LA

JTAG debug interface for GNU Debugger

ARM1 / Conten-A3 / Cortex-M3

User Manual

Manual Version 1.05 for BDI3000

abakrom

©1997-2009 by Abatron AG

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 2

I 1011 o T LT o o 4
1.7 BDIB000. ..ttt e e a b e e e e e a e e e e e e R ne e e e e anee e e s eannee e aannreeeea 4
1.2 BDI CONfIQUIATION ...oiiiiiiee ettt e e et e e e et e e e e e nne e e e e eneeeeeans 5

7 1 =3 = 1] = o o 6
2.1 Connecting the BDI3000 t0 Targetcoooiuiiiiiiiiiee e 6

2.1.1 AdAPtiVE CIOCKING ...eeeiiiiieiiieiie et e s e e e e ennne e 8
2.1.2 Serial Wir€ DEDUQcoouiiiie e 10
2.2 Connecting the BDI3000 t0 POWET SUPPIYeeeeeieiiiieeeiiiee et 11
2.3 Status LED «MODE >uuiiiiiieii ettt e st e e e e e e e e e e e e e e e esnnnraneeeaeeeanns 12
2.4 Connecting the BDI3000 t0 HOSLcuviiiiiiiiiiee e 13
2.4.1 Serial lin€ COMMUNICATIONuiiiiiiiiiii e 13
2.4.2 Ethernet CommUNICATIONceuiiiiiiiii e 14
2.5 Installation of the Configuration Software.............cccoi e 15
2.5.1 Configuration with a Linux / UniX NOSt.........ccoiiiiii e 16
2.5.2 Configuration with @ WIiNndOWS hOStcuuiiiiiiiiiii e 18
2.5.3 Configuration via Telnet / TFTP ... 20
2.6 Testing the BDI3000 t0 hOSt CONNECHON........uuuiiiiiiiiiiiiiiiiiiiiitiiei ettt eeeeeeeeeeees 22
2.7 TFTP Server fOr WINAOWScooiiiiiiiiiiiee ettt e e e e e e annnee e 22

R K= g T T o T 1€ T 0 - 23
3.1 PrincCiple Of OPEeratioNoiiiiiiiiii e e e 23
3.2 ConfIQUIation File.........oeiiiiiiii e 24

K B - U B I OSSP P PP UPPPPPPPPP 25
3.2.2 Part [TARGET] ...ttt e e e e e e e e nrneee s 28
2 B - U | (@1 I PSP UP P PPPR PPN 33
B.2.4 Part [FLASHY] ... ettt e e e e e nneeeea 35
B.2.5 Part [REGS] ..o iiieiii ettt ettt ettt e s e e e e e e e e anae e e e e nneeeeaa 40
3.3 Debugging With GDBouiiiiiiie e 42
3.3.1 Target SEIUP oo 42
3.3.2 Connecting to the target..........ooo i 42
3.3.3 Breakpoint HandliNg.........oooiiiiiieeece e 43
3.3.4 GDB MONItOr COMMANG........uiiiiiiiiiiee ettt e e e e e e e e e e e e s e nreeee s 43
3.3.5 Target serial I/O Via BDI..........ooiiiiiiiiiiiiiie et 44
3.3.6 Target DCC I/O Via BDl.........oooiiiiiieiiee et 45
3.4 TelNet INTEMACE.....ccco e 46
3.4.1 ComMMAN LIStot e e 47
3.4.2 CPXX REQISIEIS ...ttt e e e s 49
3.5 MUILI-COre SUPPOI. ittt et et e st e e e e sbe e e e enbe e e e e enneeeesanneeeaans 50
3.5.1 JTAG Daisy ChaiN@d COrESccuueiiiiiiiiieieiiiee ettt e et eneeee s 50
3.5.2 ARM7 cores connected via JTAG-AP ... 50

4 SPeECIfiCAtiONS ..ccceeeiiiieer i 51

5 Environmental NOTICEe.......cccceiiiiiiiiiieeiin s nnnnae 52

6 Declaration of Conformity (CE).......cccccmmriimiissssssmmmmnimnnssnnns 52

A 1= - 11/ 53

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 3

7 Appendices

AN I 010 01T o T 1] ' 54
1 T (=T 3= T = 55
L I - T [T 14T T 55

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 4

1 Introduction

bdiGDB enhances the GNU debugger (GDB), with JTAG debugging for ARM11 and Cortex-A8/M3
based targets. With the built-in Ethernet interface you get a very fast code download speed. No target
communication channel (e.g. serial line) is wasted for debugging purposes. Even better, you can use
fast Ethernet debugging with target systems without network capability. The host to BDI communica-
tion uses the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset,
program flash memory).

The following figure shows how the BDI3000 interface is connected between the host and the target:

Target System

COP Interface

Unix / PC Host

BDl3o00

GNU Debugger
(GDB)

Ethernet (10/100 BASE-T)

1.1 BDI3000

The BDI3000 is the main part of the bdiGDB system. This small box implements the interface be-
tween the JTAG pins of the target CPU and a 10/100Base-T Ethernet connector. The firmware of the
BDI3000 can be updated by the user with a simple Linux/Windows configuration program or interac-
tively via Telnet/TFTP. The BDI3000 supports 1.2 — 5.0 Volts target systems.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 5

1.2 BDI Configuration

As an initial setup, the IP address of the BDI3000, the IP address of the host with the configuration
file and the name of the configuration file is stored within the flash of the BDI3000.

Every time the BDI3000 is powered on, it reads the configuration file via TFTP.

Following an example of a typical configuration file:

; bdiGDB configuration for ARM Integrator CM1136JF-S

[INIT]
WM32 0x1000000C 0x00000005 ;REMAP=1, MISC LED ON

[TARGET]

CPUTYPE ARM1136

CLOCK 1 ;JTAG clock (O=Adaptive,1=32MHz,2=16MHz ...)
POWERUP 3000 ;start delay after power-up detected in ms
ENDIAN LITTLE ;memory model (LITTLE | BIG)

VECTOR CATCH Ox1f ;catch D_Abort, P_Abort, SWI, Undef and Reset
BREAKMODE = HARD ;SOFT or HARD

SCANPRED 00 ;no JTAG devices before the ARM1136

SCANSUCC 14 ;the ETMBUF after the ARM1136 core

[HOST]

IP 151.120.25.119

FILE E:\cygwin\home\demo\pid7t\fibo.x

FORMAT ELF

LOAD MANUAL ;load file MANUAL or AUTO after reset

[FLASH]

WORKSPACE 0x00001000 ;workspace in target RAM for fast programming algorithm
CHIPTYPE AM29BX8 ;Flash type (AM29F | AM29BX8 | AM29BX16 | 128BX8 | 128BX16)
CHIPSIZE 0x100000 ;The size of one flash chip in bytes

BUSWIDTH 32 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE $arm1136.cfg

FORMAT BIN 0x00010000

[REGS]

FILE $regl136.def

Based on the information in the configuration file, the target is automatically initialized after every re-
set.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 6

2 Installation

2.1 Connecting the BDI3000 to Target

The enclosed cables to the target system are designed for the ARM Development Boards. In case
where the target system has the same connector layout, the cable (14 pin or 20 pin) can be directly

connected.

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not
exceed 20 cm (8").

2277222227
1 19 20 pin Multi-ICE
> - i Connector
Target System EEEEEEEHR 1 - Ve Target
TIIIIIIIIT
. T % 5 20 3-TRST
> r. EEERE < 14 pin Target 5-TDI
EEEER Connector
1 - Vce Target 7-TMS
2 14 2 - GROUND 8 - GROUND
3-TRST 9-TCK
BDloon. 4-GROUND 10- GROUND
5-TDI
7 -TMS -
- TARGET A 13-TDO
9 1
g PP 9-TCK 15 - RESET
. 00
pec2t 11-TDO
10 2 12 - RESET

The green LED «TRGT» marked light up when target is powered up

For BDI MAIN / TARGET A connector signals see table on next page.

Warning:
Before you can use the BDI3000 with an other target processor type (e.g. PPC <--> ARM), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected

from the target system.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming a new firmware for an other target CPU.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 7

TARGET A Connector Signals

Pin Name Description
1 reserved This pin is currently not used.
2 TRST JTAG Test Reset

This open-drain / push-pull output of the BDI3000 resets the JTAG TAP controller on the
target. Default driver type is open-drain.

3+5 GND System Ground
4 TCK JTAG Test Clock
This output of the BDI3000 connects to the target TCK line.
6 TMS JTAG Test Mode Select
This output of the BDI3000 connects to the target TMS line.
7 RESET This open collector output of the BDI3000 is used to reset the target system.
8 TDI JTAG Test Data In

This output of the BDI3000 connects to the target TDI line.

9 Vcc Target 1.2-5.0V:

This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

10 TDO JTAG Test Data Out
This input to the BDI3000 connects to the target TDO line.

The BDI3000 works also with targets which have no dedicated TRST pin. For this kind of targets, the
BDI cannot force the target to debug mode immediately after reset. The target always begins execu-
tion of application code until the BDI has finished programming the Debug Control Register.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 8

2.1.1 Adaptive Clocking

Adaptive clocking is a feature which ensures that the BDI3000 never loses synchronization with the
target device, whatever the target clock speed is. To achieve this, BDI3000 uses two signals TCK
and RTCK. When adaptive clocking is selected, BDI3000 issues a TCK signal and waits for the Re-
turned TCK (RTCK) to come back. BDI3000 does not progress to the next TCK until RTCK is re-
ceived. For more information about adaptive clocking see ARM documentation.

