 34, 285, 325
docker node ls 321
Docker plugin 488
docker push command 290
docker push operation 288
docker run command 235, 488
docker stack deploy command 322, 324, 329,

347, 354
Docker Swarm 309–354

defining continuous deployment process
321–335

handling code promotion with Jenkins 341–346

INDEX 497
implementing Jenkins delivery pipeline
346–354

integrating Jenkins with Slack
notifications 335–341

running distributed Docker Swarm
cluster 310–321

docker swarm join command 314
docker_container_status_docker

measurement 448
docker-compose ps command 296
docker-compose up 489
docker.build() method 236, 238, 240
Dockerfile.test 234
Droplet deployments 186–189
DSL (domain-specific language) 23

E

EC2 (Amazon Elastic Compute Cloud) 55
ec2-user username 312
ECR (Elastic Container Registry) 286–287
efficiency 22
EFS (Amazon Elastic File System) 124
EKS (Amazon Elastic Kubernetes Service) 356
ELB (Elastic Load Balancing) 121
ELK stack (Elasticsearch, Logstash, and

Kibana) 452–462
streaming logs with Filebeat 454–461
streaming logs with Logstash plugin 461–462

email notifications 434–437
entries section 385
ENTRYPOINT instruction 239
ENV instruction 278
env keyword 294
env.BRANCH_NAME variable 294
env.BUILD_ID keyword 291
env.JOB_NAME variable 35
ENVIRONMENT argument 346
environment credentials 66
environment section 34
environment tag 168
Environment Variables 65
ETL (extract-transform-load) pipelines 141
Evaluate Every option 465
extract-transform-load (ETL) pipelines 141

F

failFast true instruction 245
failure post condition block 34
false 252
fast infrastructure deployment 73
fault tolerance 7

feature/X branch 38
Filebeat 454–461
finally block 435
Folder 205
for loop 419
FQDN (fully qualified domain name) 125
Freestyle project 204
FROM instruction 276
function code 417–420

G

GCE (Google Compute Engine) console 145
gcloud command 290
gcloud compute images list command 144
GCP (Google Cloud Platform) 4, 141–161

building Jenkins VM images 141–147
configuring with Terraform 147–153
deploying Jenkins on Google Compute

Engine 153–157
launching automanaged workers on 157–161

GCP virtual machines (VMs) 141
GCR (Google Container Registry) 290–291
Get-AzSubscription 163
Git 205–215
git clone command 384
git log command 340
git show command 340
Git.groovy class 480
GitFlow branch model 38–39
GitHub 488

integrating 205–215
triggering builds with webhooks 222–230

GitHub OAuth 472–475
GitHub plugin 488
GitHubWehookForwarder Lambda function 228
GKE (Google Kubernetes Engine) 141, 356
go build command 275
go test command 239–241
golint command 238–239
Google Cloud Platform. See GCP
Google Compute Engine 153–157
Google Compute Engine (GCE) console 145
Google Kubernetes Engine (GKE) 141, 356
GOOGLE_APPLICATION_CREDENTIALS envi-

ronment variable 144
googlecompute builder 143, 145
@Grab annotation 480
Grafana platform 444
granularity 6

INDEX498
H

HCL (HashiCorp Configuration Language)
declarative language 104

HEAD flag 340
Headless Chrome 254–260
Healthcheck stage 387–389
Helm 381–387
helm build 396
Helm Chart stage 384
helm package command 384
helm repo index command 384
helm rollback command 377
helm upgrade command 376–377
horizontal autoscaling 11
hotfix/X branch 38
HTML 240
HTML coverage reports 250–254
httpRequest DSL object 388
HTTPS 124–127
Hudson plugin 91

I

IaaS (infrastructure-as-a service) provider 100,
140

IaC (infrastructure as code) 22, 101–103
IAM (AWS Identity and Access

Management) 66–69
IAM roles 66
ID 323
IDE (integrated development environment)

integrations 43–45
identified by a client ID (aka application ID) 162
if clause 344, 349
IGW (internet gateway) 60
images file 298
IMDS (Azure Instance Metadata Service) 179
immutable infrastructure 71–72
influx CLI 445
influx command 445
InfluxDB 444
INFLUXDB_IP variable 446
INFO log 453, 457
infrastructure as code (IaC) 22, 101–103
infrastructure-as-a service (IaaS) provider 100,