Note:
Adaptive clocking is only supported with a special target cable (P/N 90052). This special cable can
be ordered separately from Abatron (p/n 90052).

20 pin Multi-ICE
2222222727 S Connector
Target System 1 / 19 1 - Vcc Target

srnmmnaay

2 20 5-TDI

3-TRST

-TMS

- GROUND
-TCK

- GROUND
- RTCK

BDI3o00

—_
- O © 00 N

13-TDO

TARGET B 15 - RESET

15 1

tecccces
90000000
f f

16 2

@ TReT

The green LED «TRGT» marked light up when target is powered up

For TARGET B connector signals see table on next page.

Warning:
Before you can use the BDI3000 with an other target processor type (e.g. PPC <--> ARM), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected

from the target system.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming a new firmware for an other target CPU.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 9

BDI TARGET B Connector Signals:

Pin Name Description
1 TDO JTAG Test Data Out
This input to the BDI3000 connects to the target TDO line.
2 reserved
3 TDI JTAG Test Data In
This output of the BDI3000 connects to the target TDI line.
4 reserved
5 RTCK Returned JTAG Test Clock
This input to the BDI3000 connects to the target RTCK line.
6 Vce Target 1.2-5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd 1/O on the target board.
7 TCK JTAG Test Clock
This output of the BDI3000 connects to the target TCK line.
8 TRST JTAG Test Reset
This open-drain / push-pull output of the BDI3000 resets the JTAG TAP controller on the
target. Default driver type is open-drain.
9 TMS JTAG Test Mode Select
This output of the BDI3000 connects to the target TMS line.
10 reserved
11 reserved
12 GROUND System Ground
13 RESET System Reset
This open-drain output of the BDI3000 is used to reset the target system.
14 reseved
15 reseved
16 GROUND System Ground

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 10

2.1.2 Serial Wire Debug

For Cortex-M3 / Cortex-A8 the BDI3000 supports also the ,Serial Wire Debug Port* (SW-DP). In or-
der to use SW-DP a different firmware has to be loaded into the BDI3000 (included on the CD). Also
a special target cable is available on request (p/n 90054).

B SWCLK
D]-mE=y SWDIO

/—> [RlEE=3 Reset
Target System red
= Vcc Target

= Ground

TARGET A
9 1

T
eeee e
[XXX
f f
10 2

@ TRGT

The green LED «TRGT» marked light up when target is powered up

TARGET A Connector Signals

Pin Name Describtion

3 GND System Ground

4 SWCLK Serial Wire Clock

6 SWDIO Serial Wire Debug Data Input/Output

7 RESET This open collector output of the BDI2000 can be used to hard reset the target system.

9 Vcc Target 1.2-5.0V:
This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 11

2.2 Connecting the BDI3000 to Power Supply
The BDI3000 needs to be supplied with the enclosed power supply from Abatron (5VDC).

VAN

Before use, check if the mains voltage is in accordance with the input voltage printed on power
supply. Make sure that, while operating, the power supply is not covered up and not situated near
a heater or in direct sun light. Dry location use only.

VAN

For error-free operation, the power supply to the BDI3000 must be between 4.75V and 5.25V DC.
The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

+5VDC GND

iz

POWER

casing connected to ground terminal

@ &0

The green LED «BDI» marked light up when 5V power is connected to the BDI3000

Please switch on the system in the following sequence:
* 1 —> external power supply
¢ 2 —> target system

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 12
2.3 Status LED «MODE»
The built in LED indicates the following BDI states:
a
o
=
[
MODE LED BDI STATES
OFF The BDI is ready for use, the firmware is already loaded.
ON The output voltage from the power supply is too low.
BLINK The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).
© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3)

User Manual

13

2.4 Connecting the BDI3000 to Host
2.4.1 Serial line communication

Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication
cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the
BDI and for the Host side (Refer to Figure below).

RS232 Connector
(for PC host)

2 - RXD data from host
3 - TXD data to host

5 - GROUND

12345

[(OJQ‘.‘.‘.‘? (@J

6789
RS232

PC Host

RS232

Target System

BDl3o00

© Copyright 1997-2009 by ABATRON AG Switzerland

V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 14

2.4.2 Ethernet communication

The BDI3000 has a built-in 10/100 BASE-T Ethernet interface (see figure below). Connect an UTP
(Unshielded Twisted Pair) cable to the BD3000. Contact your network administrator if you have ques-
tions about the network.

Target System
10/100 BASE-T 1 8
Connector

1-TD+

2.-TD-

3 - RD+ LED1 LED2

6 - RD-

PC / Unix
Host

- —

E

[]

Ethernet (10/100 BASE-T)

The following explains the meanings of the built-in LED lights:

LED Function Description
LED 1 Link / Activity When this LED light is ON, data link is successful between the UTP port
(green) of the BDI3000 and the hub to which it is connected.

The LED blinks when the BDI3000 is receiving or transmitting data.

LED 2 Speed When this LED light is ON, 100Mb/s mode is selected (default).
(amber) When this LED light is OFF, 10Mb/s mode is selected

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 15

2.5 Installation of the Configuration Software

On the enclosed CD you will find the BDI configuration software and the firmware required for the
BDI3000. For Windows users there is also a TFTP server included.

The following files are on the CD.

gdba1130.zip ZIP achive with the JTAG Mode firmware

gdbswd30.zip ZIP archive with the Serial Wire Mode firmware

The following files are in the ZIP archives.
b30a11gd.exe / b30swdgd.exe Windows Configuration program
b30a11gd.xxx / b30swdgd.xxx Firmware for the BDI3000

tftpsrv.exe TFTP server for Windows (WIN32 console application)

*.cfg Configuration files

*.def Register definition files

bdisetup.zip ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:
* Create a new directory on your hard disk
* Copy the entire contents of the enclosed diskette into this directory
e Linux only: extract the setup tool sources and build the setup tool

* Use the setup tool or Telnet (default IP) to load/update the BDI firmware
Note: A new BDI has no firmware loaded.

* Use the setup tool or Telnet (default IP) to load the initial configuration parameters
- IP address of the BDI.
- IP address of the host with the configuration file.
- Name of the configuration file. This file is accessed via TFTP.
- Optional network parameters (subnet mask, default gateway).

Activating BOOTP:

The BDI can get the network configuration and the name of the configuration file also via BOOTP.
For this simple enter 0.0.0.0 as the BDI's IP address (see following chapters). If present, the subnet
mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in
RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option:
[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0O -b57

The MAC address is derived from the serial number as follows:
MAC: 00-0C-01-xx-xx-xx , replace the xx-xx-xx with the 6 left digits of the serial number
Example: SN# 33123407 ==>> 00-0C-01-33-12-34

Default IP: 192.168.53.72

Before the BDI is configured the first time, it has a default IP of 192.168.53.72 that allows an initial
configuration via Ethernet (Telnet or Setup Tools). If your host is not able to connect to this default
IP, then the initial configuration has to be done via the serial connection.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 16

2.5.1 Configuration with a Linux / Unix host

The firmware update and the initial configuration of the BDI3000 is done with a command line utility.
In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this utility
can be found at the top in the bdisetup.c source file. There is also a make file included.

Starting the tool without any parameter displays information about the syntax and parameters.

VAN

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000:

1. Build the setup tool:
The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host.
To build the tool, simply start the make utility.

[root@LINUX_1 bdisetup]# make

cc -02 -C -0 bdisetup.o bdisetup.c

cc -02 -c -0 bdicnf.o bdicnf.c

cc -02 -c -0 bdidll.o bdidll.c

cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:

With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with infor-
mation about the current loaded firmware and network configuration.

Note: Login as root, otherwise you probably have no access to the serial port.

$./bdisetup -v -p/dev/ttySO -bll5
BDI Type : BDI3000 (SN: 30000154)

Loader - V1.00

Firmware : unknown

MAC . FE-fF-fF-fF-ff-fF
IP Addr : 255.255.255.255
Subnet : 255.255.255.255

Gateway :© 255.255.255.255
Host IP : 255.255.255.255

Config : VYyyyyyy........

3. Load/Update the BDI firmware:

With "bdisetup -u" the firmware is programmed into the BDI3000 flash memory. This configures the
BDI for the target you are using. Based on the parameters -a and -t, the tool selects the correct firm-
ware file. If the firmware file is in the same directory as the setup tool, there is no need to enter a -d
parameter.

$./bdisetup -u -p/dev/ttySO -bl1l5 -aGDB -tARM11l (for Serial Wire Mode use -tARMSWD)
Connecting to BDI loader

Programming firmware with ./b30allgd.100

Erasing firmware flash

Erasing firmware flash passed

Programming firmware flash ...

Programming firmware flash passed

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 17

4. Transmit the initial configuration parameters:
With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI.
The following parameters are used to configure the BDI:

BDI IP Address The IP address for the BDI3000. Ask your network administrator for as-
signing an IP address to this BDI3000. Every BDI3000 in your network
needs a different IP address.

Subnet Mask The subnet mask of the network where the BDI is connected to. A subnet
mask of 255.255.255.255 disables the gateway feature. Ask your network
administrator for the correct subnet mask. If the BDI and the host are in
the same subnet, it is not necessary to enter a subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI300O0 after every start-up.

Configuration file Enter the full path and name of the configuration file. This file is read via
TFTP. Keep in mind that TFTP has it's own root directory (usual /tftpboot).
You can simply copy the configuration file to this directory and the use the
file name without any path.
For more information about TFTP use "man tftpd".

$./bdisetup -c -p/dev/ttySO -b115 \
> -1151.120.25.102 \

> -h151.120.25.112 \

> -fe:/bdi3000/mytarget.cfg
Connecting to BDI loader

Writing network configuration
Configuration passed

5. Check configuration and exit loader mode:

The BDl is in loader mode when there is no valid firmware loaded or you connect to it with the setup
tool. While in loader mode, the Mode LED is blinking. The BDI will not respond to network requests
while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off
the BDI, wait some time (1min.) and power-on it again to exit loader mode.

$./bdisetup -v -p/dev/ttySO -bll5 -s
BDI Type : BDI3000 (SN: 30000154)

Loader - vVi.00

Firmware : V1.00 bdiGDB for ARM11
MAC : 00-0c-01-30-00-01

IP Addr : 151.120.25.102

Subnet : 255.255.255.255

Gateway : 255.255.255.255
Host IP : 151.120.25.112
Config : /bdi3000/mytarget.cfg

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

$ telnet 151.120.25.102

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 18

2.5.2 Configuration with a Windows host
First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

VAN

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

= BDI3000 Update/Setup x|

— Conmect BO13000 Loader
Chanrel

SM: 30000154

Port IEDM1 "I MAC: 000CO1 300001
Speed [115200 = ersion: 1.00

Cotitect
— BDN3000 Firmwware
Loaded “ersion: 1.00
MNewest Version: 1.00
Current Eraze | pdate
r— Configuration
BDI IP Address |'|51.'|2|125.1|32
Subnet Mask |255.255.255.EI
Default Gateway |255.255.255.255
Config - Host IP Address |1 B1.12025112

Configuration file
Abdi 3000, mytarget. ofg

Cancel Ok | Tranzmit I

Wiriting setup data passed

dialog box «BDI3000 Update/Setup»

Before you can use the BDI3000 together with the GNU debugger, you must store the initial config-
uration parameters in the BDI3000 flash memory. The following options allow you to do this:

Port

Speed

Connect

Current

Select the communication port where the BDI3000 is connected during
this setup session. If you select Network, make sure the Loader is already
active (Mode LED blinking). If there is already a firmware loaded and run-
ning, use the Telnet command "boot loader" to activate Loader Mode.

Select the baudrate used to communicate with the BDI3000 loader during
this setup session.

Click on this button to establish a connection with the BDI3000 loader.
Once connected, the BDI3000 remains in loader mode until it is restarted
or this dialog box is closed.

Press this button to read back the current loaded BDI3000 firmware ver-
sion. The current firmware version will be displayed.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 19

Erase

Update

BDI IP Address

Subnet Mask

Default Gateway

Config - Host IP Address

Configuration file

Transmit

Note:

Press this button to erase the current loaded firmware.

This button is only active if there is a newer firmware version present in the
execution directory of the bdiGDB setup software. Press this button to
write the new firmware into the BDI3000 flash memory.

Enter the IP address for the BDI3000. Use the following format:
XXX.XXX.XXX.XXX €.9.151.120.25.101

Ask your network administrator for assigning an IP address to this
BDI3000. Every BDI3000 in your network needs a different IP address.

Enter the subnet mask of the network where the BDI is connected to.
Use the following format: xxx.xxx.xxx.xxxe.g.255.255.255.0

A subnet mask of 255.255.255.255 disables the gateway feature.
Ask your network administrator for the correct subnet mask.

Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI3000 after every start-up.

Enter the full path and name of the configuration file. This name is trans-
mitted to the TFTP server when reading the configuration file.

Click on this button to store the configuration in the BDI3000 flash
memory.

Using this setup tool via the Network channel is only possible if the BDI3000 is already in Loader
mode (Mode LED blinking). To force Loader mode, enter "boot loader" at the Telnet. The setup tool
tries first to establish a connection to the Loader via the IP address present in the "BDI IP Address"
entry field. If there is no connection established after a time-out, it tries to connect to the default IP

(192.168.53.72).

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 20

2.5.3 Configuration via Telnet / TFTP

The firmware update and the initial configuration of the BDI300O0 can also be done interactively via a
Telnet connection and a running TFTP server on the host with the firmware file. In cases where it is
not possible to connect to the default IP, the initial setup has to be done via a serial connection.

VAN

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000 or updating the firmware.
Connect to the BDI Loader via Telnet.
If a firmware is already running enter "boot loader" and reconnect via Telnet.

$ telnet 192.168.53.72
or
$ telnet <your BDI IP address>

Update the network parameters so it matches your needs:

LDR>network
BD1 MAC : 00-0c-01-30-00-01
BDI IP : 192.168.53.72

BDI Subnet : 255.255.255.0
BDl Gateway : 255.255.255.255
Config IP : 255.255.255.255
Config File :

LDR>netip 151.120.25.102
LDR>nethost 151.120.25.112
LDR>netfile /bdi3000/mytarget.cfg

LDR>network
BD1I MAC : 00-0c-01-30-00-01
BDI IP : 151.120.25.102

BDI Subnet : 255.255.255.0

BDI Gateway : 255.255.255.255
Config IP : 151.120.25.112

Config File : /bdi3000/mytarget.cfg

LDR>network save

saving network configuration ... passed
BDI MAC : 00-0c-01-30-00-01
BDI IP : 151.120.25.102

BDl Subnet : 255.255.255.0

BDl Gateway : 255.255.255_255
Config IP : 151.120.25.112

Config File : /bdi3000/mytarget.cfg

In case the subnet has changed, reboot before trying to load the firmware

LDR>boot loader

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3)

User Manual 21
Connect again via Telnet and program the firmware into the BDI flash:
$ telnet 151.120.25.102
LDR>info
BDI Firmware: not loaded
BD1 CPLD ID : 01285043
BDI CPLD UES: FFFfffff
BDI MAC : 00-0c-01-30-00-01
BDI 1P : 151.120.25.102
BDlI Subnet : 255.255.255.0
BDI Gateway : 255.255.255.255
Config IP 151.120.25.112
Config File : /bdi3000/mytarget.cfg
LDR>fwload e:/temp/b30allgd.100
erasing firmware flash ... passed
programming Firmware flash ... passed
LDR>info
BDI Firmware: 41 / 1.00
BDI CPLD ID : 01285043
BDI CPLD UES: ffffffff
BDI MAC : 00-0c-01-30-00-01
BDI1 IP : 151.120.25.102
BDI Subnet : 255.255.255.0
BDI Gateway : 255.255.255.255
Config IP : 151.120.25.112
Config File : /bdi3000/mytarget.cfg
LDR>
To boot now into the firmware use:
LDR>boot
The Mode LED should go off, and you can try to connect to the BDI again via Telnet.
telnet 151.120.25.102
© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 22

2.6 Testing the BDI3000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI3000.
There is no need for a target configuration file and no TFTP server is needed on the host.

¢ If not already done, connect the BDI3000 system to the network.
e Power-up the BDI3000.

» Start a Telnet client on the host and connect to the BDI3000 (the IP address you entered dur-
ing initial configuration).

* If everything is okay, a sign on message like «BDI Debugger for Embedded PowerPC» and
a list of the available commands should be displayed in the Telnet window.

2.7 TFTP server for Windows

The bdiGDB system uses TFTP to access the configuration file and to load the application program.
Because there is no TFTP server bundled with Windows, Abatron provides a TFTP server application
tftpsrv.exe. This WIN32 console application runs as normal user application (not as a system ser-
vice).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request
from the client are granted. This is the normal working mode. The bdiGDB system needs only read
access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it.
The parameter [w] enables write accesses to the host file system.
The parameter [d] allows to define a root directory.

tftpsrv p Starts the TFTP server and enables protocol output
tftpsrv p w Starts the TFTP server, enables protocol output and write accesses are
allowed.

tftpsrv dC:\tftp\ Starts the TFTP server and allows only access to files in C:\tftp and its
subdirectories. As file name, use relative names.
For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"

You may enter the TFTP server into the Startup group so the server is started every time you login.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 23

3 Using bdiGDB
3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers
via the JTAG interface. There is no need for any debug software on the target system. After loading
the code via TFTP debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

initial
configuration
valid?

no

activate BDI3000 loader

Get configuration file
via TFTP

Power OFF
Process target init list

Load program code
via TFTP and set the PC

RUN selected?

Start loaded program code

Process GDB request

Power OFF

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 24

3.2 Configuration File

The configuration file is automatically read by the BDI3000 after every power on.
The syntax of this file is as follows:

; comment

[part
core#
core#

name]
identifier
identifier

name]
identifier
identifier

parameterl parameter2 parameterN ; comment
parameterl parameter2 parameterN
parameterl parameter2 parameterN
parameterl parameter2 parameterN

etc.

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

The core# is optional. If not present the BDI assume core #0. See also chapter "Multi-Core Support".

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 25

3.2.1 Part [INIT]

The part [INIT] defines a list of commands which are be executed every time the target comes out of
reset (except in STARTUP RUN mode). The commands are used to get the target ready for loading
the program file.