140
Inheritance project 204
inputs 445
–insecure-registry flag 285
inside() instruction 238–239
instance.save() statement 86
instances 445

integrated development environment (IDE)
integrations 43–45

Integration tests 13
internet gateway (IGW) 60

J

Java Network Launch Protocol (JNLP) 53–54
Java Web Start (JWS) 53
JAVACLASS custom pattern 458
JDK (Java Development Kit) 79
Jenkins 18–46, 49–69, 140–193

administration 467–492
backing up and restoring 480–484
configuring GitHub OAuth 472–475
running locally as Docker container 487–491
security and RBAC authorization 468–472
setting up cron jobs 484–486
shared libraries 476–480
users actions, keeping track of 475–476

architecting for scale in AWS 55–69
configuring CLI 65–66
creating and managing IAM user 66–69
preparing environment 64–65

as code with Terraform 100–139
autoscaling worker pool 128–139
infrastructure as code (IaC) 101–103
provisioning AWS VPC 103–117
running with native SSL/HTTPS 124–127
setting up self-healing master 117–124

automated tests with 231–270
code analysis 246–248
code coverage reports 240–242
code linter integration 238–240
HTML coverage reports 250–254
mocked database tests 248–250
parallel tests 244–246
security in CI pipeline 242–244
SonarQube Scanner 260–270
UI testing with Headless Chrome 254–260
unit tests inside Docker containers 233–238

baking machine images 70–99
immutable infrastructure 71–72
master AMI 85–96
with Packer 72–85
worker AMI 96–99

code promotion, handling 341–346
configuring SSH authentication with 219–222
DigitalOcean 183–192

building Jenkins worker Droplets 190–192
creating Jenkins DigitalOcean

Snapshots 183–185
deploying Jenkins master Droplet 186–189

INDEX 499
email notifications in 434–437
GitFlow branch model 38–39
Google Cloud Platform (GCP) 141–161

building Jenkins VM images 141–147
configuring with Terraform 147–153
deploying on Google Compute Engine

153–157
launching automanaged workers on

157–161
Jenkinsfile 22–35

Blue Ocean plugin 26–29
declarative pipeline 31–35
scripted pipeline 29–31

managing pull requests with 305–308
managing workers 52–55

command line 53
JNLP 53–54
SSH 52–53
Windows service 54–55

master-worker architecture 50–52
Microsoft Azure 162–183

applying autoscaling to Jenkins
workers 178–183

building Jenkins VM images in 162–166
deploying Jenkins master virtual

machine 171–177
deploying private virtual network 166–170

monitoring cluster health 442–452
multibranch pipelines 36–37
Slack notifications, integrating with 335–341
test-driven development with 39–45

command-line pipeline linter 41–43
IDE integrations 43–45
Jenkins Replay button 40–41

triggering builds with GitHub webhooks
222–230

writing declarative pipeline 301–304
XML configuration 215–219

Jenkins agent 29
Jenkins Long-Term Support (LTS) 56
Jenkins master 50
Jenkins plugin 91
jenkins user 97
Jenkins worker 50
Jenkins X 390–400
JENKINS_HOME directory 481, 483
JENKINS_HOSTNAME and JENKINS_SSH-

D_PORT variables 43
JENKINS_JAVA_OPTIONS 86
jenkins_master.tf file 154
JENKINS_URL environment variable 227
jenkins_worker 132
jenkins_workers.tf file 131, 178, 181, 190

jenkins-* index pattern 453
jenkins-master 140, 173
Jenkinsfile 209
JNLP (Java Network Launch Protocol) 52, 54
Job 470
JOBNAME custom pattern 458
JsonSlurper class 388
jump box 61, 114
JVM (Java Virtual Machine) 85
JWS (Java Web Start) 53
jx CLI 399
jx promote command 392
jx version --short 390

K

K8s (Kubernetes) 355–400
automating continuous deployment flow with

Jenkins 360–372
continuous delivery steps 372–381
Jenkins X 390–400
packaging with Helm 381–387
running post-deployment smoke tests 387–389
setting up Kubernetes cluster 356–360

Kompose 371–372
kubectl apply -f command 372
kubectl apply command 360, 362, 365–366
kubectl get nodes command 363
kubectl get pods -n watchlist 375
kubectl get pods command 380
kubectl get services -n watchlist output 380
kubectl get svc command 391
kubernetes.io/cluster/ 357

L

labels 29
LabelSelector 366
Lambda aliases 425
Lambda-based serverless functions 401–437

configuring email notification in Jenkins
434–437

creating deployment packages 407–417
mono-repo strategy 407–413
multi-repo strategy 413–417

deploying Lambda-based application 402–407
hosting static website on S3 420–422
maintaining multiple Lambda

environments 423–434
updating Lambda function code 417–420

latest 294, 378
latest tag 294, 347–348
launch configuration 58

INDEX500
Less operational overhead 11
@Library annotation 478–479
@Library('id@version') annotation 479
logging, centralized 452–462

streaming logs with Filebeat 454–461
streaming logs with Logstash plugin 461–462

logstash step 462
LOGSTASH_HOST variable 456
LTS (Jenkins Long-Term Support) 56

M

machine images, baking 70–99
immutable infrastructure 71–72
master AMI 85–96

configuring Jenkins upon startup 85–88
Jenkins plugins 88–96

with Packer 72–85
baking machine image 75–85
installation and configuration 74–75
process 73–74

worker AMI 96–99
maintainability 5
management resource group 171, 176
management visual network 167
management VPC 108, 296
managers token 314
mapRoles section 363
marketplace variable 406
master AMI

baking 85–96
configuring Jenkins upon startup 85–88
Jenkins plugins 88–96

deploying Jenkins Droplet 186–189
self-healing master 117–124

master branch 38–39
master-worker architecture 50–52
Matrix authorization strategy 469–471
mem_vm measurement 447
mesh routing feature 330
metrics, CD (continuous delivery) 441–466

centralized logging for Jenkins logs with
ELK 452–462

creating alerts based on 462–466
monitoring Jenkins cluster health 442–452

microservices
on K8s (Kubernetes) 355–400

automating continuous deployment flow
with Jenkins 360–372

continuous delivery steps 372–381
discovering Jenkins X 390–400
packaging applications with Helm 381–387
running post-deployment smoke tests

387–389

setting up Kubernetes cluster 356–360
overview 5–8
pipeline as code for 197–230

configuring SSH authentication with
Jenkins 219–222

Git and GitHub integration 205–215
Jenkins jobs’ XML configuration 215–219
microservices-based applications 199–203
multibranch pipeline jobs 203–205
triggering Jenkins builds with GitHub

webhooks 222–230
microservices architecture pattern 5
mocha 248
mocked database tests 248–250
modules 403
mono repository 201
mono-repo strategy 407–413
monolithic architecture 4–5
movies_to_parse_sandbox 324
MoviesLoader Lambda function 404, 409,

417–419
MoviesParser Lambda function 404, 417–420
MoviesStore Lambda functions 419, 425
MoviesStoreAddToFavorites Lambda

function 413
MoviesStoreListMovies Lambda function

403–404, 406, 413, 427, 429
MoviesStoreViewFavorites Lambda function 413
multi-repo strategy 413–417
multibranch pipelines 36–37, 203, 205
multiline settings 456
multiple repositories 201
multiprovider support 73

N

Name 478
name query parameter 217
NAT (Network Address Translation) 61
native SSL (Secure Sockets Layer) 124–127
nested containerization 487
Network Address Translation (NAT) 61
Nexus Repository OSS 279–286
NFS (Network File System) server 64
ng build -c sandbox flag 334
ng build command 277
no operational overhead 9
node block wrapper 51
node:latest floating tag 276
node:lts floating tag 276
node('workers') instruction 301
node{} 269
notifySlack() method 338, 340