WGPR register value Write value to the selected general purpose register.
register the register number O .. 15
value the value to write into the register
Example: WGPR 0 5

WREG name value Write value to the selected CPU register by name
name the register name (CPSR)
value the value to write into the register

Example: WREG CPSR 0x600000D3

WCPn register value Write value to the selected Coprocessor register.
n the CP number (0 .. 15)
register the register number (see chapter CPx registers)
value the value to write into the register

Example: WCP15 2 0x00004000 ; set Translation Base 0

WMB8 address value Write a byte (8bit) to the selected memory place.
address the memory address
value the value to write to the target memory

Example: WM8 OxFFFFFA21 0x04 ; SYPCR: watchdog disable ...

WM16 address value Write a half word (16bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM16 0x02200200 0x0002 ; TBSCR

WMB32 address value Write a word (32bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM32 0x02200000 0x01632440 ; SIUMCR

WAPB address value Cortex-A8: Write a word (32bit) to the Debug APB memory.
address the APB memory address
value the value to write to the APB memory
Example: WAPB 0xd4012014 0x08000014 ; RCSR

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 26

WBIN address filename Write a binary image to the selected memory place. The binary image is

RM8 address value

RM16 address value

RM32 address value

MMAP start end

DELAY value

CLOCK value

read via TFTP from the host. Up to 4 such entries are supported.
address the memory address
filename the filename including the full path
Example: WBIN 0x4000 pagetable.bin

Read a byte (8bit) from the selected memory place.
address the memory address
Example: RM8 0x00000000

Read a half word (16bit) from the selected memory place.
address the memory address
Example: RM16 0x00000000

Read a word (32bit) from the selected memory place.
address the memory address
Example: RM32 0x00000000

Because a memory access to an invalid memory space via JTAG leads to
a deadlock, this entry can be used to define up to 32 valid memory ranges.
If at least one memory range is defined, the BDI checks against this
range(s) and avoids accessing of not mapped memory ranges.

start the start address of a valid memory range
end the end address of this memory range
Example: MMAP OxFFE00000 OxFFFFFFFF ;Boot ROM

Delay for the selected time.
value the delay time in milliseconds (1...30000)
Example: DELAY 500 ; delay for 0.5 seconds

This entry allows to change the JTAG clock frequency during processing

of the init list. But the final JTAG clock after processing the init list is taken

from the CLOCK entry in the [TARGET] section. This entry maybe of in-

terest to speed-up JTAG clock as soon as possible (after PLL setup).
value see CLOCK parameter in [TARGET] section

Example: CLOCK 2 ; switch to 16 MHz JTAG clock

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 27

Using a startup program to initialize the target system:

For targets where initialization can not be done with a simple initialization list, there is the possibility
to download and execute a special startup code. The startup code must be present in a file on the
host. The last instruction in this startup code should be a BKPT. After processing the initlist, the BDI
downloads this startup code to RAM, starts it and waits until it completes. If there is no BKPT instruc-
tion in the startup code, the BDI terminates it after a timeout of 5 seconds.

FILE filename The name of the file with the startup code. This name is used to access
the startup code via TFTP.
filename the filename including the full path
Example: FILE F:\gdb\target\config\pid7t\startup.hex

FORMAT format The format of the startup file. Currently COFF, S-Record, a.out, Binary and
ELF file formats are supported. If the startup code is already stored in
ROM on the target, select ROM as the format.
format COFF, SREC, AOUT, BIN, ELF or ROM

Example: FORMAT COFF

START address The address where to start the startup code. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the code.

address the address where to start the startup code

Example: START 0x10000

Note:

If an init list and a startup code file are present, the init list is processed first and then the startup code
is loaded and executed. Therefore it is possible first to enable some RAM with the init list before the
startup code is loaded and executed.

[INIT]

WM32 0x0B000020 0x00000000 ;Clear Reset Map
FILE d:\gdb\bdi\startup.hex

FORMAT SREC

START 0x100

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 28

3.2.2 Part [TARGET]
The part [TARGET] defines some target specific values.

CPUTYPE type [{ port | index | addr }]
This value gives the BDI information about the connected CPU.
type The CPU type from the following list:
ARM1136, ARM1156, ARM1176, MPCORE
CORTEX-A8, CORTEX-A9, OMAP3400, OMAP3500
CORTEX-M3, CORTEX-R4, ARM7

port For ARM7 the port values defines the used JTAG-AP
port (0...7).

index Defines which core debug component to select(0..7).

addr Specifies the APB address of the core debug compo-

nent. There is no ROM table search in this case. The ad-
dress value has to be >= 0x80000000 (bit31 set).

Example: CPUTYPE ARM1136
CPUTYPE CORTEX-A9 0x9F310000
CPUTYPE CORTEX-A9 0 ; use first found
CPUTYPE CORTEX-A9 1 ; use second found

CLOCK main [init] [SLOW]With this value(s) you can select the JTAG clock rate the BDI3000 uses
when communication with the target CPU. The "main” entry is used after
processing the initialization list. The "init" value is used after target reset
until the initialization list is processed. If there is no "init" value defined, the
"main" value is used all the times.

Adaptive clocking needs a special target cable. Add also SLOW if the CPU
clock frequency may fall below 6 MHz during adaptive clocking.

main,init: 0 = Adaptive
1 =32 MHz 9 =200 kHz
2=16 MHz 19 =100 kHz
3=11 MHz 11 = 50 kHz
4= 8MHz 12 = 20 kHz
5= 5MHz 13 = 10 kHz
6= 4MHz 14 = 5KkHz
7= 1MHz 15= 2kHz
8 =500 kHz 16 = 1kHz

Example: CLOCK 2 ; JTAG clock is 16 MHz

TRST type Normally the BDI uses an open drain driver for the TRST signal. This is in
accordance with the ARM recommendation. For boards where TRST is
simply pulled low with a weak resistor, TRST will always be asserted and
JTAG debugging is impossible. In that case, the TRST driver type can be
changed to push-pull. Then the BDI actively drives also high level.

type OPENDRAIN (default)
PUSHPULL

Example: TRST PUSHPULL ; Drive TRST also high

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 29

RESET type [time] [pwr]

Normally the BDI drives the reset line during a reset sequence. If reset
type is NONE or SOFT, the BDI does not assert a hardware reset. If reset
type SOFT is supported depends on the connected target.
type NONE
SOFT (soft reset via a debug register)
HARD (default)
time The time in milliseconds the BDI assert the reset signal.
pwr A different reset type can be defined for the initial power-
up reset (NONE, SOFT, HARD).
Example: RESET SOFT ; reset ARM core via RCSR
RESET HARD 1000 ; assert RESET for 1 second

STARTUP mode [runtime]This parameter selects the target startup mode. The following modes are

WAKEUP time

BDIMODE mode param

supported:

HALT This default mode tries to forces the target to debug
mode immediately out of reset.

STOP In this mode, the BDI lets the target execute code for
“runtime" milliseconds after reset. This mode is useful
when boot code should initialize the target system.

RUN After reset, the target executes code until stopped by the
Telnet "halt" command. The init list is not processed in
this mode.

WAIT Sets the debug request bit in the target. Once the target

is released from reset it will enter debug mode.
Example: STARTUP STOP 3000 ; let the CPU run for 3 seconds

This entry in the init list allows to define a delay time (in ms) the BDI inserts
between releasing the reset line and starting communicating with the tar-
get. This delay is necessary when a target needs some wake-up time after
a reset.

time the delay time in milliseconds
Example: WAKEUP 3000 ; insert 3sec wake-up time

This parameter selects the BDI debugging mode. The following modes are
supported:
LOADONLY Loads and starts the application code. No debugging via
JTAG interface.

AGENT The debug agent runs within the BDI. There is no need
for any debug software on the target. This mode accepts
a second parameter.
If RUN is entered as a second parameter, the loaded ap-
plication will be started immediately, otherwise only the
PC is set and BDI waits for GDB requests.
If QUIET is entered as a second parameter, the BDI no
polls the debug status register. The target is not influ-
enced in any way while it is running. But in this mode, the
BDI cannot detect any debug mode entry.

Example: BDIMODE AGENT RUN

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 30

ENDIAN format This entry defines the endiannes of the memory system.
format The endiannes of the target memory:
LITTLE (default)
BIG

Example: ENDIAN LITTLE

VECTOR CATCH mask When this line is present, the BDI catches exceptions. The mask is used
to setup the ARM Vector catch register.

mask selects the exceptions to catch
Example: VECTOR CATCH 0x1B ;catch Abort, Undef, Reset

BREAKMODE mode This parameter defines how breakpoints are implemented.
SOFT This is the normal mode. Breakpoints are implemented
by replacing code with a BKPT instruction.
HARD In this mode, the breakpoint hardware is used. Only 6

breakpoints at a time are supported.
Example: BREAKMODE HARD

STEPMODE mode For ARM11 and Cortex-A8 the BDI supports two different single-step
modes.
OVER This is the default mode. Single-step is implemented by

setting one or two hardware breakpoint on the next in-
struction address(es). This way we step over excep-
tions.

INTO In this mode, the BDI sets a hardware breakpoint on all
addresses except the current instruction address. This
way we step into exceptions.

Example: STERPMODE INTO

MEMACCES mode [wait] For Cortex-A8, this parameter defines how memory is accessed. Either
via the ARM core by executing Id and st instructions or via the AHB access
port. The current mode can also be changed via the Telnet interface. The
optional wait parameter allows to define a time the BDI waits before it ex-
pects that a value is ready or written. This allows to optimize download
performance. The wait time is (8 x wait) TCK’s in Run-Test/Idle state.