INDEX 501
npm (Node Package Manager) 249
npm install command 277, 415
npm run lint alias command 254
npm run test command 249–250, 258
npm start command 277
nx-*-registry-add permission 271
nx-*-registry-read permission 285

O

one repository per service strategy 407
operational overhead 8
Organization 205
os_profile section 172
output section 126
output variable 152
outputs 445
Outputs section 283, 331, 333, 405
Overall 470

P

PaaS (platform-as-a-service) provider 140
PaC (pipeline as code) 22

for microservices 197–230
configuring SSH authentication with

Jenkins 219–222
Git and GitHub integration 205–215
Jenkins jobs’ XML configuration 215–219
microservices-based applications 199–203
multibranch pipeline jobs 203–205
triggering Jenkins builds with GitHub

webhooks 222–230
with Jenkins 21–46

GitFlow branch model 38–39
Jenkinsfile 22–35
multibranch pipelines 36–37
test-driven development with Jenkins 39–45

Packer 72–85, 142
baking machine image 75–85
installation and configuration 74–75
process 73–74

packer build command 80–81, 94, 98, 144, 146,
164, 185, 281, 312

packer build template.json command 184
packer validate command 94, 185
packer validate template.json command 146
parallel directive 417
parallel DSL step 244
parallel key 416
parallel keyword 244
parallel section 244
parallel tests 244–246

ParseMovie() method 240
PASSWORD 299
PATH variable 65, 75, 103, 242
pattern_dir setting 459
pip install command 274
Pipeline 204
pipeline as code. See PaC (pipeline as code)
pipeline block 301–302
pipeline keyword 301
plan step 150
plan/apply 175
platform-as-a-service (PaaS) provider 140
plugins

Blue Ocean 26–29
Jenkins 88–96
Logstash 461–462

policies, scaling 133–135
PoLP (principle of least privilege) 66
polyglot 11
post build section 436
post section 34, 303, 436
powershell step 235
PR (pull request) 332
PR- or feature 400
Preprod 294
preprod branch 38–39
preprod image tag 377
preprod tag 294, 343, 345, 377
principle of least privilege (PoLP) 66
private registry, Docker 279–291

Amazon Elastic Container Registry
(ECR) 286–287

Azure Container Registry 288–290
Google Container Registry (GCR) 290–291
Nexus Repository OSS 279–286

production 378, 392
programming language and architecture 17
provider section 167
provisioner file 91
provisioners section 74
provisioners stage 78
public_repo scope 207
public-read 405
publish-version operation 427
publishHTML command 252
pull requests (PR) 305–308, 332
Push stage 24, 291, 293–294, 302, 345, 384, 407,

413
python main.py command 274
python test_main.py command 234

INDEX502
Q

QA 472
QA permission 472
quality tests 13, 24
Quality Tests stage 238, 247

R

RBAC (role-based access control) 288, 467, 472
Matrix authorization strategy 469–471
role-based authorization strategy 471–472

RDP (Remote Desktop Protocol) 169
REGION log 323
REGION variable 287, 294
REGISTRY parameter 299
REGISTRY_CREDENTIALS_USR and REGIS-

TRY_CREDENTIALS_PSW environment
variables 34

release 372
Replay button 40–41
repo scope 207
repo:status 207
repositories 372
resiliency 10
resource block 181
restoring 480–484
risk management 22
role-based access control. See RBAC (role-based

access control)
route tables, VPC 111–114
Run 470

S

s-1vcpu-2gb 186
S3 420–422
s3:GetObject 405
SAM (Serverless Application Model) 419
sandbox 428
sandbox EKS cluster 357
sandbox VPC 313
scalability 5, 7, 73
scaling 55–69

configuring CLI 65–66
creating and managing IAM (Identity and

Access Management) user 66–69
policies 133–135
preparing environment 64–65

scaling and resiliency 5
scaling policy 58
Scan operation 403
SCM 470

scrape_configs section 450
scripted pipeline 29–31
Secure Shell (SSH) 52–53, 219–222
security 468–472

in CI pipeline 242–244
Matrix authorization strategy 469–471
role-based authorization strategy 471–472

security compliance 9
security group 56
security tests 13, 24
Security Tests stage 243
security_groups.tf 175
self-healing master 117–124
sendEmail() method 435–436
Server CA Certificate 490
server gave HTTP response to HTTPS client

error 490
Serverless 401
Serverless Application Model (SAM) 419
serverless functions

defined 10–12
Lambda 401–437

configuring email notification in
Jenkins 434–437

creating deployment packages 407–417
deploying application 402–407
hosting static website on S3 420–422
maintaining multiple environments 423–434
updating function code 417–420

serverless movement 401
service jenkins status command 121
service nexus restart command 280
service principal (SP) 162
service_account variable 144
service-oriented architecture (SOA) 6
setUpClass() method 234
Shared Credentials file 66
shared libraries 477, 480
sharing, component 6
Slack notifications 335–341
slave or build agent 50
slave term 50
smoke tests 387–389
Snapshots, DigitalOcean 183–185
SOA (service-oriented architecture) 6
sonar-scanner command 266
SonarQube Scanner 260–270
source argument 403
SP (service principal) 162
SPA (Movie Marketplace is a single-page

application) 420
spec section 365
speed 22

INDEX 503
SQS (Amazon Simple Queue Service) 200
SQS_URL 374
SSH (Secure Shell) 52–219, 222
ssh_keys section 172
ssh-keygen command 92, 115
sshagent block 328
SSL (Secure Sockets Layer) 62, 124–127
stacks 321
stage blocks 302
stage command 302
stage variables environment variables 427
stages 23
stages section 302
staging 346, 377, 392
static code analysis 13
static website 420–422
status field 460
steps block 302
steps section 35
strategy.setAllowAnonymousRead(true)

instruction 86
streaming logs

with Filebeat 454–461
with Logstash plugin 461–462

subnets, VPC 60, 108–111
success post condition block 34
SUCCESS status 236
sudo command 312
swarm init command 318
SWARM_MANAGER_IP 321
swarm_managers resource 316
swarm-production 347
swarm-sandbox 327
swarm-staging 342
swarmManager variable 342
synchronization 8

T

t.Error() method 240
t2.large instances 119, 136
t2.micro instance 83
tagging Docker images 291–296
tags 83
target block 252
target platform 17
TDD (test-driven development) 24
team experience and skills 17
Telegraf 444
Template validated successfully 94
templates 372
Terraform

configuring GCP network with 147–153

Jenkins as code with 100–139
autoscaling workers 128–139
infrastructure as code (IaC) 101–103
provisioning AWS VPC (virtual private

cloud) 103–117
running with native SSL/HTTPS 124–127
setting up self-healing master 117–124

terraform apply command 110, 112–113, 116,
126, 131–132, 135, 149–150, 152, 155–156,
160, 169, 171, 173, 176, 182, 189, 228, 262,
283, 318, 331, 333, 359, 405, 429

terraform destroy command 400
terraform init command 359, 405
terraform output command 116, 157
terraform plan command 106–107, 110, 119
Terraform vX.Y.Z 103
Test keyword 240
test prefix 234
Test stage 35, 302
test-driven development with Jenkins 39–45

command-line pipeline linter 41–43
integrated development environment (IDE)

integrations 43–45
Jenkins Replay button 40–41

testing package 239–240
TF_VAR environment variable 107
TF_VAR_aws_profile variable 107
tools 16–20

choosing 17–18
Jenkins 18–20

top command 136
true 248

U

UI testing 13, 254–260
Unit testing 233
unit tests 13, 24, 233–238
Unit Tests stage 234, 240, 410
unstable post condition block 34
update-function-code command 417–419
USER 323
user variables 74
user-data 129
USERNAME variable 299, 325
username:token argument 219
users 475–476
UTC (Coordinated Universal Time) 485