For Cortex-M3, only AHB access is supported.
The following modes are supported:
CORE The CORE (default) mode requires that the core is halt-
ed and makes use of the memory management unit
(MMU) and cache.
AHB The AHB access mode can access memory even when
the core is running but bypasses MMU and cache.
Note: Not all Cortex-A8 based SoC support an AHB ac-
cess port.
Example: MEMACCES CORE 5 ; 40 TCK's access delay
MEMACCES AHB 4 ; access via AHB, 32 TCK delay

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 31

SIO port [baudrate] When this line is present, a TCP/IP channel is routed to the BDI's RS232
connector. The port parameter defines the TCP port used for this BDI to
host communication. You may choose any port except 0 and the default
Telnet port (23). On the host, open a Telnet session using this port. Now
you should see the UART output in this Telnet session. You can use the
normal Telnet connection to the BDI in parallel, they work completely in-
dependent. Also input to the UART is implemented.

port The TCP/IP port used for the host communication.
baudrate The BDI supports 2400 ... 115200 baud

Example: SIO 7 9600 ;TCP port for virtual 10

DCC port When this line is present, a TCP/IP channel is routed to the ARM debug
communication channel (DCC). The port parameter defines the TCP port
used for this BDI to host communication. You may choose any port except
0 and the default Telnet port (23). On the host, open a Telnet session us-
ing this port. Now you should see the DCC output in this Telnet session.
You can use the normal Telnet connection to the BDI in parallel, they work
completely independent. Also input to DCC is implemented.

port The TCP/IP port used for the host communication.
Example: DCC 7 ;TCP port for DCC I/O

Daisy chained JTAG devices:

For ARM targets, the BDI can also handle systems with multiple devices connected to the JTAG scan
chain. In order to put the other devices into BYPASS mode and to count for the additional bypass
registers, the BDI needs some information about the scan chain layout. Enter the number (count) and
total instruction register (irlen) length of the devices present before the ARM chip (Predecessor). En-
ter the appropriate information also for the devices following the ARM chip (Successor):

SCANPRED count irlen This value gives the BDI information about JTAG devices present before
the ARM chip in the JTAG scan chain.

count The number of preceding devices
irlen The sum of the length of all preceding instruction regis-
ters (IR).

Example: SCANPRED 1 8 ; one device with an IR length of 8

SCANSUCC count irlen This value gives the BDI information about JTAG devices present after the
ARM chip in the JTAG scan chain.

count The number of succeeding devices
irlen The sum of the length of all succeeding instruction reg-
isters (IR).

Example: SCANSUCC 2 12 ; two device with an IR length of 8+4

Note:
For Serial Wire Mode, the following parameters are not relevant, have no function:
TRST, SCANPRED, SCANSUCC, SCANINIT, SCANPOST

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 32

Low level JTAG scan chain configuration:

Sometimes it is necessary to configure the test access port (TAP) of the target before the ARM debug
interface is visible and accessible in the usual way. The BDI supports this configuration in a very ge-
neric way via the SCANINIT and SCANPOST configuration commands. Both accept a string that de-
fines the JTAG sequences to execute. The following example shows how to use these commands:

; Configure ICEPick module to make ARM926 TAP visible

SCANINIT t1:wl1000:t0:w1000: ;toggle TRST

SCANINIT i16=07:d8=89:16=02: ;connect and select router
SCANINIT d32=81000082: ;set IP control

SCANINIT d32=a018206F: ;configure TAPO

SCANINIT d32=a018216f:cl5: ;enable TAPO, clock 5 times in RTI

SCANINIT 110=FFFF ;scan bypass

; Between SCANINIT and SCANPOST the ARM ICEBreaker is configured
; and the DBGRQ bit in the ARM debug control register is set.

SCANPOST 110=0027F: ;IP(router) - ARM(bypass)
SCANPOST d33=0102000106: ;1P control = SysReset
SCANPOST 110=FFFF ;scan bypass

The following low level JTAG commands are supported in the string. Use ":" between commands.

I<n>=<...b2bl1b0> write IR, b0 is First scanned
D<n>=<...b2b1b0> write DR, b0 is First scanned
n : the number of bits 1..256
bx : a data byte, two hex digits

w<n> wait for n (decimal) micro seconds

Tl assert TRST

TO release TRST

R1 assert RESET

RO release RESET

CH<n> clock TCK n (decimal) times with TMS high
CL<n> clock TCK n (decimal) times with TMS low

The following diagram shows the parts of the standard reset sequence that are replaced with the
SCAN string. Only the appropriate part of the reset sequence is replaced. If only a SCANINIT string
is defined, then the standard "post" sequence is still executed.

If (reset mode == hard) Assert reset
Toggle TRST Execute SCANINIT string

If (reset mode == hard) Delay for reset time

Check if Bypass register(s) present
Read and display ID code
Check if debug module is accessible
If (startup == reset) catch reset exception

If (reset mode == hard) Release reset
Wait until reset is really release Execute SCANPOST string
Delay for wake-up time

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 33

3.2.3 Part [HOST]
The part [HOST] defines some host specific values.

IP ipaddress The IP address of the host.
ipaddress the IP address in the form xxx.XXX.XXX.XXX
Example: IP 151.120.25.100
FILE filename The default name of the file that is loaded into RAM using the Telnet ’load’

command. This name is used to access the file via TFTP. If the filename
starts with a $, this $ is replace with the path of the configuration file name.
filename the filename including the full path or $ for relative path.

Example: FILE F:\gnu\demo\arm\test.elf
FILE $test.elf

FORMAT format [offset] The format of the image file and an optional load address offset. If the im-
age is already stored in ROM on the target, select ROM as the format. The
optional parameter "offset" is added to any load address read from the im-
age file.
format SREC, BIN, AOUT, ELF, COFF or ROM
Example: FORMAT ELF
FORMAT ELF 0x10000

LOAD mode In Agent mode, this parameters defines if the code is loaded automatically
after every reset.
mode AUTO, MANUAL
Example: LOAD MANUAL

START address The address where to start the program file. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the target. This means, the program starts at the normal reset ad-
dress (0x00000000).

address the address where to start the program file

Example: START 0x10000

DEBUGPORT port [RECONNECT]
The TCP port GDB uses to access the target. If the RECONNECT param-
eter is present, an open TCP/IP connection (Telnet/GDB) will be closed if
there is a connect request from the same host (same IP address).
port the TCP port number (default = 2001)
Example: DEBUGPORT 2001

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 34

PROMPT string This entry defines a new Telnet prompt. The current prompt can also be
changed via the Telnet interface.

Example: PROMPT ARM11>

DUMP filename The default file name used for the DUMP command from a Telnet session.
filename the filename including the full path
Example: DUMP dump.bin

TELNET mode By default the BDI sends echoes for the received characters and supports
command history and line editing. If it should not send echoes and let the
Telnet client in "line mode", add this entry to the configuration file.
mode ECHO (default), NOECHO or LINE
Example: TELNET NOECHO ; use old line mode

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 35

3.2.4 Part [FLASH]

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has
to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to
erase in case the ERASE command is entered without any parameter.

CHIPTYPE type

CHIPSIZE size

BUSWIDTH width

FILE filename

FORMAT format [offset]

WORKSPACE address

This parameter defines the type of flash used. It is used to select the cor-
rect programming algorithm.
format AM29F, AM29BX8, AM29BX16, 128BX8, 128BX16,
AT49, AT49X8, AT49X16, STRATAX8, STRATAX16,
MIRROR, MIRRORX8, MIRRORX16,
M58X32, AM29DX16, AM29DX32,
STM32F10, LM3S

Example: CHIPTYPE AM29F

The size of one flash chip in bytes (e.g. AM29F010 = 0x20000). This value
is used to calculate the starting address of the current flash memory bank.
size the size of one flash chip in bytes
Example: CHIPSIZE 0x80000

Enter the width of the memory bus that leads to the flash chips. Do not en-
ter the width of the flash chip itself. The parameter CHIPTYPE carries the
information about the number of data lines connected to one flash chip.
For example, enter 16 if you are using two AM29F010 to build a 16bit flash
memory bank.

with the width of the flash memory bus in bits (8 | 16 | 32)

Example: BUSWIDTH 16

The default name of the file that is programmed into flash using the Telnet
‘prog’ command. This name is used to access the file via TFTP. If the file-
name starts with a $, this $ is replace with the path of the configuration file
name. This name may be overridden interactively at the Telnet interface.

filename the filename including the full path or $ for relative path.

Example: FILE F:\gnu\arm\bootrom.hex
FILE $bootrom.hex

The format of the file and an optional address offset. The optional param-
eter "offset" is added to any load address read from the program file.

format SREC, BIN, AOUT, ELF or COFF
Example: FORMAT SREC
FORMAT ELF 0x10000

If a workspace is defined, the BDI uses a faster programming algorithm
that runs out of RAM on the target system. Otherwise, the algorithm is pro-
cessed within the BDI. The workspace is used for a 1kByte data buffer and
to store the algorithm code. There must be at least 2kBytes of RAM avail-
able for this purpose.

address the address of the RAM area

Example: WORKSPACE 0x00000000

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 36

ERASE addr [increment count] [mode [wait]]
The flash memory may be individually erased or unlocked via the Telnet
interface. In order to make erasing of multiple flash sectors easier, you can
enter an erase list. All entries in the erase list will be processed if you enter
ERASE at the Telnet prompt without any parameter. This list is also used
if you enter UNLOCK at the Telnet without any parameters. With the "in-
crement" and "count" option you can erase multiple equal sized sectors
with one entry in the erase list.
address
increment
count
mode

wait

Example:

Address of the flash sector, block or chip to erase
If present, the address offset to the next flash sector
If present, the number of equal sized sectors to erase

BLOCK, CHIP, UNLOCK

Without this optional parameter, the BDI executes a sec-
tor erase. If supported by the chip, you can also specify
a block or chip erase. If UNLOCK is defined, this entry is
also part of the unlock list. This unlock list is processed
if the Telnet UNLOCK command is entered without any
parameters.