V

Validate Jenkinsfile command 44
Values.yaml file 372
variable block 105

INDEX504
VCS (version-control system) 31, 272
version variable 427
View 470
VMs (virtual machines)

Azure
building Jenkins images 162–166
deploying Jenkins master 171–177

GCP 141–147
VPC (virtual private cloud) 60, 103–117

bastion host 114–117
overview 104–108
route tables 111–114
subnets 108–111

VPN (virtual private network) 114, 166–170
VSCode (Visual Studio Code) 43
vulnerabilities 296–301

W

waitForQualityGate step 269
WARNING 457
Watchlist 219
watchlist application 372
webhooks 222–230
website block 405
Windows service 54–55

withForQualityGate step 268
withRegistry block 291
withSonarQubeEnv block 266
workers 52–55

applying autoscaling to 178–183
autoscaling 128–139

Auto Scaling group 131–133
launch configuration 128–131
scaling policies 133–135
workers CPU utilization load 136–139

baking AMI 96–99
building Droplets 190–192
command line 53
JNLP 53–54
launching on GCP 157–161
SSH (Secure Shell) 52–53
Windows service 54–55

workers label 51, 131, 209, 304
workers token 314
Workflow plugins 488
WORKSPACE 335

X

XML (Extensible Markup Language) 22,
 215–219

A new online reading experience

liveBook, our online reading platform, adds a new dimension to your Manning books,

with features that make reading, learning, and sharing easier than ever. A liveBook

version of your book is included FREE with every Manning book.

This next generation book platform is more than an online reader. It’s packed with

unique features to upgrade and enhance your learning experience.

• Add your own notes and bookmarks

• One-click code copy

• Learn from other readers in the discussion forum

• Audio recordings and interactive exercises

• Read all your purchased Manning content in any browser, anytime, anywhere

As an added bonus, you can search every Manning book and video in liveBook—even

ones you don’t yet own. Open any liveBook, and you’ll be able to browse the content and

read anything you like.*

Find out more at www.manning.com/livebook-program.

*Open reading is limited to 10 minutes per book daily

The Manning Early Access Program

Don’t wait to start learning! In MEAP, the Manning Early Access Program, you can read

books as they’re being created and long before they’re available in stores.

Here’s how MEAP works.

• Start now. Buy a MEAP and you’ll get all available chapters in PDF, ePub, Kindle,

and liveBook formats.

• Regular updates. New chapters are released as soon as they’re written. We’ll

let you know when fresh content is available.

• Finish faster. MEAP customers are the first to get final versions of all books!

Pre-order the print book, and it’ll ship as soon as it’s off the press.

• Contribute to the process. The feedback you share with authors makes the end

product better.

• No risk. You get a full refund or exchange if we ever have to cancel a MEAP.

Explore dozens of titles in MEAP at www.manning.com.

Mohamed Labouardy

ISBN: 978-1-61729-754-0

T
reat your CI/CD pipeline like the real application it is.
With the Pipeline as Code approach, you create a collec-
tion of scripts that replace the tedious web UI wrapped

around most CI/CD systems. Code-driven pipelines are easy
to use, modify, and maintain, and your entire CI pipeline
becomes more effi cient because you directly interact with core
components like Jenkins, Terraform, and Docker.

In Pipeline as Code you’ll learn to build reliable CI/CD pipe-
lines for cloud-native applications. With Jenkins as the back-
bone, you’ll programmatically control all the pieces of your
pipeline via modern APIs. Hands-on examples include build-
ing CI/CD workfl ows for distributed Kubernetes applications,
and serverless functions. By the time you’re fi nished, you’ll
be able to swap manual UI-based adjustments with a fully
automated approach!

What’s Inside
● Build and deploy a Jenkins cluster on scale
● Write pipeline as code for cloud-native applications
● Automate the deployment of Dockerized and serverless
 applications
● Deploy Jenkins on AWS, GCP, and Azure
● Grasp key principles of a successful DevOps culture

For developers familiar with Jenkins and Docker. Examples in
Go.