Note: Chip erase does not work for large chips because
the BDI time-outs after 3 minutes. Use block erase.
The wait time in ms is only used for the unlock mode. Af-
ter starting the flash unlock, the BDI waits until it pro-
cesses the next entry.

ERASE 0xff040000 ;erase sector 4 of flash

ERASE 0xff060000 ;erase sector 6 of flash

ERASE 0xff000000 CHIP ;erase whole chip(s)

ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms
ERASE 0xff000000 0x10000 7 ; erase 7 sectors

Example for the ARM PID7T board (AM29F010 in U12):

[FLASH]
WORKSPACE
CHIPTYPE
CHIPSIZE
BUSWIDTH
FILE
ERASE
ERASE
ERASE
ERASE
ERASE
ERASE
ERASE
ERASE

the above erase list maybe replaced with:

ERASE

0x00000000
AM29F
0x20000

8

0x04000000
0x04004000
0x04008000
0x0400C000
0x04010000
0x04014000
0x04018000
0x0401C000

;Workspace in target RAM for faster programming algorithm

;Flash

type

;The size of one flash chip in bytes
;The width of
C:\gdb\pid7t\bootrom.hex

;erase
;erase
;erase
;erase
;erase
;erase
;erase
;erase

sector
sector
sector
sector
sector
sector
sector
sector

the flash memory bus in bits (8 | 16 | 32)
;The file to program

of flash SIMM

of flash SIMM

of flash SIMM

of flash SIMM

of flash SIMM

of flash SIMM

of flash SIMM

of flash SIMM

NOoO O~ WNEO

0x04000000 0x4000 8 ;erase 8 sectors

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 37

STM32F10xx Internal Flash Memory:

The BDI3000 supports programming of the STM32F10xx internal flash memory. Mass and Sector
Erase of the Main Flash memory is supported. Option byte programming is not directly supported but
can be done manually via Telnet mm/md commands.

[FLASH]

WORKSPACE 0x20000000 ;workspace in internal SRAM
CHIPTYPE STM32F10

CHIPSIZE 0x20000

BUSWIDTH 16

FILE E:/temp/dumpl6k._bin
FORMAT BIN 0x08010000
ERASE 0x08010000 0x400 16 ;erase 16 sectors

Mass erase via Telnet:

BDI> erase 0x08000000 mass

Stellaris LM3S Internal Flash Memory:

The BDI3000 supports programming of the Luminary Micro Stellaris LM3S internal flash memory.
Mass and Sector Erase of the Flash memory is supported. Before Erasing/Programming make sure
the correct value is loaded into the Flash USec Reload register (USECRL).

[INIT]

WwmM32 Ox400FE140 49 ;USECRL: Flash USec Reload for 50 MHz
[FLASH]

WORKSPACE 0x20000000 ;workspace in internal SRAM

CHIPTYPE LM3S
CHIPSIZE 0x40000
BUSWIDTH 32

FILE E:/temp/dumpl6k._bin
FORMAT BIN 0x00030000
ERASE 0x00030000 0x400 16

Mass erase via Telnet:

BDI> erase 0x00000000 mass

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 38

Supported Flash Memories:

There are currently 3 standard flash algorithm supported. The AMD, Intel and Atmel AT49 algorithm.
Almost all currently available flash memories can be programmed with one of this algorithm. The
flash type selects the appropriate algorithm and gives additional information about the used flash.

For 8bit only flash: AM29F (MIRROR), 128BX8, AT49

For 8/16 bit flash in 8bit mode: AM29BX8 (MIRRORXS), 128BX8 (STRATAXS8), AT49X8

For 8/16 bit flash in 16bit mode: AM29BX16 (MIRRORX16), 28BX16 (STRATAX16), AT49X16
For 16bit only flash: AM29BX16, 128BX16, AT49X16

For 16/32 bit flash in 16bit mode: AM29DX16

For 16/32 bit flash in 32bit mode: AM29DX32

For 32bit only flash: M58X32

Some newer Spansion MirrorBit flashes cannot be programmed with the MIRRORX16 algorithm be-
cause of the used unlock address offset. Use S29M32X16 for these flashes.

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm
does not check for the AMD status bit 5 (Exceeded Timing Limits).

Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49
algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip
does not support the selected mode, erasing will fail. The erase command sequence is different only
in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see
also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.

To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is
implemented that makes use of the write buffer. This algorithm needs a workspace, otherwise the
standard Intel/AMD algorithm is used.

The following table shows some examples:

Flash x8 x 16 x 32 Chipsize
Am29F010 AM29F - - 0x020000
Am29F800B AM29BX8 AM29BX16 - 0x100000
Am29DL323C AM29BX8 AM29BX16 - 0x400000
Am29PDL128G - AM29DX16 AM29DX32 0x01000000
Intel 28F032B3 128BX8 - - 0x400000
Intel 28F640J3A STRATAXS8 STRATAX16 - 0x800000
Intel 28F320C3 - 128BX16 - 0x400000
AT49BV040 AT49 - - 0x080000
AT49BV1614 AT49X8 AT49X16 - 0x200000
M58BW016BT - - M58X32 0x200000
SST39VF160 - AT49X16 - 0x200000
Am29LV320M MIRRORX8 MIRRORX16 - 0x400000

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 39

Note:
Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked
state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WM16 OxFFFO0000 0x0060 unlock block 0
WM16 OxFFFO0000 0x00D0
WM16 OxFFF10000 0x0060 unlock block 1

WM16 OxFFF10000 0x00D0

WM16 OxFFFO0000 OxFFFF select read mode
or use the Telnet "unlock” command:

UNLOCK [<addr> [<delay>]]
addr This is the address of the sector (block) to unlock

delay A delay time in milliseconds the BDI waits after sending the unlock com-
mand to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are
processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI> unlock OxFFO00000 1000

To erase or unlock multiple, continuous flash sectors (blocks) of the same size, the following Telnet
commands can be used:

ERASE <addr> <step> <count>
UNLOCK <addr> <step> <count>

addr This is the address of the first sector to erase or unlock.

step This value is added to the last used address in order to get to the next sec-
tor. In other words, this is the size of one sector in bytes.

count The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to
0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI> unlock 0x00000000 0x20000 256

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 40

3.2.5 Part [REGS]

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a
register definition file. In this file, the user defines a name for the register and how the BDI should
access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register defi-
nition file and information for different registers type has to be defined in the configuration file.

The register name, type, address/offset/number and size are defined in a separate register definition
file. This way, you can create one register definition file for a specific target processor that can be
used for all possible positions of the internal memory map. You only have to change one entry in the
configuration file.

An entry in the register definition file has the following syntax:

name type addr size

name The name of the register (max. 12 characters)
type The register type
GPR General purpose register
CP15 Coprocessor 15 register
CP14 Coprocessor 14register
CPO Coprocessor 0 register
MM Absolute direct memory mapped register

DMM1...DMM4 Relative direct memory mapped register
IMM1...IMM4 Indirect memory mapped register

APB APB memory mapped register
addr The address, offset or number of the register
size The size (8, 16, 32) of the register, default is 32

The following entries are supported in the [REGS] part of the configuration file:

FILE filename The name of the register definition file. This name is used to access the
file via TFTP. The file is loaded once during BDI startup.

filename the filename including the full path
Example: FILE C:\bdi\regs\reg40400.def

DMMn base This defines the base address of direct memory mapped registers. This
base address is added to the individual offset of the register.

base the base address
Example: DMM1 0x01000

IMMn addr data This defines the addresses of the memory mapped address and data reg-
isters of indirect memory mapped registers. The address of a IMMn regis-
ter is first written to "addr" and then the register value is access using
"data" as address.

addr the address of the Address register
data the address of the Data register
Example: IMM1 0x04700000 0x04700004

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 41

Example for a register definition:

Entry in the configuration file:

[REGS]
FILE E:\cygwin\home\bdidemo\arm\reg1136.def

The register definition file:

;Coprocessor Register Numbers for ARM11:

: [Fetmm———— [Fetmm———— +
; lopc_2]0] CRm Jopc_1]0] nbr |
F Febom e F Febom e +

;The 16bit register number is used to build the appropriate MCR/MRC instruction.