Mohamed Labouardy is the CTO and co-founder of Crew.work,
a Jenkins contributor, and a DevSecOps evangelist.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Pipeline as Code

SOFTWARE ENGINEERING

M A N N I N G

“Confi guring CI/CD
platforms has never

 been easier!”
—Ubaldo Pescatore, PagoPA

“A must-read for any aspir-
ing and seasoned devops/release

automation engineer.”
—Giridharan Kesavan, Visa

“A very useful resource, not
only for setting up and using
Jenkins for CI/CD, but also

for understanding the impor-
tance of Packer, Terraform,
Docker, and Kubernetes.”

—Kosmas Chatzimichalis, Mach7x

“A perfect journey
through pipeline-based

 software delivery.”—Satej Kumar Sahu, Honeywell

“A brilliant, hands-on deep
dive into how to implement
modern CI/CD pipelines.”—Matthias Busch, Otto GmbH

See first page

	Pipeline as Code
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1 Getting started with Jenkins
	1 What’s CI/CD?
	1.1 Going cloud native
	1.1.1 Monolithic
	1.1.2 Microservices
	1.1.3 Cloud native
	1.1.4 Serverless

	1.2 Defining continuous integration
	1.3 Defining continuous deployment
	1.4 Defining continuous delivery
	1.5 Embracing CI/CD practices
	1.6 Using essential CI/CD tools
	1.6.1 Choosing a CI/CD tool
	1.6.2 Introducing Jenkins

	Summary

	2 Pipeline as code with Jenkins
	2.1 Introducing the Jenkinsfile
	2.1.1 Blue Ocean plugin
	2.1.2 Scripted pipeline
	2.1.3 Declarative pipeline

	2.2 Understanding multibranch pipelines
	2.3 Exploring the GitFlow branch model
	2.4 Test-driven development with Jenkins
	2.4.1 The Jenkins Replay button
	2.4.2 Command-line pipeline linter
	2.4.3 IDE integrations

	Summary

	Part 2 Operating a self-healing Jenkins cluster
	3 Defining Jenkins architecture
	3.1 Understanding master-worker architecture
	3.2 Managing Jenkins workers
	3.2.1 SSH
	3.2.2 Command line
	3.2.3 JNLP
	3.2.4 Windows service

	3.3 Architecting Jenkins for scale in AWS
	3.3.1 Preparing the AWS environment
	3.3.2 Configuring the AWS CLI
	3.3.3 Creating and managing the IAM user

	Summary

	4 Baking machine images with Packer
	4.1 Immutable infrastructure
	4.2 Introducing Packer
	4.2.1 How does it work?
	4.2.2 Installation and configuration
	4.2.3 Baking a machine image

	4.3 Baking the Jenkins master AMI
	4.3.1 Configuring Jenkins upon startup
	4.3.2 Discovering Jenkins plugins

	4.4 Baking the Jenkins worker AMI
	Summary

	5 Discovering Jenkins as code with Terraform
	5.1 Introducing infrastructure as code
	5.1.1 Terraform usage

	5.2 Provisioning an AWS VPC
	5.2.1 AWS VPC
	5.2.2 VPC subnets
	5.2.3 VPC route tables
	5.2.4 VPC bastion host

	5.3 Setting up a self-healing Jenkins master
	5.4 Running Jenkins with native SSL/HTTPS
	5.5 Dynamically autoscaling the Jenkins worker pool
	5.5.1 Launch configuration
	5.5.2 Auto Scaling group
	5.5.3 Autoscaling scaling policies
	5.5.4 Workers CPU utilization load

	Summary

	6 Deploying HA Jenkins on multiple cloud providers
	6.1 Google Cloud Platform
	6.1.1 Building Jenkins VM images
	6.1.2 Configuring a GCP network with Terraform
	6.1.3 Deploying Jenkins on Google Compute Engine
	6.1.4 Launching automanaged workers on GCP