;hame type addr size

id CP15 0x0000 32 ;1D code

cache CP15 0x2000 32 ;Cache type

tcmstatus CP15 0x4000 32 ;TCM status

tcmtype CP15 0x6000 32 ;TCM type

ctr CP15 0x0001 32 ;Control

aux CP15 0x2001 32 ;Auxiliary Control

cpacc CP15 0x4001 32 ;Coprocessor Access

ttb0 CP15 0x0002 32 ;Translation Table Base 0O
ttbl CP15 0x2002 32 ;Translation Table Base 1
ttbc CP15 0x4002 32 ;Translation Table Base Control
pid CP15 0x000d 32 ;Process ID

context CP15 0x200d 32 ;Context ID

; CM1136JF-S core module control registers

cm_id MM 0x10000000
cm_proc MM 0x10000004
cm_osc MM 0x10000008
cm_ctrl MM 0x1000000c

cm_stat MM 0x10000010

; Cortex-A8 debug registers

dscr APB 0xd4011088 ;Debug Status and Control

prcr APB 0xd4011310 ;Device Power Down and Reset Control
prsr APB 0xd4011314 ;Device Power Down and Reset Status
authstatus APB 0xd4011fb8 ;Authentication Status

devid APB 0xd4011fc8 ;Device ldentifier

devtype APB 0Oxd4011fcc ;Device type

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 42

3.3 Debugging with GDB

Because the target agent runs within BDI, no debug support has to be linked to your application.
There is also no need for any BDI specific changes in the application sources. Your application must
be fully linked because no dynamic loading is supported.

3.3.1 Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the
application. The setup in the configuration file must at least enable access to the target memory
where the application will be loaded. Disable the watchdog and setting the CPU clock rate should
also be done with the BDI configuration file. Application specific initializations like setting the timer
rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is
selected, the application is immediately started, otherwise only the target PC is set. BDI now waits
for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the fol-
lowing command at the GDB prompt:

(gdb)target remote bdi3000:2001

bdi3000 This stands for an IP address. The HOST file must have an appropriate
entry. You may also use an IP address in the form xxx.XXx.XXX.XXx

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes
to background debug mode.

Remember, every time the application is suspended, the target CPU is freezed. During this time no
hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI.
(gdb). ..

(gdb)detach

... Wait until BDI has resetet the target and reloaded the image
(gdb)target remote bdi3000:2001

Note:
GDB sometimes fails to connect to the target after a reset because it tries to read an invalid stack
frame. With the following init list entries you can work around this GDB startup problem:

WGPR 11 0x00000020 ;set frame pointer to free RAM
WM32 0x00000020 0x00000028 ;dummy stack frame

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 43

3.3.3 Breakpoint Handling

There are two breakpoint modes supported. One of them (SOFT) is implemented by replacing appli-
cation code with a BKPT instruction. The other (HARD) uses the built in breakpoint logic. If HARD is
selected, only up to 6 breakpoints can be active at the same time.

The following example selects SOFT as the breakpoint mode:
BREAKMODE SOFT ;SOFT or HARD, HARD uses hardware breakpoints

The BDI supports only a GDB version that uses a Z-Packet to set breakpoints (GDB Version 5.0 or
newer). GDB tells the BDI to set / clear breakpoints with this special protocol unit. The BDI will re-
spond to this request by replacing code in memory with the BKPT instruction or by setting the appro-
priate hardware breakpoint.

3.3.4 GDB monitor command

The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet
output is returned to GDB.

(gdb) target remote bdi3000:2001
Remote debugging using bdi3000:2001
0x10b2 in start ()

(gdb) monitor md 0 1

00000000 : Oxe59ff018 - 442503144

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3)

User Manual 44

3.3.5 Target serial I/0 via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI3000. This way it is possible
to access the target’s serial I/0 via a TCP/IP channel. For example, you can connect a Telnet session
to the appropriate BDI3000 port. Connecting GDB to a GDB server (stub) running on the target

should also be possible.

RS232 Connector

2-RXD
3-TXD

5 - GROUND

Target System

[@Q) J

6789
2

i
7
RS23

BDI3oo0

1 ()

Ethernet (10/100 BASE-T)

The configuration parameter "SIO" is used to enable this serial I/O routing.

The used framing parameters are 8 data, 1 stop and not parity.

[TARGET]

SI0 7

Warning!!!

9600

;Enable SI0 via TCP port 7 at 9600 baud

Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either
disable SIO first or disconnect the BDI from the LAN while updating the firmware.

© Copyright 1997-2009 by ABATRON AG Switzerland

V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3)

User Manual

45

3.3.6 Target DCC 1/O via BDI

It is possible to route a TCP/IP port to the ARM’s debug communciation channel (DCC). This way,
the application running on the target can output messages via DCC that are displayed for example
in a Telnet window. The BDI routes every byte received via DCC to the connected TCP/IP channel
and vice versa. Below some simple functions you can link to your application in order to implement

IO via DCC.

#define DSCR_WDTR_FULL (1L<<29)
#define DSCR_RDTR FULL (1L<<30)

static unsigned int read_dtr(void)

{

unsigned iInt c;

_asm__ volatile(
“"mrc pl4, 0, %0, cO, c5\n"
"=t (0));
return c;

}

static void write_dtr(unsigned int c)

{
__asm__ volatile(
"mcr pl4, 0, %0, cO, c5\n"

L ()
}

static unsigned int read_dscr(void)

{

unsigned iInt ret;

_asm__ volatile(
“"mrc pl4, 0, %0, cO, cl\n"
"=r" (ret));
return ret;

}

void write_dcc_char(unsigned int c)

while(read_dscr() & DSCR_WDTR_FULL);
write_dtr(c);

}

unsigned int read_dcc_char(void)

{
while(¥(read_dscr() & DSCR_RDTR_FULL));
return read_dtr();

}

void write_dcc_string(const char* s)

{
}

while (*s) write_dcc_char(*s++);

© Copyright 1997-2009 by ABATRON AG Switzerland

V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 46

3.4 Telnet Interface
A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error
messages and other information. Also some basic debug tasks may be done by using this interface.
Enter help at the Telnet command prompt to get a list of the available commands.
Telnet Debug features:

* Display and modify memory locations

* Display and modify registers

* Single step a code sequence

» Set hardware breakpoints (for code and data accesses)

* Load a code file from any host

e Start / Stop program execution

* Programming and Erasing Flash memory
During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware re-

set and reload the application code). It may be also useful during the first installation of the bdiGDB
system or in case of special debug needs.

Multiple commands separated by a semicolon can be entered on one line.

Example of a Telnet session:

ARM1136>info
Core number : 0
Core state : debug mode (ARM)
Debug entry cause : Vector Catch (RESET)
Current PC = 0x00000000
Current CPSR : 0x000001d3 (Supervisor)
ARM1136>rd

GPROO: 000000fc f1lc72a88 TF5Fffdf7 3bbl5ae6
GPRO4: f87F47f7 3c7c6959 ba398649 ddff6fed
GPRO8: fff3a7bl ff3defdf fafb5Ffff th99eb7d
GPR12: bdffedbf 7edfffd7 8ce356ct 00000000

PC = 00000000 CPSR: 000001d3

ARM1136>md

00000000 : 3de37365 ddaf8e8b 70a66636 52d11411 es.=....6F.p...R
00000010 : b672ee06 d6a94323 6e73Fd29 a8d6e9al ..r.#C..).sn....
00000020 : 8fOalaad 6cla840f elblde9d 802e4839 I....9H..
00000030 : 9f9cafa 9b818b86 63Fdbab8 f2a63b91 ol C.;--

00000040 : 440f75a4 fa7b254e c5efff5b 8F4829a5 ._u.DN%{.[----)H.

Notes:

The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/
Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to
get more information about the TFTP server on your host.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

78

for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 47
3.4.1 Command list
"*"MD [<address>] [<count>] display target memory as word (32bit)",
**"MDH [<address>] [<count>] display target memory as half word (16bit)",
"'"MDB [<address>] [<count>] display target memory as byte (8bit)",
"DUMP <addr> <size> [<Ffile>] dump target memory to a file",
MM <addr> <value> [<cnt>] modify word(s) (32bit) in target memory",
""MMH <addr> <value> [<cnt>] modify half word(s) (16bit) in target memory",
""MMB <addr> <value> [<cnt>] modify byte(s) (8bit) in target memory",
“MT <addr> <count> memory test",
""MC [<address>] [<count>] calculates a checksum over a memory range",
MV verifies the last calculated checksum®,
""RD [<name>] display general purpose or user defined register",
"RDUMP [<file>] dump all user defined register to a file",
"RDALL display all ARM registers ",
"RDCP [<cp>] <number> display CP register, default is CP15",
""RDFP display floating point register”,
""RM {<nbr>|<name>} <value> modify general purpose or user defined register",
"RMCP [<cp>] <number><value> modify CP register, default is CP15",
"DTLB <from> [<to>] ARM1136: display Data TLB entries",
"1TLB <from> [<to>] ARM1136: display Inst TLB entries",
"LTLB <from> [<to>] ARM1136: display Lockable Main TLB entries™,
"ATLB <from> [<to>] ARM1136: display Set-Associative Main TLB entries",
"DTAG <from> [<to>] ARM1136: display L1 Data Cache Tag(s) ",
"ITAG <from> [<to>] ARM1136: display L1 Inst Cache Tag(s) ",
"RESET [HALT | RUN [time]] reset the target system, change startup mode",
"GO [<pc>] set PC and start current core",
"GO <n> <n> [<n>[<n>]] start multiple cores in requested order™,
Tl [<pc>] single step an instruction”,
"HALT [<n>[<n>[<n>[<n>]1111 force core(s) to debug mode (n = core number)",
"Bl <addr> set instruction breakpoint",
"Bl <addr> [<mask>] Cortex-A8: set instruction breakpoint",
"Cl [<id>] clear instruction breakpoint(s)",
"BD [RIW] <addr> set data watchpoint (32bit access)”,
“BDH [R]W] <addr> set data watchpoint (16bit access)",
"BDB [R]W] <addr> set data watchpoint (8bit access)",
"BDM [R]W] <addr> [<mask>] Cortex-A8: set data watchpoint with address mask",
"CD [<id>] clear data watchpoint(s)",
"INTDIS disable target interrupts while running”,
"INTENA enable target interrupts while running (default)",
"INFO display information about the current state",
""LOAD [<offset>] [<Ffile> [<format>]] load program file to target memory",
"VERIFY [<offset>] [<Ffile> [<format>]] verify a program file to target memory",
"PROG [<offset>] [<File> [<format>]] program flash memory",
" <format> : SREC, BIN, AOUT, ELF or COFF",
"ERASE [<address> [<mode>]] erase a flash memory sector, chip or block",
" <mode> : CHIP, BLOCK or SECTOR (default is sector)",
"ERASE <addr> <step> <count> erase multiple flash sectors",
"UNLOCK [<addr> [<delay>]1] unlock a flash sector",
"UNLOCK <addr> <step> <count> unlock multiple flash sectors",
"FLASH <type> <size> <bus> change flash configuration®,
“"FENA <addr> <size> enable autoamtic programming to flash memory",
"FDIS disable autoamtic programming to flash memory",
"DELAY <ms> delay for a number of milliseconds",
"MEMACC {CORE | AHB [<hprot>]} Cortex-A8: select memory access mode",
"SELECT <core> change the current core",
"HOST <ip> change IP address of program file host",
"PROMPT <string> defines a new prompt string”,
© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual

48
"CONFIG display or update BDI configuration",
"CONFIG <Ffile> [<hostlIP> [<bdilP> [<gateway> [<mask>]1111",
"HELP display command list",
"BOOT [loader] reboot the BDI and reload the configuration",
"QUIT terminate the Telnet session',
"Low level access to CoreSight debug system:',
""RDP <addr> display Debug Port (DP) register™,
"RAP <addr> display Access Port (AP) register",
"RDBG <nbr> [<cnt>] display core debug register",
""WDP <addr> <value> modify Debug Port (DP) register",
"WAP <addr> <value> modify Access Port (AP) register”,
"WDBG <nbr> <value> modify core debug register",
“"MDAPB <addr> [<cnt>] display APB memory",
"MMAPB <addr> <value> modify APB memory",
"MDAHB <addr> [<cnt>] display AHB memory (32-bit)",
"MMAHB <addr> <value> modify AHB memory (32-bit)"
© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&(& for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 49

3.4.2 CPxx Registers

Via Telnet it is possible to access the Coprocessor 15,14,13 registers. Following the Telnet com-
mands that are used to access CP registers:

""RDCP <number> display control processor 15 register”,
"RDCP 15 <number> display control processor 15 register”,
"RDCP 14 <number> display control processor 14 register”,
"RDCP 13 <number> display control processor 13 register™,
""RMCP <number> <value> modify control processor 15 register”,
"RMCP 15 <number> <value> modify control processor 15 register”,
"RMCP 14 <number> <value> modify control processor 14 register”,
"RMCP 13 <number> <value> modify control processor 13 register”,

The parameter number selects the CPxx register. This parameter is used to build the appropriate
MCR or MRC instruction.

[Fetmm e Fom—— Fetmm e +
lopc_2]0] CRm Jopc_1]0] nbr |
R T — S S R — E p— R S R — +

Some examples:
CP15: ID register (CRn = 0, opcode_2 = 0)

BDI> rdcp 15 0x0000

CP15 : Cache Type (CRn =0, opcode_2 = 1)

BDI> rdcp 15 0x2000

CP15 : Invalidate | cache line (CRn =7, opcode_2 = 1, CRm = 5)

BDI> rmcp 15 0x2507 0xA0000000

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 50

3.5 Multi-Core Support
3.5.1 JTAG Daisy Chained Cores

The bdiGDB system supports concurrent debugging of up to 4 ARM cores (same family) connected
to the same JTAG scan chain. For every core you can start its own GDB session. The default port
numbers used to attach the remote targets are 2001 ... 2004. In the Telnet you switch between the
cores with the command "select <0..3>". In the configuration file, simply begin the line with the ap-
propriate core number. If there is no #n in front of a line, the BDI assumes core #0.

The following example defines two cores on the scan chain.

[TARGET]

CLOCK 1 ;JTAG clock (O=Adaptive, 1=8MHz, 2=4MHz, 3=2MHZz)
WAKEUP 1000 ;wakeup time after reset

#0 CPUTYPE ARM1136

#0 SCANPRED 0o ;JTAG devices connected before this core
#0 SCANSUCC 114 ;JTAG devices connected after this core

#0 VECTOR CATCH ;catch unhandled exceptions

#0 BREAKMODE SOFT ;SOFT or HARD

#0 DCC 8 ;DCC 1/0 via TCP port 8

#1 CPUTYPE ARM1136

#1 SCANPRED 14 ;JTAG devices connected before this core
#1 SCANSUCC oo ;JTAG devices connected after this core

#1 VECTOR CATCH ;catch unhandled exceptions

#1 BREAKMODE SOFT ;SOFT or HARD

#1 DCC 7 ;DCC 1/0 via TCP port 7

Note:

It is not possible to concurrent debug an ARM11 and a Cortex-A8 core even if they are located on
the same scan chain.

3.5.2 ARM7 cores connected via JTAG-AP

The bdiGDB system supports concurrent debugging of 1 Cortex-A8 core and up to 3 ARM7 cores
connected to the CoreSight JTAG-AP interface. For every core you can start its own GDB session.
The default port numbers used to attach the remote targets are 2001 ... 2004. In the Telnet you switch
between the cores with the command "select <0..3>". In the configuration file, simply begin the line
with the appropriate core number. If there is no #n in front of a line, the BDI assumes core #0.

[TARGET]
CLOCK 7 ;BDI3000: JTAG clock 1MHz

WAKEUP 100 ;wait after reset released

; Core#0 Cortex-A8

#0 CPUTYPE CORTEX-A8 ;main core is Cortex-A8

#0 STARTUP HALT ;halt immediatelly at the reset vector

#0 BREAKMODE HARD ;SOFT or HARD

#0 MEMACCESS CORE 8 ;memory access via Core (64 TCK"s access delay)
; Core#l1 ARM7 at JTAG-AP port 2

#1 CPUTYPE ARM7 2 ;ARM7 connected to JTAG-AP port 2

#1 STARTUP RUN ;let the core run

#1 BREAKMODE SOFT ;SOFT or HARD

#1 MEMACCESS CORE 2 ;Additonal 16 TCK DAP access delay

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 51

4 Specifications

Operating Voltage Limiting 5VDC +0.25V
Power Supply Current typ. 500 mA
max. 1000 mA
RS232 Interface: Baud Rates 9’600,19'200, 38400, 57°600,115°200
Data Bits 8
Parity Bits none
Stop Bits 1
Network Interface 10/100 BASE-T
BDM/JTAG clock up to 32 MHz
Supported target voltage 1.2-50V
Operating Temperature +5°C...+60°C
Storage Temperature -20 °C ... 465 °C
Relative Humidity (noncondensing) <90 %rF
Size 160 x 85 x 35 mm
Weight (without cables) 2809
Host Cable length (RS232) 25m
Electromagnetic Compatibility CE compliant
Restriction of Hazardous Substances RoHS 2002/95/EC compliant

Specifications subject to change without notice

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 52

5 Environmental notice

Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 53

7 Warranty

ABATRON Switzerland warrants the physical CD, cable and BDI3000 to be free of defects in mate-
rials and workmanship for a period of 3 years following the date of purchase when used under normal
conditions.

In the event of notification within the warranty period of defects in material or workmanship,
ABATRON will replace/repair defective CD, cable or BDI3000. The remedy for breach of this warran-
ty shall be limited to replacement and shall not encompass any other damages, including but not lim-
ited loss of profit, special, incidental, consequential, or other similar claims.

ABATRON Switzerland specifically disclaims all other warranties - expressed or implied, including
but not limited to implied warranties of merchantability and fithess for particular purposes - with re-
spect to defects in the CD, cable and BDI3000, and the program license granted herein, including
without limitation the operation of the program with respect to any particular application, use, or pur-
poses. In no event shall ABATRON be liable for any loss of profit or any other commercial damage,
including but not limited to special, incidental, consequential, or other damages.

Failure in handling which leads to defects are not covered under this warranty. The warranty is void
under any self-made repair operation.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual

54

Appendices

A Troubleshooting

Problem

The firmware can not be loaded.

Possible reasons
* The BDI is not correctly connected with the Host (see chapter 2).
e A wrong communication port is selected (Com 1...Com 4).

e The BDI is not powered up
Problem
No working with the target system (loading firmware is okay).

Possible reasons

* Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).

* Target system initialization is not correctly —> enter an appropriate target initialization list.

¢ An incorrect IP address was entered (BDI3000 configuration)
* BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).

* The target system is damaged.

Problem
Network processes do not function (loading the firmware was successful)

Possible reasons

* The BDI3000 is not connected or not correctly connected to the network (LAN cable or media

converter)
* An incorrect IP address was entered (BDI3000 configuration)

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

&&Lﬁ for GNU Debugger, BDI3000 (ARM11/Cortex-A8/Cortex-M3) User Manual 55

B Maintenance

The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such
as gasoline may damage it.

C Trademarks

All trademarks are property of their respective holders.

© Copyright 1997-2009 by ABATRON AG Switzerland V 1.05