	6.2 Microsoft Azure
	6.2.1 Building golden Jenkins VM images in Azure
	6.2.2 Deploying a private virtual network
	6.2.3 Deploying a Jenkins master virtual machine
	6.2.4 Applying autoscaling to Jenkins workers

	6.3 DigitalOcean
	6.3.1 Creating Jenkins DigitalOcean Snapshots
	6.3.2 Deploying a Jenkins master Droplet
	6.3.3 Building Jenkins worker Droplets

	Summary

	Part 3 Hands-on CI/CD pipelines
	7 Defining a pipeline as code for microservices
	7.1 Introducing microservices-based applications
	7.2 Defining multibranch pipeline jobs
	7.3 Git and GitHub integration
	7.4 Discovering Jenkins jobs’ XML configuration
	7.5 Configuring SSH authentication with Jenkins
	7.6 Triggering Jenkins builds with GitHub webhooks
	Summary

	8 Running automated tests with Jenkins
	8.1 Running unit tests inside Docker containers
	8.2 Automating code linter integration with Jenkins
	8.3 Generating code coverage reports
	8.4 Injecting security in the CI pipeline
	8.5 Running parallel tests with Jenkins
	8.6 Improving quality with code analysis
	8.7 Running mocked database tests
	8.8 Generating HTML coverage reports
	8.9 Automating UI testing with Headless Chrome
	8.10 Integrating SonarQube Scanner with Jenkins
	Summary

	9 Building Docker images within a CI pipeline
	9.1 Building Docker images
	9.1.1 Using the Docker DSL
	9.1.2 Docker build arguments

	9.2 Deploying a Docker private registry
	9.2.1 Nexus Repository OSS
	9.2.2 Amazon Elastic Container Registry
	9.2.3 Azure Container Registry
	9.2.4 Google Container Registry

	9.3 Tagging Docker images the right way
	9.4 Scanning Docker images for vulnerabilities
	9.5 Writing a Jenkins declarative pipeline
	9.6 Managing pull requests with Jenkins
	Summary

	10 Cloud-native applications on Docker Swarm
	10.1 Running a distributed Docker Swarm cluster
	10.2 Defining a continuous deployment process
	10.3 Integrating Jenkins with Slack notifications
	10.4 Handling code promotion with Jenkins
	10.5 Implementing the Jenkins delivery pipeline
	Summary

	11 Dockerized microservices on K8s
	11.1 Setting up a Kubernetes cluster
	11.2 Automating continuous deployment flow with Jenkins
	11.2.1 Migrating Docker Compose to K8s manifests with Kompose

	11.3 Walking through continuous delivery steps
	11.4 Packaging Kubernetes applications with Helm
	11.5 Running post-deployment smoke tests
	11.6 Discovering Jenkins X
	Summary

	12 Lambda-based serverless functions
	12.1 Deploying a Lambda-based application
	12.2 Creating deployment packages
	12.2.1 Mono-repo strategy
	12.2.2 Multi-repo strategy

	12.3 Updating Lambda function code
	12.4 Hosting a static website on S3
	12.5 Maintaining multiple Lambda environments
	12.6 Configuring email notification in Jenkins
	Summary

	Part 4 Managing, scaling, and monitoring Jenkins
	13 Collecting continuous delivery metrics
	13.1 Monitoring Jenkins cluster health
	13.2 Centralized logging for Jenkins logs with ELK
	13.2.1 Streaming logs with Filebeat
	13.2.2 Streaming logs with the Logstash plugin

	13.3 Creating alerts based on metrics
	Summary

	14 Jenkins administration and best practices
	14.1 Exploring Jenkins security and RBAC authorization
	14.1.1 Matrix authorization strategy
	14.1.2 Role-based authorization strategy

	14.2 Configuring GitHub OAuth for Jenkins
	14.3 Keeping track of Jenkins users’ actions
	14.4 Extending Jenkins with shared libraries
	14.5 Backing up and restoring Jenkins
	14.6 Setting up cron jobs with Jenkins
	14.7 Running Jenkins locally as a Docker container
	Summary
	Wrapping up

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Pipeline as Code-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

